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Abstract. In this paper, we propose a simple, fast and easy to implement
algorithm lossgrad (locally optimal step-size in gradient descent), which au-
tomatically modi�es the step-size in gradient descent during neural networks
training. Given a function f , a point x, and the gradient ∇xf of f , we aim to
�nd the step-size h which is (locally) optimal, i.e. satis�es:

h = argmin
t≥0

f(x− t∇xf).

Making use of quadratic approximation, we show that the algorithm satis�es

the above assumption. We experimentally show that our method is insensitive

to the choice of initial learning rate while achieving results comparable to other

methods.

Keywords: gradient descent, optimization methods, adaptive step size, dy-

namic learning rate, neural networks

1. Introduction

Gradient methods, with the stochastic gradient descent at the head, play a basic
and crucial role in nonlinear optimization of arti�cial neural networks. In recent
years many e�orts have been devoted to better understand and improve existing
optimization methods. This led to the widespread use of the Momentum method [10]
and learning rate schedulers [17], as well as to creation of new algorithms, such as
AdaGrad [1], AdaDelta [18], RMSprop [13], Adam [4].
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These methods, however, are not without �aws, as they need an extensive tuning or
costly grid search of hyperparameters, together with suitable learning rate scheduler �
too large step-size may result in instability, while too small may be slow in convergence
and may lead to stuck in the saddle points [12].

As the choice of the proper learning rate is crucial, in this paper we aim to �nd
such step which is locally optimal with respect to the direction of the gradient. Our
ideas were motivated by ª4 algorithm [11], which however apply the idea globally, as it
computes the linearization of the loss function at the given point and proceeds to the
global root of this linearization. Furthermore, unlike the wngrad [15], our algorithm
can both increase and decrease the learning rate values.

Our algorithm is similar in principle to the line search methods as its aim is to
adjust the learning rate based on function evaluations in the selected direction. Line
search methods however, perform well only in a deterministic setting and require a
stochastic equivalent to perform well with SGD [8]. In opposite to this, lossgrad
is also intended to work well in a stochastic setting. The di�erence is that our algo-
rithm changes the step-size after taking the step thus never requiring any copying of
potentially large amounts of memory for network weights.

2. LOSSGRAD

The method we propose is based on the idea of �nding a step-size which is locally
optimal, i.e. we follow the direction of the gradient to maximally minimize the cost
function. Thus given a function f (which we want to minimize), a point x and the
gradient1 ∇xf , we aim to �nd the step-size h which is (locally) optimal, i.e. satis�es:

hopt = argmin
t≥0

f(x− tv), where v = ∇xf. (1)

A natural problem of how to practically realize the above search emerges. This paper
is devoted to the examination of one of the possible solutions.

We assume that we are given a candidate h > 0 from the previous step (or some
initial choice in the �rst step). A crucial role is played by investigation of the connec-
tion between the value of f after the step size and the value given by its linearized
prediction (see Figure 1):

rh =
f(x− hv)− (f(x)− h〈v,∇xf〉)

h〈v,∇xf〉
.

We implicitly assume here that 〈∇fx, v〉 > 0 (if this is not the case, we replace v by
−v).

Our idea relies on considering the loss function in a direction v:

φ : t→ f(x− tv),
1 Clearly, we can use an arbitrary direction provided by some minimization method instead of

the gradient in place of v
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Figure 1. rh measures the relation between the true value of the loss function f in
point x− h〈v,∇xf〉 and its linearized prediction given by the gradient.

Figure 2. Function φ with its corresponding quadratic approximation W . If the
derivative of W at point h is positive, we should decrease the step-size to obtain the
minima of W .

and �tting a quadratic function W (t), which coincides with φ at the end points and
has the same derivative at zero (see Figure 2), i.e. such that:

φ(0) =W (0), φ′(0) =W ′(0), φ(h) =W (h).

