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ABSTRACT

METHODS FOR ROBUST QUANTIFICATION OF RNA ALTERNATIVE SPLICING

IN HETEROGENEOUS RNA-SEQ DATASETS

Scott Norton

Yoseph Barash

RNA alternative splicing is primarily responsible for transcriptome diversity and is relevant

to human development and disease. However, current approaches to splicing quantification

make simplifying assumptions which are violated when RNA sequencing data are hetero-

geneous. Influences from genetic and environmental background contribute to variability

within a group of samples purported to represent the same biological condition. This work

describes three methods which account for data heterogeneity when detecting differential

RNA splicing between sample groups. First, a robust model is implemented for outlier

detection within a group of purported replicates. Next, large RNA-seq datasets with high

within-group variability are addressed with a statistical approach which retains power to

detect changing splice junctions without sacrificing specificity. Finally, applying these tools

to call sQTLs in GTEx tissues has identified splicing variations associated with risk loci

for cardiovascular disease and anomalous skeletal development. Each of these methods

correctly handles the properties of heterogeneous RNA-seq data to improve precision and

reduce false discovery rate.
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CHAPTER 1 : Introduction

This section reviews the fundamentals of RNA splicing biology, the tools and technologies

that exist to measure RNA splicing in tissues and changes between tissues, and the inherent

challenges that are addressed by the work supporting the later chapters.

1.1. Splicing biology

1.1.1. Eukaryotic mRNA transcripts are processed by the spliceosome

Gene expression is the essential mechanism by which a cell synthesizes the proteins it needs

to function. These proteins are encoded as genes in the cell’s DNA, which are transcribed

into messenger RNA (mRNA) by an RNA polymerase (RNA Polymerase II in mammals)

and translated into proteins by ribosomes. Cells have additional layers of regulation on top

of this, which allow it to control the abundance of each protein to adapt to its immediate

needs. In complex organisms, the patterns of regulation vary between cell types and result

in different genes being expressed at different levels, which results in differences in cellular

function.

Eukaryotes in particular have a complex gene structure, with its sequence consisting of

“exons” and “introns”. In general, mature mRNAs consist of only exons, which contain the

linear sequence that directly encodes for the protein product. As such, the introns must

be removed from the nascent mRNA transcript (pre-mRNA), and the process by which

this occurs is called “splicing”. During processing of the pre-mRNA, which commonly

occurs co-transcriptionally (Herzel et al., 2017), a complex of RNA and proteins called the

“spliceosome” assembles on the nascent RNA transcript at specific points on the intron

and flanking exons. The components of this machinery and the process it mediates are

summarized in a review by Matlin et al. (2005). Briefly, the spliceosome contains five

catalytic small nuclear ribonucleoproteins (snRNPs) termed U1, U2, U4, U5, and U6 in

complex with large proteins. The assembly of the basal spliceosome is guided by consensus

motifs at the 5’ (recognized by U1) and 3’ (recognized by U2 auxiliary factor (U2AF))

splice sites as well as the branch point adenine residue (located in the intron some 30 nt
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upstream from the 3’ splice site, bound by splicing factor 1 (SF1)) and an 18+-residue

polypyrimidine tract at the 3’ end of the intron (also bound by U2AF). Additional splicing

regulatory proteins (SRps), such as those in the CELF and RBFOX families (Sun et al.,

2012; Chen and Manley, 2009; Gazzara et al., 2017), can bind to the mRNA, either in the

intron or in either flanking exon, to enhance or inhibit spliceosomal assembly and activity.

Once formed, the basal spliceosome recruits additional RNAs and proteins, including U2

snRNP itself, to bring the 5’ and 3’ splice sites into proximity with one another. This

proximity mediates the ATP-driven excision of the intron in two major catalytic steps:

nucleophilic attack of the branch point adenine on the 5’ splice site, cleaving the 5’ end and

creating the lariat intermediate; and nucleophilic attack of the 3’ end of the upstream exon

on the 3’ splice site (which also has a conserved sequence motif), freeing the intron from

the rest of the transcript and joining the exons together (Herzel et al., 2017). This process

is repeated iteratively for each intron to be removed.

Splicing is one of three major forms of post-transcriptional or co-transcriptional processing

of mRNAs in eukaryotes (Beyer and Osheim, 1988; Tilgner et al., 2012; Ameur et al., 2011).

It is also essential for the 5’ end of the transcript to be “capped” with a 5-methylguanine

residue. This 5’ cap is recognized by the eukaryotic translation initiation complex (specifi-

cally, by a protein called EIF4F in humans), and is therefore required for the protein to be

translated. Additionally, the 3’ end of the transcript is adorned with a polyadenosine (poly-

A) tail. This tail is associated with transcript stability in both eukaryotes and prokaryotes.

In eukaryotes, it serves as the binding substrate for poly-A binding proteins (PABP).

mRNAs are not the only class of transcripts subject to this processing. Recently, several

long noncoding RNAs (lncRNAs) have been classified. These RNA Polymerase II products

are capped, spliced, and polyadenylated in the same manner as mRNAs. However, as

the name suggests, the mature transcripts do not code for any protein product, nor are

they exported to the cytoplasm where the ribosomes reside. Instead, the mature lncRNA

transcripts are localized to nuclear subcompartments where they perform their roles in

2



chromatin and transcriptional regulation (Cao, 2014).

1.1.2. Alternative splicing contributes to proteomic and functional diversity

Differential binding of the aforementioned SRps affect the degree to which a given splice

site is used. The consequence of this is the differential inclusion and exclusion of exons

and exonic segments in the mature transcript, a phenomenon termed “alternative splicing”.

Figure 1 depicts a toy example of a gene with two transcript isoforms, one in which the

red exon (circled) is included, and one where it is skipped. The functional consequence is

the presence or absence of the red domain on the protein product. If, for example, this

red domain is a ligand binding site, the choice of whether to include or skip the coding

exon will affect the response of the protein product to that ligand, which impacts how the

cell as a whole responds to stimulus. In some cases, an alternative transcript may not

yield a viable protein product at all. This usually happens because the alternative tran-

script has a premature termination codon, introduced either in the alternatively included

exon or intron, or as a result of a frame shift. These transcripts are normally targeted for

nonsense-mediated decay (NMD) (Lykke-Andersen and Jensen, 2015). Additionally, alter-

native splicing can result in differential inclusion of regulatory domains on the mRNA itself,

such as RNA-binding protein (RBP) and micro RNA (miRNA) binding sites, whether due

to sequence alone or a change in the mRNA’s secondary structure that affects binding of

the aforementioned. While this change would not affect the translated protein product, it

does impact where the protein is expressed and at what level.

Alternative splicing is particularly abundant in higher mammals, with an estimated 90% of

multi-exon genes in humans, both coding and non-coding (Deveson et al., 2017), showing

evidence of multiple transcript isoforms (Wang and Cooper, 2007). Many of these alterna-

tive isoforms are cell-type specific, and the regulation of alternative isoform expression is

tightly regulated during various stages of organism development. Moreover, dysregulation

of alternative splicing has been observed in several diseases, including familial and sporadic

forms of frontotemporal dementia (FTD) and Alzheimer’s disease, and various cancers (For-

man et al., 2006; Bai et al., 2013; Arnold, 2013; Colombo et al., 2014; Zhang et al., 2013;
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Figure 1: Cartoon illustrating mRNA alternative splicing. The red exon (circled) can either
be spliced in to yield the top isoform or spliced out to yield the bottom isoform. Each isoform
is translated into a different protein, one with the red domain, and one without.

Colak et al., 2013; Dvinge and Bradley, 2015). In order to better understand the precise

mechanisms driving alternative splicing differentiation and disease, it is necessary to accu-

rately quantify splicing in tissue samples and measure splicing changes between biological

or experimental conditions.

1.2. RNA splicing quantification

RNA splicing quantification is a rapidly evolving field accelerated by the advent of RNA-seq

in 2008 (Nagalakshmi et al., 2008; Mortazavi et al., 2008). This chapter summarizes some

of the major technological developments in measuring RNA levels in tissue extracts, and

the evolution of methods for quantifying alternative splicing.

1.2.1. Important technological developments for measurement of RNA abundance

Prior to the advent of RNA-seq, two biochemical techniques predominated for measur-

ing RNA alternative splicing. The higher-throughput of these is the microarray, in which

fluorescently-labeled DNA oligonucleotides (oligos) anneal to complementary RNAs. Alter-

native transcript abundance for a given gene can be measured by designing two or more

probes with different fluorescent tags, each complementary to a sequence unique to one of

the transcript isoforms. After washing away unbound probes, the abundance of each isoform

can be interpreted by imaging from the relative intensity of each fluorescent frequency. This

technique can be performed for multiple genes or multiple samples in parallel by loading

each well on a specially-designed wellplate with either different input samples or different

hybridization probes (Schena et al., 1996). The signal in each well can be made easier to
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detect by reverse-transcribing (RT) the mRNA transcript to complementary DNA (cDNA)

followed by a polymerase chain reaction (PCR) to amplify the cDNA product (RT-PCR).

The microarray technique has some technical limitations. First, the throughput of the

technique is restricted to the number of wells on the wellplate used for the analysis. Addi-

tionally, because the hybridization probes must be designed before the microarray analysis

is performed, this technique cannot be used for de novo discovery of splice isoforms. Lastly,

the fluorescent intensity can be difficult to interpret in a quantitative fashion - the signal

can either be too low for the sensor to distinguish from background, potentially resulting

in false negative detection, or so high that it saturates the sensor, frustrating differential

analysis.

Carefully-performed RT-PCR is a popular low-throughput technique for local splicing quan-

tification and is considered to be the gold standard among biochemical assays. RT-PCR

primers are designed to flank an alternative splicing event, which is defined in terms of

the alternatively-included exon, exonic fragment, or retained intron. Classically, splicing

events include cassette exons, alternative 5’ donor or 3’ acceptor sites, mutually exclusive

exons, and intron retentions, as depicted in Figure 2. RT-PCR is assessed by measuring

the relative intensity of two or more bands on a Northern blot, which correspond to the

known fragment sizes for each splice form. In the case of a cassette event, amplified frag-

ments including the alternative exon will be larger and migrate less distance on the gel than

fragments skipping the exon. The relative intensities of the two bands are summarized as a

single quantity PSI (Ψ), or “percent spliced in”, for the alternative fragment. Splicing can

be directly compared between two experimental conditions as the change in Ψ (Delta PSI,

∆Ψ). This approach is advantageous in that it accurately captures local splicing decisions

in a quantitative fashion. However, RT-PCR is labor-intensive and low-throughput, and

shares microarrays’ restriction to known splicing variations.
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1.2.2. RNA-seq-based methods facilitate high-throughput quantification and de-novo discov-

ery of splicing variations

The advent of high throughput sequencing (Next-Generation Sequencing, or NGS) has rev-

olutionized quantitative genomic and transcriptomic analysis. The predominant variation

of this is the sequencing-by-synthesis technique employed on the Illumina platform. This

technology directly reads the nucleotide sequences of each DNA molecule in the input sam-

ple. These “reads” can be mapped back to a reference genome or transcriptome using tools

such as BowTie (Langmead et al., 2009), STAR (Dobin et al., 2013), or HISAT2 (Kim et al.,

2015).

The technique itself, which is described in detail by Solexa Ltd. (Bennett, 2004; Slatko et al.,

2018), requires special preparation of a DNA or cDNA library to produce DNA molecules

to average 300 nucleotides in size with specialized adapters annealed to the 3’ end of each

molecule. The library is loaded onto a flow cell, which contains billions of clusters of

oligonucleotides complementary to these adapters. The DNA is amplified on these clusters

by the sequencer using the oligos as PCR primers. The final round of amplifcation is

modified to add one fluorescently-labeled nucleotide at a time, up to a predetermined,

protocol-dependent length. When incorporated, the sequencer reads the fluorescent signal

simultaneously for all clusters on the flow cell, and interprets the sequence of images as the

original DNA sequence at each cluster.

One key advantage of this technology is that each molecule in the input sample can be

mapped directly to at most one read in the output. When multiple molecules originate

from the same genomic region, the relative representation of that region can be interpreted

from the number of reads mapping back to it. This is a digital count which, unlike fluo-

rescent signal detection, has no upper bound, thus enabling the accurate quantification of

both lowly-expressed and highly-expressed loci. Additionally, splice-aware mappers such as

STAR and HISAT2 can map RNA reads to the genome instead of a transcriptome, allowing

for de-novo discovery of splice junctions, virtually removing the requirement for a prior
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transcript model.

A second benefit of high-throughput sequencing is that it can be multiplexed, allowing for

the simultaneous evaluation of multiple samples. Multiplexing is achieved by incorporating

unique DNA “barcodes” into the adapters annealed to the amplified DNA in each sample.

During the image processing step, the sequencer separates the reads using the barcode as a

key for which sample the reads originally came from.

High-throughput sequencing, including RNA-seq, is not without its limitations. First, be-

cause library preparation is a multistep process with the potential for loss at each step,

some molecules from the original extract may not appear in the sequencer output. This is

evidenced by an apparent read, fragment, or transcript count of 0 for some genomic regions

(zero-inflation) (Rashid et al., 2011). Since the same can arise due to the molecule being

absent in the original tissue sample (i.e. the gene or transcript is not expressed), zero counts

must be interpreted with caution. Each step of the process additionally incorporates its

own systematic biases, including a positional bias favoring the 3’ end of transcripts and a

bias towards sequences with high GC content. Finally, NGS technologies are designed to

produce only short sequencing reads, typically between 100-150 bp in length. While this is

sufficient to estimate gene expression, it makes quantification of whole transcript isoforms

challenging. Sequencing the cDNA from both ends (paired-end sequencing) improves map-

ping accuracy, but the gains in performance for transcriptome quantification and assembly

are modest (Song and Florea, 2013). These technical shortcomings must be addressed when

processing RNA-seq experiments for expression or splicing quantification.

1.2.3. Splicing quantification from RNA-seq relies on the underlying model

Isoform quantifiers

Several tools and models have been proposed to address the unique challenges posed by

using RNA-seq for transcript and splicing quantification. Chief among these are methods

such as SALMON (Patro et al., 2017) and RSEM (Li and Dewey, 2011) which attempt to

estimate relative abundances of whole transcript isoforms. In brief, these methods assume
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a transcript model and attempt to assign RNA-seq reads to transcripts. This is more

easily done in simple cases where two alternative transcripts share all but a small number

of exons or parts of exons. However, many genes have three or more transcripts, some of

which mutually share exons and splice junctions. The CYP11B1 locus, for example, has five

annotated transcript isoforms with substantial local overlap in sequence. In particular, the

three longest isoforms are nearly impossible to distinguish from the two shortest isoforms

given only reads starting within exon 9 (see Figure 2). Therefore, these algorithms must

determine what fraction of reads mapping to shared exons come from which transcript

isoforms.

Both RSEM and SALMON construct a joint parametric model of transcript abundance and

read assignments to transcripts, and use expectation maximization (EM) to optimize this

model. In EM, observations (reads) are first assigned their expected class labels (transcripts)

based on the current state of the model parameters. Next, the parameters are updated

to values which maximize the total likelihood of the joint model given the current label

assignments. In the simplest case, the total number of reads assigned to a transcript is

scaled (normalized) by the number of mappable positions on that transcript. The maximum

likelihood estimate is then the fraction of normalized reads for each transcript (transcript-

level expression) relative to the sum of normalized reads for all transcripts at that locus

(total gene expression). The two steps of label assignment (expectation) and parameter

update (maximization) are repeated until the joint likelihood of the model converges. The

final optimized parameters are then used to provide transcript-level expression estimates as

transcripts per million RNA molecules (TPM).

In general, transcript levels are highly informative of biological activity in cells. However,

the task of quantifying isoform expression transcriptome-wide is complicated by the problem

of de-novo transcript assembly from short RNA-seq reads. The main barrier to accurate

transcriptome assembly from NGS data is determining whether two distant exons originate

from the same mRNA transcript. This problem can be addressed by long-read sequencing
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technologies such as PacBio and Oxford Nanopore. However, the current cost of running

these platforms is still considerably high for decent coverage. Moreover, these technologies

are more useful for detecting isoforms in the task of transcriptome definition than for isoform

quantification.

Figure 2: CYP11B1 as an example of a complex gene locus. Image lifted from the UCSC
hg19 Genome Browser, ”UCSC Genes” track, zoomed to cover the CYP11B1 locus on
chromosome 8q24.3. The region in the red box highlights parts of exons 9-11. Reads
originating from fragments mapping here can be used to distinguish between the three long
and two short isoforms, but cannot be assigned to any one transcript. In particular, it is
not possible to distinguish between isoforms 3 and 5 from these reads alone, as they do not
capture the inclusion of exon 4.

Event quantifiers

Several methods for RNA quantification avoid the problem of transcript assembly altogether

by framing RNA splicing in a more local context. The premise is that alternative splicing

results in the alternative inclusion or exclusion of exons. In many cases, this affects the

differential presence of functional or structural domains in the translated protein product

or on the mRNA itself. The fraction of the RNA sample that includes the alternative exon,

relative to the number of reads which exclude the exon, is often reported as the “percent

spliced in” (Ψ) for that exon.

The alternative exclusion of whole exons is called “exon skipping” or a “cassette exon

event”, and is one of several classically-defined “splicing event” types in the literature (Wang

et al., 2015). Other event types include alternative 5’ splice sites, alternative 3’ splice sites,

mutually exclusive exons, and intron retention. These are depicted in Figure 4. These events

are much easier to define from NGS data because they rely only on reads mapping uniquely

to each variant of the event. Methods such as rMATS (Shen et al., 2014) and MISO (Katz

et al., 2010) were developed to quantify Ψ for splicing events transcriptome-wide.

Some methods, such as SUPPA (Entizne et al., 2016; Trincado et al., 2018), take a hybrid

approach wherein they use transcript-level quantifications to inform event-level quantifica-
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tions. This approach takes normalized transcript counts (number of copies of each transcript

per million of reads sequenced, or TPM) as estimated by SALMON or RSEM and, for each

event, combines counts from all transcripts containing the same variation of the event to

estimate Ψ. For example, in an exon skipping event, Ψ is estimated as the ratio between the

sum of all TPM from transcripts containing the cassette exon and the sum of TPM from all

transcripts annotated at that gene locus. While this resolves the ambiguity problem faced

by SALMON and RSEM alone, it does not facilitate de-novo junction discovery.

While event quantifiers are fast and accurate, the definition of these events is limited in its

ability to describe the full complexity of mammalian transcriptomes. Indeed, as much as

30% of observed transcriptome variations cannot be correctly quantified under this frame-

work because they do not fit the underlying events model (Vaquero-Garcia et al., 2016).

Notably, both rMATS and MISO rely on a user-provided transcriptome annotation from

which splicing events are constructed. As a consequence, they do not detect novel splicing

events (de-novo detection), which limits their ability to discover new splicing biology. The

ability to detect de-novo splicing variations is important for studying low-abundance or

developmentally-transient cell types as well as diseases affecting splicing regulation.

Cluster quantifiers

A third, more recent class of methods approaches the problem as one of junction or intron

clustering. This approach groups alternative transcripts by the set of junctions or introns

that share splice sites between them (see Figure 3). Methods following this approach include

Whippet (Sterne-Weiler et al., 2018) and LeafCutter (Li et al., 2018). This represents a

generalization on the classical event model in that splice junctions sharing at least one

flanking constitutive exon between them can be explained as a single splicing event covering

differential usage of subsets of junctions. This model reflects the observation that RNA

splicing occurs via the “stepwise removal of introns from nascent pre-mRNA”. Because

this model examines splicing locally and is not constrained by classical event definitions,

it can accurately quanitfy the remaining 30% of transcriptome complexity that is omitted

by rMATS and MISO. Both Whippet and LeafCutter additionally detect and quantify
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Figure 3: Figure 1a from Li et al. (2018). Differentially-excised introns are identified from
spliced reads as flagged by the RNA-seq mapper. A cluster is defined from all excised
introns which share at least one splice site.

unannotated exons and splice junctions from the input reads. Importantly, LeafCutter was

designed for the discovery of splicing quantitative trait loci (sQTLs), allelic variants which

associate with changes in splicing. However, neither approach detects unannotated or de

novo retained introns, the likes of which are present in both normal (Schmitz et al., 2017)

and disease (Dvinge and Bradley, 2015) tissue contexts.

Local splicing variation quantifier

The fourth class of methods explains alternative splicing in terms of “LSVs”, which are

conceptually similar to the aforementioned cluster-based models. The LSV definition can

be interpreted by visualizing a gene model as a directed (5’ to 3’) graph, where the edges

are splice junctions and the vertices are contiguous exonic fragments between adjacent
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splice junctions. An LSV is defined as a split in this graph representing an individual

splicing decision at a single splice site (Figure 5A). This framework naturally captures all the

variations explained by classical binary splicing events (Figure 5B) but have the flexibility

to describe non-classical and complex (3 or more splice junctions, Figure 5C) events that are

misclassified or excluded by classical models. Additionally, alternative junction inclusion

levels can be quantified from RNA-seq in a manner similar to traditional Ψ quantification.

MAJIQ (Model of Alternative Junction Inclusion Quantification) was developed around the

LSV framework (Vaquero-Garcia et al., 2016; Norton et al., 2018). MAJIQ works by first

building a splice graph model for each gene in the supplied reference annotation. This model

captures all exons and splice junctions in the transcriptome annotation, and identifies points

where two transcripts converge or diverge as LSVs. Optionally, MAJIQ supplements this

model with evidence from the supplied RNA-seq alignments, adding new splice junctions

and LSVs where there are enough reads to support them. Spliced reads flagged by the

aligner are assigned uniquely to junctions in the splice graph. This process implements

quality control measures such as probabilistic stack removal to remove PCR duplicates and

parametric bootstrapping to capture the per-experiment, per-junction variance in mapped

read levels. Next, a Bayesian model is applied to compute a posterior distribution of Ψ for

each LSV junction using the bootstrapped read counts on top of a Jeffrey’s prior. Evidence

from replicate experiments is accumulated in this step to provide a more confident estimate

of Ψ. An additional Bayesian prior is applied when estimating differential splicing between

conditions. Finally, MAJIQ comes packaged with a visualization suite called VOILA which

generates publication-ready illustrations of the splice graph model, read count distributions,

and Ψ and ∆Ψ quantifications at each LSV (Figure 5D). Additionally, VOILA generates a

human- and machine-readadble TSV file summarizing splicing quantifications at all LSVs.

Of the aforementioned methods that quantify alternative splicing in groups of RNA-seq

experiments, all of them assume that these groups are bona fide replicates of an underlying

biological condition. However, this assumption is not guaranteed to hold. Indeed, sample
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groups can be heterogeneous for a number of known and unknown reasons. For instance,

an experiment involving inbred mice can be confounded by differential food consumption

between individual mice, mislabeling of tissue samples, or a shift in environmental condi-

tions between batches of samples. Human population studies pose additional challenges for

splicing quantification, as it is unethical to control for genetic and environmental variation

in the study group the way one would with mice. One can attempt to compensate for this

by expanding the sample size, but the underlying heterogeneity must still be accounted for

properly. Genetic and environmental variants can covary with splicing, making it difficult

to conclude whether an observed splicing variation is the result of the study condition or if

it is confounded with an underlying trait.

The major contributions of this body of work are as follows. First, I developed a method

for detecting splicing outliers in a group of purported replicate experiments. I extended

that method to correct for outlier replicates at the Ψ level. This functionality, described

as MAJIQout, was integrated into MAJIQ and is available starting in version 1.1. As part

of developing MAJIQout we also developed an extensive set of evaluation criteria to assess

algorithms for differential splicing quantification from RNASeq, something the community

lacked. We then applied these tests to state of the art algorithms to assess their performance.