Then we get:

φ(t) ≈W (t) = f(x)− t〈∇xf, v〉+ rh
〈∇xf, v〉

h
t2. (2)

Remark 1. To compute rh we need the knowledge of the gradient ∇xf and the
evaluation of f at x − hv (the predicted next point in which we will arrive according
to the current value of the step-size). Consequently, in the case when v = ∇xf (i.e.
in the case of gradient methods), we need to additionally compute f(x−h∇xf). Then
the value rh simpli�es to:

rh =
f(x− h∇xf)− (f(x)− h · ‖∇xf‖2)

h · ‖∇xf‖2
.
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The derivative of function W at point h is given by:

W ′(h) = −〈∇xf, v〉+ rh
〈∇xf, v〉

h
2h = 〈∇xf, v〉 · (−1 + 2rh). (3)

This means that if:
−1 + 2rh ≤ 0 i.e. rh ≤ 1/2,

the derivative of function W at point h is negative, and therefore we should increase
the step-size to further minimize f (see Figure 2). On the other hand, if :

−1 + 2rh > 0 i.e. rh > 1/2,

the derivative of function W at point h is positive, and therefore we should decrease
the step-size to further minimize f .

In our method, increasing (decreasing) the step-size takes place by multiplication
of the current learning rate h by the learning rate adjustment factor c ( 1c ). One
can �nd the lossgrad algorithm pseudocode in algorithm 1. Notice that using our
method does not involve almost any additional calculations.

Algorithm 1 lossgrad step

Require: X - inputs for current batch, y - labels for current batch
Require: θ - model weights, α - learning rate, c - learning rate adjustment factor

1: function lossgrad_step(X, y)
2: ŷ ← predict(X; θ)
3: f ← loss_function(ŷ, y)
4: approx ← f − h||∇θf ||2
5: θ ← θ − h∇θf
6: ˆ̂y ← predict(X; θ)
7: actual ← loss_function(ˆ̂y, y)
8: rh ← actual−approx

h||∇θf ||2
9: if rh > 0.5 then
10: α ← α

c
11: else

12: α ← cα

3. LOSSGRAD asymptotic analysis in two dimensions

In the following section we show, how this process behaves for the quadratic form
F (x) = xTAx, where x = (x1, . . . , xn) ∈ Rn and A is a symmetric positive matrix.
Observe that in this case lossgrad can be seen as the approximation of the exact
solution to equation (1). Therefore in this section, we study how the minimization
process given in (1) works for quadratic functions.
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To obtain exact formula we now apply the orthonormal change of coordinates in
which F has the simple form:

F (x1, x2, . . .) = λ1x
2
1 + λ2x

2
2 + . . .+ λnx

2
n,

where λ1 ≥ λ2 ≥ . . . λn ≥ 0 are the eigenvalues of A.
Starting from the random point x0 = (x01, x

0
2, . . . , x

0
n), which gradient is equal to

∇0 = 2(λ1x
0
1, λ2x

0
2, . . .), we have:

f(t) = F (x0 − t∇0) = F ((1− 2tλ1)x
0
1, (1− 2tλ2)x

0
2, . . . , (1− 2tλn)x

0
n) =

= λ1[(1− 2tλ1)x
0
1]

2 + λ2[(1− 2tλ2)x
0
2]

2 + . . .+ λn[(1− 2tλ2)x
0
n]

2.

After taking the derivative we have:

f ′(t) = −4λ21(1− 2tλ1)(x
0
1)

2 − 4λ22(1− 2tλ2)(x
0
2)

2 − . . .− 4λ2n(1− 2tλn)(x
0
n)

2

= −4[λ21(x01)2 + λ22(x
0
2)

2 + . . .+ λ2n(x
0
n)

2] + 8t[λ31(x
0
1)

2 + λ32(x
0
2)

2 + . . .+ λ3n(x
0
n)

2].

As our goal is to �nd t0 = argmint f(t), we equate the derivative to zero:

t0 =
1

2

λ21(x
0
1)

2 + λ22(x
0
2)

2 + . . .+ λ2n(x
0
n)

2

λ31(x
0
1)

2 + λ32(x
0
2)

2 + . . .+ λ3n(x
0
n)

2
.

Since x1 = x0 − t0∇0, we have:

x1 =

(
(λ1 − λ1)λ21(x01)2 + (λ2 − λ1)λ22(x02)2 + . . .

λ31(x
0
1)

2 + λ32(x
0
2)

2 + . . .
· x01, . . .

)
To see how this process behaves after a greater number of steps, we assume that

x ∈ R2. We consider the function which transports the point to its next iteration:

g(x) =
λ2 − λ1

λ31(x1)
2 + λ32(x2)

2
x1x2(λ

2
2x2,−λ21x1).