Next, I addressed the impact of data heterogeneity and dataset size on splicing observations,

and developed a framework for detecting differences in alternative splicing between large

heterogeneous sample groups using robust rank-based statistics. We termed this framework

MAJIQ-HET, and it is included as part of MAJIQ 2.0. Finally, I designed a pipeline that

uses MAJIQ Ψ quantifications to call splicing quantitative trait loci (sQTLs). I applied this

pipeline in collaboration with researchers at the University of Pennsylvania, the Children’s

Hospital of Philadelphia, and Erasmus University Medical Center to discover and validate

splicing variations that associate with disease risk loci.
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Figure 4: Schematic depicting some of the classical binary events that are quantified by
event-based methods such as rMATS and MISO. From left to right: alternative 5’ (donor)
splice site, alternative 3’ (acceptor) splice site, and exon skipping (cassette exon). Not
depicted but still relevant are the cases of mutually exclusive exons where the decision is
between two options for a cassette exon, and intron retention where the intervening intron
is not spliced out.

Figure 5: Overview of the LSV model. A: LSVs are visualized as splits in a splice graph.
A single-source LSV shares the 5’ node, and a single-target LSV shares the 3’ node. B:
Classically-defined binary splicing events are captured by two symmetric LSVs, one at the
5’ node and one at the 3’ node. C: The LSV model also explains more complex splicing
variations, where three or more junctions share a common splice site. D: VOILA generates
publication-ready visualizations of gene graphs, LSV structures, and Ψ/∆Ψ quantifications.
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CHAPTER 2 : Outlier detection and methods evaluations

This chapter details a new approach for outlier detection in RNA alternative splicing quan-

tification, as well as best practices for evaluating and comparing method performance and

accuracy. The original work is published in Norton et al. (2018).

2.1. Introduction

Data from present-day RNA-seq experiments face challenges relating to sequencing depth,

transcriptome coverage, and biological and technical variability (Alamancos et al., 2014).

A popular workaround for this is to sequence multiple replicates of the same experiment.

Replicates can be either “biological” i.e. the data come from different organisms or tissue

samples from the same condition group, or “technical” i.e. the same library is sequenced

more than once. Generally, technical replicates grant consistency in observations and can

improve power to detect true splicing changes. However, a single RNA-seq library can fail to

capture low-abundance transcripts simply by chance. Biological replicate designs overcome

this by constructing multiple libraryies, giving these transcripts a greater likelihood of

representation in at least one experiment.

In each case, the information from replicate data is combined to detect biological signals.

Many RNA splicing and transcript abundance quantifiers are designed to handle multiple

replicates. rMATS (Shen et al., 2014), for example, implements a hierarchical logit-normal

distribution to explain per-replicate Ψ in terms of a group mean Ψ and variance. MA-

JIQ (Vaquero-Garcia et al., 2016), meanwhile, models Ψ using a Bayesian framework where

the read counts bootstrapped from each additional replicate updates a beta posterior model

for the underlying group Ψ. Each of these approaches has its advantages and disadvantages

for Ψ quantification, but both assume that the input samples are true replicates sharing

an underlying distribution of event or junction Ψ. When the data violate that assumption,

neither model is guaranteed to accurately represent the true underlying Ψ.

What does it mean for a group of experiments to violate this assumption of shared under-

15



ling Ψ? This dissertation discusses two such scenarios. The first, covered by this chapter,

explores the case where one or more experiments is an outlier replicate. The second, ex-

plained in the next chapter, deals with larger sample groups that are true representatives

of the underlying biological condition but exhibit a great deal of heterogeneity.

2.1.1. What is an outlier in the context of RNA alternative splicing?

Genomic datasets are grainy snapshots of biological samples, so some variance is to be

expected. In addition to the irreducible portion of variance inherent in the technique, there

are also genuine biological reasons why per-sample measurements differ. For bulk tissue

RNA-seq, these can include differences in the cell-type composition of the tissue sample,

fluctuations in gene expression within the sample, and specimen-specific environmental

factors. In light of these known sources of variation, some disagreement between per-

sample quantifications is tolerable. However, samples which deviate strongly from the

group consensus - “outliers” - are not.

Statistical outliers with respect to an event are samples in an experiment which significantly

skew the group estimate. Specifically, in the problem of splicing quantification from RNA-

seq experiments, the distribution of mapped reads in an outlier deviates substantially from

those of the remaining experiments in the group. This can manifest in the outlier reporting

different splice junction inclusion levels than its fellow experiments, either relative to other

junctions describing the same splicing event or in terms of total number of reads mapping

to that event (depth of coverage). The impact of a read count outlier is of particular

importance - if an experiment reports much fewer reads than the others in the group, it

can reduce the apparent significance of changes in splicing (∆Ψ) between groups even if the

outlier’s point estimate of Ψ is in agreement with the group.

It is not atypical to observe some background divergence within a group of replicate ex-

periments, even events at which one replicate disagrees quite strongly with the remainder.

What makes a replicate a bona fide outlier is the prevalence of such disagreements across the

event space. In order to determine this, one should test the suspected outlier across the en-
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tire transcriptome, accumulating evidence of disagreement with the remaining experiments

in the study group. Therefore, a robust outlier detection algorithm would define a metric of

divergence between each replicate’s quantification of an event and a group representative,

and evaluate this metric on all events to determine whether one replicate is a serial offender

in this regard.

2.1.2. How is outlier detection typically performed in the literature, and what are the possible

shortcomings therein?

Statistical outliers are of significant concern when dealing with biological data, which is

often noisy in and of itself. However, there is little to no discussion in the literature on how

to handle it. Instead, researchers are left to use their own heuristics to determine whether

a sample might be an outlier. Often, these heuristics carry hidden biases which impact

anaylsis. A recent work by Conesa et al. (2016) suggests using PCA to query whether

samples of the same condition cluster together, but admits that “no clear standard exists

for biological replicates” as pertains to measuring within-group consistency. The work

described in this chapter addresses this gap in the literature, and was originally published

as Norton et al. (2018).

2.2. Algorithm

2.2.1. If we had some weights, how would we use them in MAJIQ?

Before we describe our approach to outlier detection, we first explain how such an approach

should be applied in practice. Let us examine the original quantification model on a collec-

tion T of N experiments representing a biological condition. A splice graph is generated for

T by the MAJIQ builder, and the junction-spanning RNA-seq reads from each experiment

t ∈ T are assigned to LSV junctions. To control for sampling variance in read alignments

across positions in the transcript, we bootstrap read counts for each junctions based on the

number of reads starting at each nonzero position that is assigned to the LSV. Let us call

these read counts {Ri,j,t}, where i is the index of the LSV, j is the junction index within

LSV i, and t is the current experiment. Suppose that LSV i has J splice junctions. Prior

to incorporating the {Ri,j,t}, the random variable Ψi,j is assumed to have a Beta( 1
J ,

J−1
J )
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distribution for each j. (The joint distribution of junction Ψ is a Dirichlet(
1

J
, . . . ,

1

J︸ ︷︷ ︸
n times

).

However, we consider the marginal distribution for each junction separately to make the

model tractable.) Each experiment t contributes Ri,j,t reads of evidence supporting junction

j, and a combined
∑

j′ 6=j Ri,j′,t reads supporting the other junctions. Thus the posterior

distribution of Ψi,j | t is

Ψi,j | t ∼ Beta

Ri,j,t +
1

J
,
∑
j′ 6=j

Ri,j′,t +
J − 1

J

 . (2.1)

This posterior can be updated with the read counts from the remaining replicates in T , so

that the posterior distribution becomes

Ψi,j | T ∼ Beta

∑
t∈T

Ri,j,t +
1

J
,
∑
t∈T

∑
j′ 6=j

Ri,j′,t +
J − 1

J

 . (2.2)

Now, suppose we had used some heuristic to estimate for each t ∈ T the probability ρt that

t is a bona fide member of T . We can apply this knowledge by scaling the mapped read

counts for each junction of each LSV for each t relative to its ρt as such:

Ψi,j | T , {ρt}t∈T ∼ Beta

∑
t∈T

ρtRi,j,t +
1

J
,
∑
t∈T

∑
j′ 6=j

ρtRi,j′,t +
J − 1

J

 . (2.3)

These ρt constitute the first computational objective of the outlier detection algorithm.

In practice, each of these three density functions accounts for one set of bootstrapped read

count samples. To account for within-sample variance, this density is computed separately

according to Equation 2.2 for each sample, and all these densities are averaged per LSV

junction. The resulting density is encoded and processed downstream as a vector of binned

probability masses.
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2.2.2. L1 divergence between P(PSI) and group median

Here we define our metric for determining how well an experiment agrees with the rest of

the group on junction Ψ. First, we need to determine a suitable representative distribution

for the group consensus Ψ, henceforth labeled (Ψi,j | T ). We choose to represent the group

consensus using the group median, as this measure of center is known to be robust to

outliers. To accomplish this, we define how to construct a median density from a set of

random variables.

Definition 1 Suppose a set of m random variables {X1, . . . , Xm} have densities P (X1 ≤ x) = F1(x)

and so forth. The median of these random variables, denoted X, has density P (X ≤ x) =

F (x) such that

F
−1

(q) = med
1≤i≤m

F−1i (q)

for each 0 ≤ q ≤ 1.

In the event that the random variables in Definition 1 are discrete rather than continuous,

the inverse density functions F−1i can be interpolated i.e. linearly without egrigious loss of

precision. The median density P (Ψi,j ≤ ψ | T ) can thus be computed from the per-replicate

binned densities P (Ψi,j ≤ ψ | t).

Next, we define our measure of distance between probability densities. We acknowledge the

existence and widespread use of Kullback-Leibler divergence (KL divergence) to quantify

this. In short, the KL divergence between two discrete probability densities P and Q is

defined as

DKL(P ||Q) = −
∑
i

P (i) log2

(
Q(i)

P (i)

)
.

However, we choose not to use KL as our distance metric because it is not bounded above.

Indeed, in a worst case scenario where the two distributions are spike-and-slab densities

with non-overlapping spikes, the KL divergence tends toward positive infinity as the height

of the slab and width of the spike both approach 0. Instead, we employ the L1-divergence

metric, defined as such:
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Definition 2 If P and Q are two probabilitiy densities, then the L1 divergence between

them is

DL1(P,Q) =
1

2

∑
i

|P (i)−Q(i)|.

The divergence measure constructed by this definition has two key properties. First, it is

symmetric with respect to the random variables; that is, DL1(P,Q) = DL1(Q,P ), unlike

KL divergence. Second, DL1(P,Q) ∈ [0, 1] for any two probability densities P and Q. This

property makes L1 divergence slightly easier to interpret.

Let di,j,t = DL1(Ψi,j | t,Ψi,j | T ) be the L1 divergence between the distribution of Ψi,j

informed by experiment t compared to the median density for group T . Because roughly

70% of LSVs are binary in nature, we reduce this to a single value for each LSV by taking

the junction with the maximum L1 divergence, that is, di,t := max1≤j≤J di,j,t.

2.2.3. Distribution of L1 divergences, and how it is used to construct global weights

Having computed the di,t for each t ∈ T for each LSV, we can observe how they are

distributed. Figure 6 depicts these distributions for two situations where a group of three

mouse tissue experiments has a known outlier. When the group has no outlier, all three

replicates have the same distribution as Replicate 1 and Replicate 2 (data not shown).

While the distribution of L1 divergences for all three experiments has a spike at 0, only the

outlier has an additional spike at 1, indicating an enrichment in highly-disagreeing LSVs.

We leverage this information in a robust manner by modeling the number of highly-

disagreeing LSVs per LSV. Let Kt be the number of LSVs for which di,t ≥ τ for some

fixed τ , and KT be the size of the union of such LSVs across all experiments in T . In a

study with no outliers, we expect these Kt to be around the same, that is, each replicate

contributes equally to the total disagreement on LSV Ψ in the study. If all the replicates

are “well-behaved”, we could model this with a Binomial distribution, where

Kt ∼ Binomial(KT , p),

20



where p = 1
N represents the equal proportion of highly-disagreeing LSVs counted for each

replicate. In practice, we observe greater dispersion in Kt than can be explained by a

binomial model. To capture this dispersion, we instead proposed a Beta Binomial model

with p ∼ Beta( αN , α(1 − 1
N )), where α is a fixed dispersion hyperparameter. Using this

model, we can finally express the relative probability ρt that experiment t is a replicate of

the condition underlying T :

ρt = min

(
1,
PBB(X > Kt)

PBB(X > KT
N )

)
,

where PBB represents the probability of the expression under the aforementioned beta-

binomial model.

2.2.4. Expected (replicates) distribution of L1 divergences, and how it is used to construct

local weights

ρt generated as described can be applied according to Equation 2.3 to globally weight each

experiment’s contribution to junction Ψ proportional to how much we believe each is a true

representative of T . This approach is termed “MAJIQ-gw”. However, Figure 6 indicates

that even a strong outlier only disagrees on Ψ for a relatively small number of LSVs. While

this global weighting scheme corrects those events, it comes at the cost of the contribution

the outlier’s reads make towards quantification of the events where it does agree with the

group consensus. To counteract this, we devised a scheme for estimating local (per-LSV)

weights. We start by summarizing the per-experiment distributions of di,t into an empirical

model that represents an average replicate of T using the ρt as weights:

P (di,T = x) =

∑
t ρtP (di,t = x)∑

t ρt
.

We then define a new variable νi,t to represent the “local” weight for LSV i as a likelihood

ratio between the density of d∗,t and d∗,T in a neighborhood of di,t. That is, if we let ε > 0,

then

νi,t = min

(
1,
P (|X − di,T | < ε)

P (|X − di,t| < ε)

)
.
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These νi,t are used in the MAJIQ Ψ quantification model in the same way as the ρt:

Ψi,j | T , {νi,t}t∈T ∼ Beta

∑
t∈T

νi,tRi,j,t +
1

J
,
∑
t∈T

∑
j′ 6=j

νi,tRi,j′,t +
J − 1

J

 . (2.4)

This approach of using local weights in MAJIQ is termed “MAJIQ-lw”.

2.2.5. Synthetic introduction of an outlier into an otherwise clean dataset

To benchmark the performance of MAJIQ-gw and MAJIQ-lw for correcting outlier repli-

cates, we devised two strategies for synthetically introducing an outlier into a group of

biological replicate RNA-seq experiments. The first is a replicate swap, in which one exper-

iment in the group is selected at random to be removed and replaced with an experiment

representing a completely different condition or tissue in the same dataset. The second is a

more complex procedure wherein a replicate is transformed to become an outlier. Briefly,

one replicate is selected at random to receive a “synthetic perturbation”. For each LSV with

sufficient read support for quantification, Ψ is quantified for each junction. Next, a random

subset of LSVs, representing a fraction θ of the set of quantifiable LSVs, is selected. For

each LSV in this subset, the expected Ψ (E[Ψ]) for one junction is then shifted by adding or

subtracting a fixed δ. Whether this δ is added or subtracted is determined by a Bern(E[Ψ])

random variable. The remaining junctions E[Ψ] are scaled linearly such that the E[Ψ] for

all junctions sum to 1. Finally, the original read counts for that LSV are shifted such that

they now explain the new E[Ψ]. To simulate the effect of a read-depth outlier, all read

counts for the perturbed experiment can be scaled by a factor of γ.

2.3. Evaluation metrics

When designing new methods for analyzing genomic and transcriptomic data, the developer

should evaluate the performance of their method against others designed to accomplish the

same task. The question of what constitutes a fair comparison, while crucial, is scarecely

discussed in the literature. There are, of course, standard metrics for measuring method

performance. One popular metric is the area under the receiver operating characteristic

curve (AUROC), which summarizes the trend in true positive rate as the tolerance for false
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a. b.

Figure 6: Distribution of L1 divergences over LSVs for a group of three mouse tissue
replicates with an induced outlier. A: The outlier is introduced by replacing one replicate
with an experiment from a different tissue. B: The outlier is introduced by shifting the
expected Ψ of a subset of LSVs by up to 50% inclusion.

positives is relaxed. Normally, estimating false positive and true positive rates requires a

ground truth of what is significant, which is generally not known a priori in real data.

AUROC is therefore used more often when simulated data are available, as these can be

custom generated with events preselected to be significant. For real data, we offer a metric

called “intra-to-inter ratio” (IIR) as a proxy for false discovery rate, which is described in

Subsection 2.3.2.

Irreproducible discovery rate (IDR) is a metric for evaluating methods on real data and is

used by ENCODE for quality control in assessing ChIP-seq data and protocols. The idea

behind IDR is that significant detections by a sound protocol should also be found significant

if the same protocol is repeated on the same input. Hits that are not returned in the second

replicate are deemed irreproducible. A complementary metric called “reproducibility ratio”

(RR) was defined in Vaquero-Garcia et al. (2016), and a revised version of this is described

in the next subsection.

2.3.1. Reproducibility ratio

In order to measure the internal consistency of differential splicing quantification tools, we

define a metric called “reproducibility ratio” (RR). This metric is roughly complementary

to the irreproducible discovery rate (IDR) often used to benchmark ChIP peak callers.

In principle, a tool should report roughly the same events as significantly changing when

presented with two different samples of the same comparison experiment. We formalize this

23



principle with the following procedure, which is applicable to any quantitative problem, not

just splicing. For a given dataset with two or more replicates each of two distinct biological

conditions, sample equal-sized, non-overlapping partitions from each condition. Run the

tool on both partitions to measure differences, and rank the events in decreasing order of

significance of those differences. Next, count the number of events in the ranking of one

partition that pass your threshold of significance. This number, called NA, is intrinsic to

the algorithm and dataset in use. Finally, count the number of events in the top NA of

the first partition that also appear in the top NA of the second partition. This is your

reproduced count, RA, and reproducibility ratio RRA is this count as a fraction of the total

number of events called significant in the first partition; that is,

RRA =
RA
NA

.

For an unbiased algorithm, a higher RRA is indicative of high confidence.

We also define RRA(n) for n ≤ NA as a means of evaluating the reproducibility of the

highest-confidence detections. In Vaquero-Garcia et al. (2016), this was formulated as the

fraction of the top NA ranked events in the first partition that are reproduced in the top

n ranked events in the second partition. This meant that RRA(n) was bounded above

by n
NA

, and methods were compared against each other by mapping RRA(n) against n
NA

.

This definition was revised in Norton et al. (2018) to be the fraction of the top n ranked

events in the first partition that are reproduced in the top n ranked events in the second

partition. This new formulation made it easier to compare reproducibility ratio between

methods for fixed n, and better emphasized the reproducibility of the very topmost events

in the ranking.

2.3.2. Intra-to-Inter Ratio

Reproducibility ratio alone is not enough to indicate a method’s performance on a dataset:

a highly biased method can score high in reproducibility. To demonstrate that an algorithm

is unbiased on real data, we present another metric called “intra-to-inter ratio” (IIR). This
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metric rests on the principle that detection of significantly-changing events between two

partitions of the same condition should be much less than detection between two partitions

of different conditions. Moreover, any event called significantly different in a within-group

comparison is likely a false positive; we therefore label such events as “putative false pos-

itives” (PFP). The procedure for estimating IIR is similar to the RR procedure described

above. Briefly, the dataset is partitioned as before into two equal-sized subsets from each

comparison group. The algorithm is used to count the number of significantly-different

events between the two partitions of one group i.e. the number of PFP or NPFP , and the

number of significantly-changing events between one partition from each group (NA). The

IIR for this method is the ratio of the PFP count to the number of events that are changing

between groups; that is,

IIRA =
NPFP

NA
.

2.3.3. Real data

Model performance was benchmarked on two publicly-available mouse RNA-seq datasets.

The first, published in Keane et al. (2011), covers six different body sites (hippocampus,

lung, liver, spleen, heart, and kidney) with six replicates each. We had previously deter-

mined that for some tissues, one or two replicates did not have sufficient read coverage

for splicing quantifications, so these were excluded from the analyses presented here. The

second was provided by Zhang et al. (2014) and covers twelve different body sites (brown

and white fat, cerebellum, heart, liver, lung, adrenal, brainstem, skeletal muscle, kidney,

aorta, and hypothalamus). The mice in this study were trained to a 12-hour light, 12-hour

dark cycle for a week and then held in 24-hour darkness. Sample collection for RNA-seq

was performed every six hours starting 22 hours into the dark-only period. Each RNA-seq

experiment was performed in technical duplicate; for our purposes, we consider sample pairs

spaced 24 hours apart to be biological duplicates.

2.3.4. Synthetic data

By its definition, IIR can be interpreted as a proxy for false discovery rate (FDR) when

the truth about what is changing is unknown. Nevertheless, it is important to demonstrate
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performance on a controlled, simulated dataset where the ground truth is predetermined.

The dataset generated for these evaluations should be as close as possible to the biology the

tool is designed to measure. This is a significant challenge for RNA-seq, as the sources of

biological noise observed in real data are difficult to simulate. Additionally, most RNA-seq

simulators attempt to generate transcript abundances rather than the reads themselves.

A notable exception is BEERS (Baruzzo et al., 2016), a simulator designed specifically to

benchmark RNA-seq aligners. BEERS is a modular simulator where each module applies

a different source of technical noise to the simulation model.

We employed BEERS to generate simulated datasets from 11 mouse hippocampus and

liver tissue replicates obtained from Keane et al. (2011). Briefly, input transcript levels

were estimated for each gene in the mouse genome using evidence from the original RNA-

seq experiments. Gene-level expression were estimated empirically from the raw RNA-seq

reads for each of the 41,113 genes in the ENSEMBL v75 mm10 annotation, so as to not

bias these estimates towards any one model of transcript quantification. A subset of 3,055

genes was selected at random from the annotation to represent true differential splicing

between the two tissues; the rest were assigned the same distribution of per-gene relative

isoform abundance with some added noise to simulate biological variance. For each gene,

Ψ values were estimated for the most complex LSV detected by MAJIQ in the annotation;

de-novo events were not considered, as not all methods detect unannotated splicing events.

The generated FASTA files were fed to the respective pipelines for splicing quantification

according to the authors’ recommendations. For rMATS and MAJIQ, which both require

aligned BAMs, we mapped the simulated reads to prebuilt mm10 indices using STAR-2.5.3a

with the option --alignSJoverhangMin 8.

2.3.5. Comparison to biochemical assays (RT-PCR)

All the algorithms presented here are designed to quickly and efficiently estimate splicing

levels transcriptome-wide from high throughput sequencing data. A principal objective,

then, must be to reproduce the accuracy of biochemical assays at scale. Quantifications

derived from carefully-performed reverse-transcription polymerase chain reaction (RT-PCR)
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experiments are often hailed as the gold standard for biochemical splicing quantification,

but the procedure is quite labor-intensive and not scalable for transcriptome-wide analysis.

In Vaquero-Garcia et al. (2016), we selected fifty LSVs with strong read support from Zhang

et al. (2014) for follow-up by high-fidelity RT-PCR performed in triplicate. The RT-PCR

quantifications were shown to correlate strongly with MAJIQ Ψ values, demonstrating the

software’s accuracy for Ψ quantification. This same principle is applied to compare the

accuracy of Ψ quantifications of other methods.

2.4. Results

2.4.1. The impact of an outlier on differential splicing predictions and reproducibility

To evaluate the performance of MAJIQ on induced outliers, we used cerebellum and liver

RNA-seq experiments from Zhang et al. (2014), and repeatedly generated outliers by per-

turbing a random cerebellum experiment as described in Section 2.2.5, varying θ, δ, and γ

each time. We measured the impact of each of these parameters on the ρt for each experi-

ment in the resulting group (Figure 7a,d,f). We further evaluated the effects on detection

power (Figure 7b,e,g) and reproducibility ratio (Figure 7c,f,h) in a ∆Ψ comparison with

the liver group. In these latter tests, we compared the previous unweighted MAJIQ model

(MAJIQ-nw) to MAJIQ-gw, MAJIQ-lw, and a scenario where the outlier had been detected

by some heuristic and removed from the evaluation (MAJIQ-rm).