Then

g2(x) =
λ2 − λ1

λ31(x1)
2 + λ32(x2)

2
x1x2 · g(λ22x2,−λ21x1)

=
(λ2 − λ1)

λ31(x1)
2 + λ32(x2)

2
x1x2

(λ2 − λ1)
λ31(λ

2
2x2)

2 + λ32(λ
2
1x1)

2
λ21λ

2
2x1x2λ

2
1λ

2
2(x1, x2)

=
(λ2 − λ1)2λ1λ2
λ31(x1)

2 + λ32(x2)
2

x21x
2
2

λ1x21 + λ2x22
(x1, x2) =

(λ2 − λ1)2λ1λ2
(λ21 + λ22)λ1λ2 + λ41ax + λ42a

−1
x

(x1, x2),

where ax = x21/x
2
2, and thus g2n(x) = Kn

xx. By taking the worst possible case we
obtain that the above minimizes for ax = λ22/λ

2
1, so we obtain an estimate for the

convergence:

‖g2n(x)‖ ≤
(
λ1−λ2

λ1+λ2

)2n‖x‖. (4)

Notice that this is invariant to data and function scaling (i.e. g(Cx) = Cg(x)).

Remark 2. One can easily observe that the estimation (4) gives the upper bound for
a decrease rate of the solution to any standard gradient descent method with a �xed
learning rate. Whether the same holds for the method in Rn is an open problem.
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4. Experiments

We tested lossgrad in multiple di�erent setups. First, we explore the algorithm's
resilience on the choice of initial learning rate and its behavior for a range of di�erent
LR adjustment factor values. Then we proceed to test the algorithm's performance on
fully connected networks on MNIST classi�cation and Fashion-MNIST [16] autoen-
coder tasks. Convolutional neural networks are tested on CIFAR-10 [5] classi�cation
task using ResNet-56 architecture [2]. We also evaluate our optimizer for an LSTM
model [3] trained on Large Movie Review Dataset (IMDb) [7]. Finally, we test loss-
grad on Wasserstein Auto-Encoder with Maximum Mean Discrepancy-based penalty
[14] on CelebA dataset [6]. Network architectures and all hyperparameters used in
experiments are listed in the appendix A.

Figure 3. lossgrad with di�erent initial learning rate values trained on CIFAR-10
dataset.

In our experiments we tried to compare lossgrad with wngrad [15] and ª4 ap-
plied to SGD [11]. We found out that ª4 based on vanilla SGD is extremely unstable
both on standard and tuned parameters on almost all datasets and network archi-
tectures, so we do not present the results here. For each experiment we also tested
standard SGD optimizer with a range of learning rate hyperparameters, including a
highly tuned one. For comparison, we also included SGD with scheduled learning rate
if that enhanced the results. Because dropout heavily a�ects lossgrad's stability,
we decided not to use it in our experiments.

We test the initial learning rate with values ranging between 10−1 and 10−6 for a
convolutional neural network on CIFAR-10 with the rest of the settings staying the
same. Resulting test loss values are presented in Fig. 3 on the right, while the �rst 800
batches' step size values are presented on the left. Irrespectively of the initial learning
rate chosen, the step size always converges to values around 0.025 for this experiment
setup. Thus, the need for tuning is practically eliminated, and this property makes
the algorithm noticeably attractive.

As lossgrad requires one hyperparameter, we explore which values are appropri-
ate. This is tested by training a convolutional neural network on CIFAR-10 dataset,
using our optimizer parameterized with a di�erent value each time, with the rest of
the settings staying the same. We evaluated the following hyperparameter values:
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Test loss Test acc.

Lossgrad c=1.001 2.737 0.655
Lossgrad c=1.005 2.870 0.673

Lossgrad c=1.01 1.995 0.658
Lossgrad c=1.05 1.165 0.665
Lossgrad c=1.1 1.862 0.661
Lossgrad c=1.2 2.830 0.643

Table 1. lossgrad results for di�erent
c hyperparameter trained on CIFAR-10
dataset.

Test loss Test acc.

SGD LR=0.01 0.101 0.971
SGD LR=0.07 0.085 0.980
SGD LR=0.45 0.087 0.985

WNGrad 0.073 0.978
Lossgrad 0.094 0.980

Table 2. lossgrad results for classi�ca-
tion on MNIST dataset.

Figure 4. Training ResNet-56 with lossgrad.

1.001, 1.005, 1.01, 1.05, 1.1, 1.2. We found that low and high values tend to cause un-
stable behavior. According to these results, the rest of the experiments in this paper
use c = 1.05 and initial learning rate set to 1−4.