In the cases where θ (Figure 7a-c) and δ (Figure 7d-f) were varied (with the remaining

parameters fixed), the ρt for the outlier tends to tend towards 0 with increasing θ or δ

(negative log tends towards ∞), whereas the ρt for the remaining replicates remains close

to 1, demonstrating the algorithm’s sensitivity and specificity to the outlier replicate. In

addition, the number of events detected as differentially spliced between hippocampus and

liver increases dramatically in response to increases in θ and δ, however the reproducibility

of those events drops significantly. If we assume that MAJIQ is unbiased on well-behaved

sample groups (an assumption we verify in later sections), this implies that the additional

detections made in the presence of an outlier are false positives, underscoring the need for

proper correction. Comparing between the four different MAJIQ models, we observe that
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all three outlier correction models control for these false detections. However, MAJIQ-gw

and MAJIQ-rm suffer slightly in that some detection is lost even under conditions where no

outlier is induced i.e. either θ or δ is 0. MAJIQ-lw does not suffer from this loss of power

- it detects the same number of LSVs as significantly changing as MAJIQ-nw does under

no-outlier conditions. This observation highlights the robustness of the local correction to

naturally-occurring variation, which the global correction does not account for.

2.4.2. Comparison between methods on synthetic data

The dataset from Keane et al. (2011) was used as input for simulating RNA-seq experiments

using BEERS. The resulting FASTA files were quantified for differential splicing between

simulated hippocampus and liver using SUPPA, rMATS, and MAJIQ with and without

local-weights outlier correction. Events were called as significantly-changing based on the

recommendations of the tools’ respective authors. These results are depicted in Figure 8.

The definition of what constitutes a splicing event depends on the tool in use, and the total

number of events quantified (the sum of the #CHG, #NO CHG, and #GREY columns)

reflects this. SUPPA, for instance, attempts to quantify Ψ for all annotated binary events.

rMATS, meanwhile, only considers splicing events that fit a limited model of local splicing

variations. MAJIQ, meanwhile, is the only tool out of the three that attempts to quantify

more complex splicing variations, though its event count is slightly lower than that of

SUPPA due to the stringent quantifiability filters MAJIQ imposes. In MAJIQ’s case, when

a splicing event is ambiguously described by two or more LSVs, the ambiguity is resolved

by taking the LSV reporting the highest P (|∆Ψ| ≥ 20%). Based on the observations from

Section 2.4.1, we perform all further comparative analyses on only the MAJIQ-nw and

MAJIQ-lw models.

For each algorithm, we counted the number of splicing events reported as not changing

(NO CHG, i.e. |∆Ψ| ≤ 0.05) and changing (CHG, i.e. |∆Ψ| ≥ 0.20). Events in the

interceding grey area (GREY) were excluded from further analysis.
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Figure 7: Synthetic perturbation of tissue replicates. In each test, three cerebella were com-
pared against three livers from Zhang et al. (2014), but one of the cerebella was perturbed.
MAJIQ-nw is the previous algorithm equivalent to fixed weights (ρt = 1). MAJIQ-rm is
a control case where we assume some heuristic (e.g. PCA) was able to detect the outlier
and remove it before executing the previous fixed-weights MAJIQ. a,d,g. Effect on ρt for
the perturbed “outlier” (blue) and unperturbed replicates (Rep1,2 in green and orange).
b,e,h. Effect on the number NA of events detected to have P (∆Ψ > 0.20) > 0.95 between
the cerebellum and liver samples. c,f,i. Effect on the reproducibility ratio RR(N). a-c. θ,
the fraction of LSVs perturbed, is varied between 0 and 0.5. At 0, the effect is the same
as having no perturbation at all. d-f. δ, the maximal amount by which Ψ is perturbed, is
varied between 0 and 1. δ = 0 is equivalent to no perturbation. g-i. γ, the “read scaling
factor”, is varied between 0 and 1.5. When this factor is 0, it is functionally equivalent to
a global weight of 0.
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Naive
Tool #CHG #NO_CHG #GREY TP TN FP FN Sens Spec FDR FNR

SUPPA 5611
±50

16874
±169

3661
±77

1045
±20

16394
±170

480
±25

4566
±37

0.19
±0.00

0.97
±0.00

0.31
±0.01

0.81
±0.00

rMATS 512
±16

4604
±55

1350
±30

254
±2

4543
±49

61
±6

258
±15

0.50
±0.01

0.99
±0.00

0.19
±0.01

0.50
±0.01

MAJIQ-nw 1133
±29

15379
±130

1509
±4

979
±20

15372
±130

7
±1

153
±14

0.86
±0.01

1.00
±0.00

0.01
±0.00

0.14
±0.01

MAJIQ-lw 1133
±29

15379
±130

1509
±4

977
±21

15372
±130

6
±2

156
±14

0.86
±0.01

1.00
±0.00

0.01
±0.00

0.14
±0.01

Realistic
Tool #CHG #NO_CHG #GREY TP TN FP FN Sens Spec FDR FNR

SUPPA 5665
±74

16955
±173

3933
±60

976
±35

16390
±163

564
±10

4688
±40

0.17
±0.00

0.97
±0.00

0.37
±0.00

0.83
±0.00

rMATS 495
±8

4475
±63

1320
±18

239
±8

4408
±56

67
±6

256
±4

0.48
±0.01

0.99
±0.00

0.22
±0.01

0.52
±0.01

MAJIQ-nw 1097
±25

13090
±135

1396
±4

913
±19

13077
±137

13
±2

184
±8

0.83
±0.00

1.00
±0.00

0.01
±0.00

0.17
±0.00

MAJIQ-lw 1097
±25

13090
±135

1396
±4

912
±21

13077
±137

13
±2

185
±5

0.83
±0.00

1.00
±0.00

0.01
±0.00

0.17
±0.00

Realistic+swap
Tool #CHG #NO_CHG #GREY TP TN FP FN Sens Spec FDR FNR

SUPPA 5696
±27

16719
±140

4008
±63

705
±50

16362
±150

357
±11

4990
±33

0.12
±0.01

0.98
±0.00

0.34
±0.02

0.88
±0.01

rMATS 503
±14

4376
±60

1416
±6

94
±8

4349
±55

26
±4

408
±6

0.19
±0.01

0.99
±0.00

0.22
±0.02

0.81
±0.01

MAJIQ-nw 1129
±18

13233
±190

1421
±29

710
±30

13199
±203

34
±13

419
±44

0.63
±0.03

1.00
±0.00

0.05
±0.02

0.37
±0.03

MAJIQ-lw 1129
±18

13233
±190

1421
±29

806
±27

13202
±204

30
±14

323
±40

0.71
±0.03

1.00
±0.00

0.04
±0.02

0.29
±0.03

Figure 8: Evaluation using “realistic” synthetic datasets. Each synthetic sample is cre-
ated to match a real sample in terms of gene expression and a lower bound on tran-
scriptome complexity. Three datasets were created: “Naive” with naive read simulation
(uniform coverage, no errors, biases or indels); “Realistic” with more realistic read gener-
ation; “Realistic+swap” where one sample in an outlier. All datasets involve 3 biological
replicates per group. Each method was evaluated using its own definition of AS events,
which means the number of events is not comparable between methods. CHG are changing
events (|E[∆Ψ]| ≥ 20%), NO CHG are non changing events (|E[∆Ψ]| ≤ 5%), and GREY
are events for which 20% > |E[∆Ψ]| > 5% and on which the algorithm is not evaluated.
DEXSeq is not included here as it is not able to return dPSI values.
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2.4.3. Comparison between methods on real data

To evaluate the various splicing methods on real data, we employed the cerebellum and

liver tissue experiments from Zhang et al. (2014). We introduced an outlier by systemati-

cally replacing each cerebellum experiment with the time-matched experiment from skeletal

muscle (swap). Figure 9 depicts the results from these comparisons. Figure 9a compares

the reproducibility ratio (RR) achieved by MAJIQ, SUPPA, rMATS, and DEXSeq on these

comparisons. For all methods, introducing the tissue swap reduced detection power, though

the impact was least severe for MAJIQ. RR also dropped for all methods, however MAJIQ-

lw retains an RR close to the no-outlier baseline. We note that DEXSeq reported an

absurdly high number of significantly-changing events between conditions. DEXSeq does

not report Ψ for splicing events; instead, it compares absolute expression levels at each

exon in the transcriptome. Under this model, a change in gene-level expression between

two conditions inevitably appears as a change in exon expression even if there is no variation

in splicing.

Figure 9b,c compare the N NoSignal (i.e. #PFP) and IIR between methods as described

when the groups are defined from biological replicates. Between the three methods that

quantify Ψ, MAJIQ controls best for within-group variations, while SUPPA struggles the

hardest. DEXSeq’s #PFP and IIR are reported for completeness, however its counts suffer

from the same caveat explained earlier. Nevertheless, we chose to represent this method

here, as the events it detects are compatible with the definition of RR and IIR.

For Figure 9d, we matched the splicing events defined by SUPPA, rMATS, and MAJIQ with

the 50 splicing events validated by RT-PCR in Vaquero-Garcia et al. (2016), and compared

the ∆Ψ reported by each method in cerebellum vs. liver from Zhang et al. (2014). The same

tissue swap procedure was employed to measure the impact of an outlier on the accuracy

of splicing quantifications. On the control (no swap) comparison, rMATS and MAJIQ

performed similarly in how well they correlate with RT-PCR ∆Ψ, and both outperform

SUPPA. As expected, this correlation drops significantly for all methods when an outlier is
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introduced, though the impact is least severe on MAJIQ-nw and MAJIQ-lw.

2.4.4. Evaluating method performance

A fair and unbiased suite of evaluation metrics is important when comparing one’s method

to others designed for the same task. To illustrate the principles of best practices in methods

evaluation, we address some claims made by Li et al. (2018) in the course of evaluating their

method LeafCutter against other splicing quantification software, including MAJIQ. These

comments relate to Fig. 2 in the original paper (reproduced here as Figure 10) ( Vaquero-

Garcia et al. (2018), in review).

At issue are three claims made by Li et al. (2018) when comparing the performance of Leaf-

Cutter to that of MAJIQ, rMATS, and Cufflinks2. First, while LeafCutter and Cufflinks

can quantify differential splicing between groups of 15 samples in under 10 hours, MAJIQ

requires over 60 hours to quantify the same dataset, while rMATS runs out of memory.

The authors cite this observation to claim that MAJIQ and rMATS do not scale well with

increasing sample size. Second, the p-values returned by LeafCutter and rMATS are well-

calibrated, however MAJIQ’s are not. Finally, when measuring precision and recall on sim-

ulated data, LeafCutter performs strongly when calling both lowly- and highly-differentially

spliced isoforms. In contrast, MAJIQ’s true positive rate saturates under conditions of low

simulated changes in splicing, rMATS struggles to exceed a TPR of 50%, and Cufflinks2’s

performance degrades slightly as the simulated change in alternative isoform abundance

increases.