Train loss Test loss

SGD LR=2.0 0.018 0.019
SGD LR=4.0 0.013 0.013
SGD LR=16.0 0.010 0.010

StepLR 0.015 0.016
Trapezoid 0.012 0.012
WNGrad 0.023 0.023
Lossgrad 0.022 0.022

Table 3. lossgrad results for autoen-
coder on Fashion-MNIST dataset.

Test loss Test accuracy

SGD LR=0.001 0.719 0.762
SGD LR=0.01 0.561 0.868
SGD LR=0.1 0.384 0.890
MultiStepLR 0.278 0.934

WNGrad 0.678 0.870
Lossgrad 0.492 0.900

Table 4. lossgrad results for ResNet-
56 on CIFAR-10 dataset.

Tab. 2 and Tab. 3 presents the results for fully connected network trained on
MNIST and an autoencoder trained on Fashion-MNIST, respectively. We noticed
the occurrence of sudden spikes in loss (classi�cation accuracy drops and subsequent
recoveries) in case of classi�cation on MNIST, but not when training an autoencoder
on Fashion-MNIST. The spikes correspond to learning rate peaks, which suggests that
temporarily too high step size causes the learning process to diverge.

Fig. 4 presents test accuracy and averaged step size (learning rate) when training
a ResNet-56 network on CIFAR-10, while Tab. 4 presents the results summary. Even
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with low initial learning rate, lossgrad still manages to achieve results better than
SGD, being beaten only by optimized scheduled SGD. Note the step size spike at the
beginning of the training process. This spike consistently appears at the beginning
of the training in nearly every setup tested in this paper. This result is in line with
many learning rate schedulers used in the training of neural networks, that increase
the step-size at the beginning of the training and then, after few epochs, they decrease
the step-size value [17].

Test loss Test acc.

SGD LR=0.05 0.66 0.623
SGD LR=0.1 0.359 0.845
SGD LR=0.5 0.297 0.875

scheduled 0.299 0.874
WNGrad 0.567 0.726
Lossgrad 0.583 0.708

Table 5. lossgrad result on IMDb
dataset.

Train loss Test loss

SGD LR=0.0001 11742.473 12859.591
SGD LR=1e-05 12704.917 12881.991
original (Adam) 8598.712 11082.079

WNGrad 14321.215 14304.257
Lossgrad 25225.673 25196.921

Table 6. lossgrad results for WAE on
CelebA dataset.

Results for LSTM trained on IMDb dataset are presented in Tab. 5. Here, for the
vanilla SGD, a higher learning rate is preferred. lossgrad selects a very low step-size
instead (below 0.01 after the initial peak) and manages only to achieve better results
than untuned SGD.

Finally, the results for WAE-MMD are presented in Tab. 6. The originally used
optimizer (Adam) and scheduler combination from [14] is marked as �original�. Prop-
erly tuned SGD, as well as WNGrad, yield better results than lossgrad, which
chooses a very low step size for this problem.

We provide an implementation of the algorithm with basic examples of usage on
a git repository: https://github.com/bartwojcik/lossgrad.

5. Conclusion

We proposed lossgrad, a simple optimization method for approximating locally op-
timal step-size. We analyzed the algorithm behavior in two dimensions quadratic form
example and tested it on a broad range of experiments. Resilience on the choice of ini-
tial learning rate and the lack of additional hyperparameters are the most attractive
properties of our algorithm.

In future work, we aim to investigate and possibly mitigate the loss spikes encoun-
tered in the experiments, as well as work on increasing the algorithm's e�ectiveness.
A version for momentum SGD and Adam is also an interesting topic for exploration
that we intend to pursue.

https://github.com/bartwojcik/lossgrad


55

6. References

[1] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121�2159, 2011.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770�778, 2016.

[3] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735�1780, 1997.

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[5] Alex Krizhevsky and Geo�rey Hinton. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009.

[6] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face
attributes in the wild. In Proceedings of the IEEE International Conference on
Computer Vision, pages 3730�3738, 2015.

[7] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng,
and Christopher Potts. Learning word vectors for sentiment analysis. In Proceed-
ings of the 49th annual meeting of the association for computational linguistics:
Human language technologies-volume 1, pages 142�150. Association for Compu-
tational Linguistics, 2011.

[8] Maren Mahsereci and Philipp Hennig. Probabilistic line searches for stochastic
optimization. In Advances in Neural Information Processing Systems, pages 181�
189, 2015.

[9] Je�rey Pennington, Richard Socher, and Christopher Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on empir-
ical methods in natural language processing (EMNLP), pages 1532�1543, 2014.

[10] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural networks, 12(1):145�151, 1999.

[11] Michal Rolinek and Georg Martius. L4: Practical loss-based stepsize adaptation
for deep learning. In Advances in Neural Information Processing Systems, pages
6434�6444, 2018.

[12] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[13] Tijmen Tieleman and Geo�rey Hinton. Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude. COURSERA: Neural networks for
machine learning, 4(2):26�31, 2012.



56

[14] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf.
Wasserstein auto-encoders. arXiv preprint arXiv:1711.01558, 2017.

[15] Xiaoxia Wu, Rachel Ward, and Léon Bottou. Wngrad: Learn the learning rate
in gradient descent. arXiv preprint arXiv:1803.02865, 2018.

[16] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.

[17] Chen Xing, Devansh Arpit, Christos Tsirigotis, and Yoshua Bengio. A walk with
sgd. arXiv preprint arXiv:1802.08770, 2018.

[18] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

A. Network architecture, hyperparameters and datasets description

MNIST Fashion-MNIST CIFAR

Type Outputs Type Outputs Type Kernel Outputs

Linear 500 Linear 200 Conv2d 5x5 28x28x30
ReLU ReLU MaxPool2d 2x2 14x14x30
Linear 300 Linear 100 ReLU
ReLU ReLU Conv2d 5x5 10x10x40
Linear 100 Linear 50 MaxPool2d 2x2 5x5x40
ReLU ReLU ReLU
Linear 10 Linear 100 Conv2d 3x3 3x3x50

ReLU ReLU
Linear 200 Linear 250
ReLU ReLU
Linear 784 Linear 100
Sigmoid ReLU

Linear 10

Table 7. Architecture summary for experiments presented in Tab. 2 (left), Tab. 3
(middle), Tab. 1 and Fig. 3 (right).

Tab. 7 presents the architecture used for image classi�cation on CIFAR-10 dataset.
This architecture was used to obtain the results presented in Fig. 3 and Tab. 1.
We initialized the neuron weights using a normal distribution with a 0.05 standard
deviation and bias weights with a constant 0.2. The minibatch size was set to 100 and
cross entropy was chosen as the loss metric. The model was trained for 60 epochs with
c hyperparameter set to 1.05 in the learning rate convergence experiment and for 120
epochs with an initial learning rate of 0.1 in the second experiment. We preprocessed
the CelebA dataset by resizing its images to 64x64 and discarding labels.
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Tab. 7 also contains the architectures used for image classi�cation on MNIST
dataset and for autoencoder training on Fashion-MNIST dataset. We trained both
networks for 30 epochs with the rest of the hyperparameters being the same as in
CIFAR-10 experiment. For MNIST, we selected the following learning rate values:
0.01, 0.07, 0.45 for SGD and 1.0 for WNGrad. For Fashion-MNIST, we tested the
following learning rate values: 2.0, 4.0, 16.0 for SGD and 5.0 for WNGrad. We also
evaluated two scheduled optimizers. The �rst one linearly increases the learning rate
from 0 to 10 in epoch 10, stays constant until epoch 15 and decreases afterward
(trapezoidal). The second one starts with 16.0 and is multiplied by 0.5 after 20
epochs. Mean square error was used as the loss function.

ResNet-56 architecture is described in [2]. We trained the network for 250 epochs,
used random cropping and inversion when training and applied weight decay with
λ = 0.001. The learning rate values we used were: 0.1, 0.01, 0.001 for SGD, 0.2 for
WNGrad, 0.1 with 0.1 multiplier after epochs 100 and 150 for step scheduled SGD.
We set the mini-batch size to 128 in this experiment.

For IMDb experiments, we used a pretrained embedding layer, trained with GloVe
algorithm [9] on 6 billion tokens available from torchtext library. Its 100 element
output was fed to 1 layer of bidirectional LSTM with 256 hidden units for each
direction. The �nal linear layer transformed that to scalar output. We set 0.1 as the
learning rate for wngrad , 0.5, 0.1, 0.05 for SGD and also tested a scheduled SGD
with learning rate initially set to 0.5 and then decreasing to 0.05 after 10 epochs.

The architecture for WAE-MMD is the same as in [14]. Minibatch size was set to
64, mean square error was selected as a loss function and the network was trained for
80 epochs. We set 1−4 as the initial learning rate for WNGrad and 1−5, 1−4 for SGD.
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