To address the first claim of non-scalability, we queried the software versions used in the orig-

inal analyses. We determined that MAJIQ 0.9.2a (released in early 2016 alongside Vaquero-

Garcia et al. (2016)) and rMATS 3.2.5 (released in August 2016) were employed. At the

time these analyses were prepared for publication (mid-2017), two major upgrades were

released for MAJIQ, with version 1.1 being current as of May 2017. We had shown that

MAJIQ 1.1 was capable of handling datasets upwards of 700 samples within the span of a

week. Around that time, Norton et al. (2018) was in preparation and includes comparative
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SUPPA Control (N=2018, RR=0.70)
SUPPA Swap (N=894, RR=0.67)
rMATS Control (N=1617, RR=0.60)
rMATS Swap (N=1002, RR=0.54)

MAJIQ-nw Control (N=1431, RR=0.83)
MAJIQ-nw Swap (N=1303, RR=0.80)
MAJIQ-lw Control (N=1428, RR=0.83)
MAJIQ-lw Swap (N=1328, RR=0.82)

DEXSeq Control (N=30737, RR=60)
DEXSeq Swap (N=18599, RR=0.54)
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R2 (N) rMATS SUPPA MAJIQ-nw MAJIQ-lw
Control 0.97 (50) 0.82 (37) 0.97 (50) 0.97 (50)

Swap (mean) 0.92 (50) 0.75 (37) 0.95 (48) 0.96 (49)
Swap (st.dev) 0.002 0.012 0.005 0.001

d.

b.

c.

RRA (NA) DEXSeq rMATS SUPPA MAJIQ-nw MAJIQ-lw MAJIQ-lw-
relaxed

100% (80M) 0.60 (30737) 0.60 (1617) 0.70 (2018) 0.83 (1431) 0.83 (1428) 0.69 (2450)
50% (40M) 0.57 (22813) 0.56 (1296) 0.68 (1548) 0.81 (801) 0.81 (794) 0.64 (1829)
25% (20M) 0.54 (16104) 0.52 (931) 0.62 (1076) 0.80 (360) 0.79 (360) 0.60 (1246)

e.
R2 (N) rMATS SUPPA MAJIQ-nw MAJIQ-lw MAJIQ-lw-

relaxed
100% (80M) 0.97 (50) 0.84 (37) 0.97 (50) 0.97 (50) 0.97 (50)
50% (40M) 0.97 (50) 0.84 (37) 0.97 (43) 0.97 (43) 0.97 (49)
25% (20M) 0.95 (50) 0.85 (37) 0.96 (20) 0.96 (20) 0.96 (47)
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Figure 9: Evaluation using real data. (a) Reproducibility ratio (RR) plots for detection
of DS events between cerebellum and liver, with (Swap, dark line) or without (Control,
faded line) a mislabeled muscle. The end of the line marks the point in the graph matching
the number of events reported as significantly changing (RR(NA), see main text). Be-
cause DEXSeq report more than 3000 significantly-changing exonic segments, we present
its extended RR curve in Supplementary Figures. (b) Number of events reported by each
methods as significantly changing between two groups of biological replicates from the
same condition (light color - liver, dark color - cerebellum). See Supplementary Material
for equivalent plots when comparing groups of technical replicates. (c) The Inter to Intra
Ratio (IIR), representing the ratio between the number of DS events reported when com-
paring biological or technical replicates (NPFP ) and the number of events reported when
comparing similarly sized groups but from different conditions (NA). See Supplementary
Figures for equivalent plots when NPFP is derived using technical replicates. (d) The same
control and swap experimental setup as in (a) with accuracy assessed using 50 RT-PCR
experiments from (Vaquero-Garcia et al., 2016). Values represent fraction of variations ex-
plained (R2) and the number of events detected in parentheses. DEXSeq is not included
here since it does not output Ψ values. Scatterplots are presented in Supplementary Fig-
ures. Mean and standard deviation derived by swapping out each of the cerebellum samples.
(e,f) Repeating (a) and (d) but with subsets of the FASTQ files to test the effect of read
coverage.
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analyses with the newly-released rMATS 4.0 which implements parallel processing and a

more efficient algorithm. We therefore postulated that the current versions of both soft-

ware would scale much better on larger comparisons, refuting the claim in Li et al. (2018).

We tested this hypothesis by running rMATS 4.0, three different releases of MAJIQ, and

the LeafCutter release version to call differential splicing between the Genotype-Tissue Ex-

pression project (GTEx) (GTEx Consortium et al., 2017) v7 tissues using sample sets of

increasing size, up to 15 cerebellum samples vs. 15 skeletal muscle samples (Figure 11a).

As expected, rMATS 4.0 and MAJIQ 2.0 ran in a timeframe similar to that of LeafCutter.

The second claim of poor p-value calibration is addressed in part by Li et al. (2018) them-

selves (Supplementary Note 2.2). The authors elected to use p̂ = 1 − P (|∆Ψ| ≥ 0.2) as

a proxy for p-value. However, these two quantities do not express the same concept. A

p-value, by definition, is the likelihood of observations under a null model. p̂, meanwhile, is

a posterior probability for ∆Ψ given the observed reads distribution. It is therefore natural

that the assumptions made of p-values do not fit p̂ in the same way.

In evaluating the third claim, we noted that the ROC calculations for MAJIQ were the result

of executing the quantifier incorrectly for these purposes. Proper ROC estimates require

the investigator to catalogue both positive and negative classifications. By default, MAJIQ

only reports LSVs with at least one significantly-changing junction. To also return the non-

changing LSVs, the user should pass --show-all. This flag was omitted by Li et al. (2018),

leading to the appearance of unimpressive performance by MAJIQ. The correct assessment

of MAJIQ is overlayed atop the original in (Figure 11c).

A second issue regarding the third claim is the simulation structure employed by Li et al.

(2018). Briefly, 160 protein-coding genes with multiple isoforms each were selected at ran-

dom from the human genome annotation (hg38/GRCh38). For each gene, the expression of

a randomly-selected transcript isoform was increased by a fixed ratio. The expression values

of these genes were supplied to polyester (Frazee et al., 2015) to generate RNA-seq reads.

This framework has two major shortcomings. First, the authors chose to simulate changes
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in splicing by adjusting isoform expression. However, LeafCutter, rMATS, and MAJIQ all

measure splicing as changes in relative junction usage or intron excision levels, which are

quantified differently. As an example, consider an example splice junction which is unique

to one transcript isoform. Empirically, the Ψ for that junction would be

Ψ =
nj
nJ
,

where nj is the number of reads mapping across that junction and nJ is the number of

reads mapping across all junctions that are part of the same splicing event, LSV, or cluster.

A 10% increase in expression of that one isoform would result in Ψ shifting to

Ψ∗ =
1.1nj

nJ + 0.1nj
.

∆Ψ, therefore, would be

Ψ∗ −Ψ = 0.1Ψ
nJ − nj
nJ + 0.1nj

.

In the event that Ψ = 0.5, this estimate gives Ψ∗ = 0.52 and ∆Ψ = 0.02. This small change

in splicing would not be detected by tools that define significant ∆Ψ as those surpassing

a fixed threshold i.e. 10%; this is evident in Figure 10c, where no method performs better

than randomly guessing. On the opposite extreme, a 3X change in expression would result

in ∆Ψ = 0.25, which is almost trivial to detect.

Another issue we observed in the Li et al. (2018) analysis pertains to the synthetic data

employed by the authors. We found the data to be unrealistic, hampering the ability to

conlcude about algorithms’ relative performance. The authors attempt to represent human

transcriptomic variation using only 160 genes, however the v94 ENSEMBL release estimates

that there are over 20,000 protein coding genes (Zerbino et al., 2018).

Additionally, polyester makes several simplifying assumptions about RNA-seq data that

limit its ability to capture real variance in human RNA-seq. To demonstrate this, we

used a strategy similar to that employed for outlier detection, where instead of using L1
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Figure 10: Reproduction of Figure 2 from Li et al. (2018).

divergence in Ψ, we measured the absolute deviation δ̂ in empirical junction ratios per LSV

as reported by MAJIQ’s builder. The empirical ratios were the same quantities used to

seed the transcript ratios supplied to BEERS. We compared the distribution of δ̂ between

mouse hippocampus replicates from Keane et al. (2011), simulated reads generated by

BEERS, human cerebellum samples from GTEx v7, and the unspiked simulated samples

used in Li et al. (2018) (Figure 12). An increase in within-group variance is evidenced

by a right shift in the curve for that dataset. As expected, the GTEx samples exhibit

significantly more within-group variance than either the mouse dataset or the simulations

based thereon. Moreover, while the variance of the BEERS simulated replicates closely

resembled their murine counterparts, the simulations used to benchmark LeafCutter do not

approach a proper model of the variance observed in the real human samples they are meant

to represent.

2.5. Discussion and conclusions

When measuring splicing in a set of technical or biological replicate samples, an outlier can

skew quantifications and affect the quality of detected changes in alternative splicing. It is

therefore important to detect outliers in an unbiased fashion. Since outlier behavior affects

only a subset of splicing events, and because simply removing the outlier from analysis
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wholesale weakens overall method performance, it is also important to account for the

information encoded in the unaffected events while calling replicates which behave badly on

an abundance of events. The algorithm presented in this chapter meets these specifications.

Moreover, the strategy for correcting for these outliers was shown to be robust not only to

perturbations of the underlying data, but to naturally-occuring variation as well.

We demonstrated the benefits of this outlier correction in evaluations on real data, and

compared it to the behavior of other algorithms when an outlier is introduced. In general,

MAJIQ is already fairly robust to outliers and experiences only a modest boost in per-

formance from the correction model. The other tools, however, proved far more sensitive

to the outlier when evaluated on reproducibility, detection power, putative false discovery

rate, and correlation with RT-PCR quantifications.

The evaluation metrics defined in this chapter, particularly IIR, allow an unbiased com-

parison between splicing quantification tools, particularly when the events being described

are similar in construction. That said, these metrics routinely disfavor DEXSeq, making it

appear extremely sensitive but highly irreproducible. The proximal cause is the use of p-

values for an absolute differential expression measure, which behaves quite differently from

Ψ.

As a final point, we observed that within-group variance is an inherent property of the

observed dataset, and takes characteristics from the original biological source. The work in

this chapter primarily addresses the case of a misbehaving sample in a group of technical or

biological replicates of inbred mouse tissues. Wild populations, free from these genetic and

environmental controls, naturally exhibit more phenotypic variance. Human populations

in particular display a great deal of heterogeneity resulting from generations of admixture

between groups from around the globe, along with local adaptations from natural and

artificial influencers in the environment. As such, the variance observed in RNA-seq from

humans is greater than that in mouse littermates subject to uniform treatment, and we

expect it to increase further in disease contexts. While the work presented in this chapter
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deals with outliers in data of the latter sort, it leaves open the question of how to account for

meaningful variance in heterogeneous human population and disease studies, which lately

consist of hundreds if not thousands of independent RNA-seq experiments. We offer a

modeling approach to the problem of handling large heterogeneous datasets for splicing

quantification in the next chapter.
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Figure 11: Comparative evaluation. Panels described on the following page.
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Figure 11: (a) Running time for each algorithm, when comparing groups of different sizes.
(b) The Intra to Inter Ratio (IIR) mean and standard deviation when using 3 − 7 GTEx
per tissue group (skeletal muscle).
The IIR, serving as a proxy for false discovery, represents the ratio between the number
of differential events reported when comparing biological replicates of the same tissue (pu-
tative false positives), and the number of events reported when comparing similarly sized
groups but from different conditions (here skeletal muscle and cerebellum, see main text
and supplementary for details).
(c) The original ROC plots from Li et al. for evaluating each method’s accuracy, with the
correct execution of MAJIQ superimposed on them (blue line). The blue line was derived
using scripts supplied by Li et al. for their data generation. The simulated data used in
Li et al. (purple line) lacks high variability within a group compared to human tissue data
from GTEx (red line) and does not match biological replicates from mouse tissues (blue
line). Simulated data from Norton et al., made to mimic the blue line and used in (e) is
shown in orange.
(d) Evaluation using “realistic” synthetic datasets: each synthetic sample is created to
match a real sample in terms of gene expression and a lower bound on transcriptome com-
plexity. This simulation does involve de-novo events which are not captured by rMATS or
intron retention (not modeled by LeafCutter). All datasets involve 3 biological replicates per
group. Each method was evaluated using its own definition of alternative splicing events, so
events are not directly comparable between methods. Positive events were defined as those
with (|E[∆Ψ]| ≥ 20%), and negative events were defined as those with a small difference
between the groups of (|E[∆Ψ]| ≤ 5%).
(e) Reproducibility ratio (RR) plots for differentially spliced events between cerebellum
and heart GTEx samples (n = 5 per group, as in Li et al. ). The end of the line marks
the point in the graph matching the number of events reported as significantly changing
(RR(NA), see main text and supplementary). Events detected are not directly comparable
as each algorithm uses a different definition for splicing events. The end of the line marks
the point in the graph matching the number of events reported as significantly changing
(RR(NA), see main text). Events detected are not directly comparable as each algorithm
uses a different event definition.
(f) Evaluation of accuracy using RT-PCR experiments from Vaquero-Garcia et al. (2016).
Both algorithms were used to quantify Ψ using RNA-seq from Zhang et al. (2014) and RNA
from matching Liver tissue was used for validation.
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Figure 12: Distribution of absolute deviations in empirical Ψ for two real and two simulated
datasets. N: Number of LSVs represented. Lines and ribbons represent mean and ±1
standard deviation, respecitvely, of three random subsamples from the original dataset (5
samples each from Keane et al. (2011) and BEERS, 159 from GTEx, and 8 from Li et al.
(2018)).
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CHAPTER 3 : Large heterogeneous datasets

3.1. Introduction

The MAJIQ model was originally implemented to quantify differences in splicing between

small groups of replicates, such as in a splice factor knockout or CRISPR mutation screen.

The mouse tissue RNA-seq samples published in Keane et al. (2011) and Zhang et al.

(2014) are examples of such clean datasets, and MAJIQ has been shown to perform well

on these compared to competing methods. However, many datasets of interest for splicing

quantification do not behave in this manner. The previous chapter discussed the situation

where an outlier is present in one of the condition groups being compared. Larger datasets,

in particular those from human population cohorts such as TCGA and GTEx, behave

quite differently when handled in bulk. In addition to the surplus of data captured by

these datasets, there also tends to be more variance between samples within a condition

group because the samples are not biological replicates. This is an expected consequence of

sampling from such a population exhibiting great genetic and environmental heterogeneity.

Furthermore, splicing differences between conditions (i.e. case vs. control in a disease

study) may be confounded with genomic variants and fixed known or unknown factors.

While handling this variance and the potential contributors thereto is important, current

methods for splicing quantification do not explicitly do so. Figure 12 represents the degree

of within-group variability in a handful of datasets, including GTEx where this variability

is known a priori to be heterogeneous relative to the other datasets depicted.

The assumptions made by existing methods ought to be reconsidered in the context of large

heterogeneous datasets. As previously discussed, the kinds of datasets for which MAJIQ

was originally designed are expected to have low variability between experiments from the

same condition. From this expectation, one can reasonably assume that there exists a

Ψ for each junction in each LSV which explains the distribution of reads in each sample

within a group, and a ∆Ψ that explains the difference in read distributions at that LSV

junction between two groups or between subsets of those two groups. The MAJIQ Ψ model
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implements this intuition using a Bayesian framework, in which an noninformative prior

density is assumed for Ψ of each LSV junction and updated using the junction-mapped

read counts informed by each experiment in the condition group. Formally, for junction j

in LSV i,

Ψij ∼ Beta

αi0 +
∑
k

Rijk, βi0 +
∑
ĵ

∑
k

Riĵk −
∑
k

Rijk

 ,

where Rijk is the number of reads mapping across junction j of LSV i in replicate k.

In the context of large heterogeneous datasets, this model has two major flaws. First,

this model assumes that there is a single distribution of Ψ for each LSV which explains

all samples in the group. While this is applicable to replicate samples, it does not hold

for RNA-seq datasets sourced from individuals with distinct genetic and environmental

backgrounds. A second concern with the MAJIQ model is its susceptibility to variation

in local coverage. Disparities in local coverage can be the result of differences in total

expression at that locus, or in sequencing depth between experiments. In general, samples

with more reads mapping to an LSV tend to bias the group Ψ quantification more strongly

towards the distribution inferred from considering that sample by itself. This effect is far

more significant in situations where the assumption of shared underlying Ψ does not hold.

Many published splicing quantification methods, which were described in Chapter 2, are

similarly tuned for smaller, non-heterogeneous datasets, and make assumptions specific to

that setting. These methods have their own shortcomings when tested on large heteroge-

neous datasets. rMATS (Shen et al., 2014), for instance, implements a model of exon Ψ

similar to a generalized linear mixed model (GLMM) with a logit link function. Under this

framework, logit-transformed Ψ for a group of replicates follows a Gaussian distribution

parameterized by a mean and variance. As demonstrated in Chapter 2, this makes rMATS

more sensitive to outliers. Additionally, rMATS only quantifies splicing events which follow

a classical binary structure; it does not quantify intron retention events, nor does it detect

events with three or more splice junctions.
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SUPPA (Trincado et al., 2018) quantifies RNA splicing using transcript expression estimates

derived from the SALMON pseudoaligner. Differential splicing is then called using an

empirical p-value for ∆Ψ between groups as estimated from transcript abundances. This

approach relies heavily on a transcript annotation and accurate TPM estimates, which are

hard to infer from short RNA-seq reads. Indeed, the only reads which can be unambiguously

mapped to a single transcript are those that span junctions or exons unique to one transcript.

Even then, the model does not account for unannotated transcripts, which again are difficult

to detect accurately from current-generation sequencing data.

LeafCutter (Li et al., 2018) adopts a novel approach of clustering intron excision events

together, then quantifying the distribution of reads along each path through these clusters.

This concept is similar in principle to the LSV in that junctions - or introns, in the case of

LeafCutter - are jointly considered in modeling and quantifying a given splicing event which

may be complex. However, the intron cluster setup complicates the reporting of Ψ and ∆Ψ.

Indeed, LeafCutter does not estimate these. Another recent method, Whippet (Sterne-

Weiler et al., 2018), implements a framework with elements from both MAJIQ’s LSVs and

LeafCutter’s intron clusters. Briefly, contiguous splice graphs (CSGs) are inferred from

the transcriptome and reads are mapped directly to the CSGs using STAR. The CSGs

are broken down into alternative splicing (AS) graphs which represent all paths through

the same event. Ψ for each exon in the AS graph is estimated from the total number

of junction-mapped reads including and skipping the exon. In principle, this framework

addresses the open question of how LSVs describing the same splicing event should be

combined. However, the software estimates group Ψ by first collapsing all experiments in

a group and estimates the ratio of total reads. By doing so, Whippet is unable to model

within-sample or between-sample-with-group variance.

In order to account for the demands of large heterogeneous datasets for splicing quantifi-

cation, a new method is necessary. Such a method should be able to efficiently handle the

volume of samples in these datasets quickly and with a relatively small memory footprint.

44



Additionally, this method should give each sample an equal say in what the group Ψ quan-

tification should be, so that the group result is not dominated by a handful of high-depth

experiments. Moreover, it should take into account individual-level uncertainty in Ψ, per-

haps by bootstrapping from a distribution estimated for each sample. Finally, the method

should employ some robust statistic to represent the difference in Ψ between condition

groups, to account for unknown confounding factors1. This chapter discusses an algorithm

which has these qualities, and the implementation of this algorithm as “MAJIQ-HET”.

3.2. Algorithm

The proposed algorithm builds on the existing Ψ quantification method in MAJIQ. Consider

a dataset D with two condition groups T1 and T2. Let ΨLSV be the Ψ for each junction in the

given LSV, and pLSV be the p-value derived from a robust statistic test over the difference

in ΨLSV between T1 and T2. After building the splicegraph SD for D and associating all

uniquely-mapped junction-spanning reads with LSVs in S, the following algorithm is run:

1: for LSV ∈ S do

2: for j ∈ range(1, 100) do

3: for experiment ti ∈ D do

4: Sample ψi ∼ P (ΨLSV | reads(ti))

5: end for

6: pj ← test({ψi}i∈T1 , {ψi}i∈T2)

7: end for

8: pLSV ← percentile({pj}, CL) a

9: end for
Algorithm 1: MAJIQ-HET algorithm

aThe confidence level (CL) for the p-value distribution is a hyperparameter of the model. In the current
implementation, this is fixed at 95%.

Algorithm 1 is implemented as MAJIQ-HET in the 2.0 release of MAJIQ, along with several

robust statistical tests that satisfy line 6. The p-value estimation for these tests takes

1Heterogeneous datasets are very likely to have both known and unkown factors which are confounded
with LSV Ψ. This chapter assumes that the input data have been cleaned i.e. to remove known confounding
factors, so that at worst only latent factors remain, and a robust statistic is desired on top of that.
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into account the size of each condition group. Note that the above algorithm satisfies the

specifications laid out in Section 3.1. First, MAJIQ filters the total set of LSVs in the

splicegraph to allow only those with, by default, at least 10 reads spanning 3 positions

across each splice junction. Samples which do not meet this criteria for a given LSV are

treated as missing values in the algorithm; they are removed from consideration in testing

that LSV, and the effective size of each group in the statistical test is reduced to account

for this. By design, the p-value distributions update to reflect the reduction in samples, so

control of p-value confidence is built in to the algorithm. Furthermore, every quantifiable

experiment counts equally in the HET evaluation. However, experiments with more reads

mapping to the LSV will have greater confidence in its estimate of Ψ. The lower sampling

variance from these experiments, compared to experiments with few reads mapping uniquely

to the LSV, naturally reflects this.

The current implementation uses three rank-based test statistics: TNOM, InfoScore, and

Wilcoxon Rank-Sums.2 TNOM (Total Number Of Mistakes), which was previously imple-

mented in ScoreGene (Kaminski and Friedman, 2002), tests the separability of two-class,

one-dimensional data using a single threshold value to discriminate the two classes. For the

current LSV, the set of labeled samples ψi is sorted by Ψ. For each possible threshold, every

experiment with ψi to the left of that threshold is classified in one group, and everything

to the right in the other. The number of classification errors is counted for both possible

group assignments, and the lower of the two is the score for that threshold. The threshold

with the lowest score is selected, and its score is the TNOM statistic for that set of samples.

The p-value for that score follows an exact distribution whose parameters are the sizes of

the true condition groups, and it can be computed efficitently using dynamic programming

as described in Kaminski and Friedman (2002).

InfoScore is constructed similarly to TNOM. Again, labeled ψi samples are sorted by value,

an optimal threshold is selected, and an exact p-value is computed using dynamic program-

2We also implemented the Student’s t test, which is a classical parametric test intended as a benchmark.
However, the public release of MAJIQ-HET does not include this test.
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ming. This time, the score is the mutual information content between the threshold and

the true labels, rather than the total classification error. This can lead to subtle differences

in what the two tests consider to be a significant change. Finally, the Wilcoxon rank sums

statistic is a standard rank-based statistic wherein each ψi sample is ranked by value, and

the statistic is the sum of the ranks of the positively-labeled samples i.e. all the experiments

from condition group 1.

3.2.1. Behavior on toy data

To illustrate how these tests might behave on real data, consider the toy dataset depicted

in Figure 13a. Here each colored group has seven Ψ samples, with no clear overlap in their

distributions. However, one red sample is an extreme outlier deep within the blue group.

While there is a clear overall shift in Ψ between the two groups, a t-test for example would

not consider this to be significant as it is sensitive to the outlier. TNOM and InfoScore,

meanwhile, would choose an optimal split between the two groups, which intuitively is the

most informative split. In this example, the best classification labels everything to the left

of the split “blue”, and everything to the right “red”, mislabeling only one true red sample.

The Wilcoxon rank-sums test would be slightly affected by the outlier as its rank would

contribute significantly to pull the statistic towards the center of its distribution. However,

note what happens in Figure 13b. Relative to a, the samples in b are shuffled slightly such

that the rank sum is still the same, but the best TNOM is now much higher (3 instead of

1). In this scenario, we find that Wilcoxon rank-sums is robust to permutations of the data.

Figure 13: Toy example illustrating the rank-based statistics implemented in MAJIQ-HET.
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3.3. Evaluations

3.3.1. Reproducibility in GTEx

To test the robustness of MAJIQ-HET in comparison to traiditonal ∆Ψ, RNA-seq experi-

ments were randomly selected from two tissues (Cerebellum and Skeletal Muscle) in GTEx

v7, with up to 50 experiments from each tissue. MAJIQ ∆Ψ and MAJIQ-HET were then

run on the comparison between the two groups. The results are depicted in Figure 14. In all

tests, the number of events detected drops as sample size increases, but the reproducibility

of those events goes up. Moreover, the HET tests show a significant improvement in repro-

ducibility ratio as sample size increases, and consistently detect more events as changing

compared to traditional ∆Ψ. Unfortunately, the RR at 10-vs-10 is substantially lower for

HET than for ∆Ψ, highlighting the limitations of this approach on smaller comparisons.
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Figure 14: Reproducibility ratio of MAJIQ, MAJIQ-HET statistics, rMATS, and LeafCutter
on comparisons of 10, 15, and 50 cerebellum samples with an equal number of muscle samples
from GTEx. Events are ranked by expected ∆Ψ for each method.

3.3.2. IIR in GTEx

High RR can indicate strong consistency in a method as well as high bias. This bias would

appear in a within-group comparison. To determine which is the more likely cause of the

high RR observed above, IIR was computed for the same sample sets. Figure 18 shows a

reduction in IIR as sample size increases, reaching 0 for all tests in a 50-vs-50 comparison.

As before, the HET tests performed worse than ∆Ψ on the smaller comparisons.

We also compared the performance of MAJIQ ∆Ψ with that of MAJIQ-HET (Figure 16),

rMATS and LeafCutter (Figure 17) on smaller subsets of GTEx comparisons, ranging from
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Figure 15: Reproducibility ratio of MAJIQ and MAJIQ-HET on comparisons of 10, 15, and
50 cerebellum samples with an equal number of muscle samples from GTEx. Here, MAJIQ-
HET results are ranked by p-value, and MAJIQ results are ranked by 1− P (|∆Ψ| ≥ 20%),
rather than expected ∆Ψ.

groups of 3 to 9. We note that the Nnosignal for TNOM and InfoScore are both 0 for the 3-vs-

3 comparison. This is caused not by the robustness of these statistics but the limitations of

the p-value distribution for these tests: with 3 positive and 3 negative samples, the p-value

for a perfect split (TNOM score of 0, InfoScore equal to the original data entropy), well above

the significance cutoff of 0.05. Overall, the sensitivity of traditional MAJIQ on these small

comparison groups was lower than that of rMATS and LeafCutter, in agreement with what

was observed in Chapter 2. Interestingly, traditional MAJIQ is also less sensitive to within-

group variations than MAJIQ-HET. While this may seem counterintuitive, we reiterate that

HET is designed specifically for comparisons between large heterogeneous sample groups.

This is highlighted in both the high RR and low IIR in the 50-vs-50 comparisons presented

above.

We included the Student’s T test in these comparisons as a benchmark for evaluating the

rank-based tests. On these small comparisons, T-test gives the worst IIR, shortly behind

Wilcoxon.

3.3.3. Overlaps between tests

To illustrate the intuition described in Subsection 3.2.1, upsets were computed between ∆Ψ

and the HET tests for each comparison size. Figure 19 and Figure 20 show that in general,

the majority of events called significant by ∆Ψ were also captured by all the HET tests.
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Figure 16: Robustness of MAJIQ Delta PSI to within-condition splicing changes in com-
parison with MAJIQ-HET on small subsets of GTEx. Top: Number of events detected
significantly changing in a between-tissue comparison; Bottom: IIR.

The remainder is divided mainly between events called only by ∆Ψ, and events called by

all the HET tests but not by ∆Ψ.

3.4. Simulated data

To determine whether MAJIQ-HET is able to recover true changes in splicing, we simulated

RNA-seq experiments based on 120 donor samples from GTEx. Of these, 60 samples origi-

nated from skeletal muscle; the rest, from a collection of 12 brain subregions represented in

GTEx. Transcript-level expression was estimated per gene by using the most complex LSV

built from the annotation alone as a proxy for transcriptome complexity. These expression

levels were input into BEERS (Baruzzo et al., 2016) to generate RNA-seq reads, which

were mapped back to the hg19 reference genome using STAR-2.5.3a (Dobin et al., 2013).

MAJIQ and MAJIQ-HET were then run to quantify splicing changes between varying sized

groups of brain and muscle samples, and events called significant by these methods were

used to compute statistics of sensitivity, specificity, false discovery rate, and false negative

rate. We found that MAJIQ-HET had lower FDR and FNR on most comparisons, albeit
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Figure 17: Performance of MAJIQ Delta PSI on small subsets of GTEx in comparison
with rMATS and LeafCutter. Left: IIR; Middle: Number of events detected significantly
changing between subsets of the same tissue; Right: Number of events detected significantly
changing in a between-tissue comparison.
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Figure 18: Intra-to-inter ratio of MAJIQ and MAJIQ-HET on comparisons of 10, 15, and
50 cerebellum samples with an equal number of muscle samples from GTEx. The no signal
group is two disjoint sets of cerebellum samples.

with a slight drop in sensitivity (Table 1). Since earlier tests had shown improved perfor-

mance when stipulating that all samples must be quantifiable for Ψ, we tested performance

on simulated data under that constraint. We found that MAJIQ-HET retains its improved

FDR and FNR while also showing a slight boost in sensitivity relative to traditional MAJIQ

(Table 2).

3.5. Discussion and conclusions

MAJIQ-HET implements a suite of robust statistical tests for calling differences in splicing

between large heterogeneous sample groups. By and large, the HET tests all agree on

what events are changing significantly. This makes sense, as the non-parametric rank-based

statistics are very similar in their construction and assumptions. The interesting cases are

where they do not agree. In particular, the subset of events called significant by the HET

tests but not by ∆Ψ could be explained as a difference in how high-depth experiments
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Figure 19: Upsets of MAJIQ and MAJIQ-HET on comparisons of 10, 15, and 50 cerebellum
samples with an equal number of muscle samples from GTEx.
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Figure 20: Upsets of MAJIQ and MAJIQ-HET on comparisons of 4, 6, and 9 cerebellum
samples with an equal number of muscle samples from GTEx.

are handled. While an outlier with an overabundance of reads supporting the LSV would

dominate the quantification of ∆Ψ, the HET algorithm disallows this.

MAJIQ-HET is designed specifically to handle the challenges presented by large hetero-

geneous datasets. Its reproducibility and putative false positive rate are noticeably worse

than that of traditional ∆Ψ quantification on small sample sets. This is not unexpected,

as the nonparametric rank-based tests rely on a large sample size to reach significance even

on large changes in Ψ. Traditional ∆Ψ is very well-equipped to handle small replicate

comparisons, as evidenced in this and the previous chapter.

One of the underlying assumptions of the HET model was that the input data were adjusted

for known and latent covariates prior to entering the pipeline. However, there are cases

where the known confounding factors are study relevant. For example, chromatin features

such as SNP genotype and epigenetic modifications may affect splice site selection at a

nearby alternative event. We consider SNP genotype as an informative feature for splice
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junction inclusion in Chapter 4.
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CHAPTER 4 : Genotype-splicing associations

4.1. Introduction

4.1.1. Genome-wide association studies and QTL studies

Modern advances in genomics technologies facilitate discovery of genetic and epigenetic

predictors of phenotype. This typically takes the form of a genome-wide association study

(GWAS), in which a group of subjects with, for instance, a particular disease phenotype

(cases) and a separate healthy cohort (controls) are genotyped at various loci throughout the

genome, and allelic variants are tested for enrichment in the cases vs. the controls using a

hypergeometric test. The first successful GWAS identified a single nucleotide polymorphism

(SNP) in an intronic region where the G allele is enriched in myocardial infarction patients

compared to the A allele (Ozaki et al., 2002).

As the cost of sequencing has gone down and the availability and quality of data has

improved, it has become easier to measure loci that covary with quantitative traits (quanti-

tative trait loci, or QTLs) such as BMI, blood pressure, and gene expression. The genotype

tissue expression (GTEx) (GTEx Consortium et al., 2017) project is an ongoing effort to

catalogue all human QTLs for tissue-specific gene expression (expression QTLs, or eQTLs).

As of the v7 release in 2017, the project has published 11688 RNA-seq samples covering

53 different body sites from 635 independent donors. Of these, eQTLs have been called

for 10294 RNA-seq samples in 48 body sites from 620 donors. However, the eQTL calls

are based on gene-level expression quantifications, and do not reflect expression at the iso-

form level. As explained in the preceding chapters, splicing differences between conditions

affect transcriptomic and proteomic structure, and have regulatory consequences besides.

In addition, the regulation of alternative splicing is controlled by different processes and

mechanisms as explained in Chapter 1. These differences motivate the testing of patient

samples for splicing QTL (sQTL) in addition to the existing eQTL screens.

An sQTL is a genomic variant at which genotype correlates with some metric of alternative
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splicing at a given gene locus. sQTLs are typically called by imputing, transforming, and

normalizing splicing quantifications (either exon percent spliced in (PSI, Ψ) or relative

isoform abundance) and calling QTLs using tools such as Matrix eQTL (Shabalin, 2012)

or fastQTL (Ongen et al., 2016). LeafCutter in particular was designed to quantify RNA

alternative splicing in a format compatible with both Matrix eQTL and fastQTL (Li et al.,

2018). While fast and powerful, these methods do not quantify de-novo intron retention

events or, in the case of rMATS (Shen et al., 2014), de-novo exon splicing events. Both

of these features are implemented in MAJIQ, which has similar or better performance to

rMATS and LeafCutter in evaluation testing. In addition, the commonly-used matrix-based

methods for QTL calling handle missing values in Ψ by imputation. While this strategy

makes sense for expression data, it may not be appropraite for splicing quantification.

MAJIQ handles missing read data by refusing to quantify splicing events that fail to meet

a minimum coverage threshold. A splicing event can be unquantifiable for a number of

reasons: either the gene is not expressed in that sample, or the transcripts that are expressed

skip the region containing the LSV in question. This behavior is propagated in the MAJIQ-

HET workflow as described in Chapter 3 as dropout in the comparison groups.

With this in mind, we implemented an sQTL pipeline that uses MAJIQ Ψ quantifications

as input. The sQTL pipeline is constructed as such:
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1: for LSV ∈ S do

2: Select junction Ψ from experiments with sufficient read support

3: Logit-transform Ψ

4: for SNP near LSV do

5: Impute genotype for quantifiable samples

6: Normalize Ψ and genotype to a Gaussian

7: Regress out known and inferred covariate vectors

8: Calculate test statistic for association (linear regression, F-test, generalized

TNOM)

9: end for

10: end for

11: Correct p-values for FDR or FWER
Algorithm 2: MAJIQ-sQTL pipeline

Step 5 controls for missing values in Ψ in a manner similar to that implemented in MAJIQ-

HET in the previous chapter. Briefly, if there are not enough reads to quantify Ψ in that

sample, it is discarded from that analysis rather than imputed.

We exercised this pipeline in two studies investigating genetic effects on transcriptome phe-

notypes. The first study was a collaboration with the lab of Dr. Dan Rader1, where

we evaluated variants that were previously implicated by GWAS in cardiovascular disease

to test for splicing regulation. Additionally, we performed a genome-wide assessment of

genotype-splicing associations and measure the reproducibility of discovered sQTLs using

an in-house patient cohort supplemented with related tissue samples from GTEx. The

second study, spearheaded by the GenR project at Erasmus Medical Center (EMC) in Rot-

terdam in collaboration with Dr. Struan Grant2, followed up on a GWAS metaanalysis for

skeletal development timing in children. The sentinel SNP from the combined study, rs6410

(p = 1.1 × 10−11), is a synonymous variant positioned 15 base positions upstream of the

3’ end of CYP11B1 exon 1. CYP11B1 is an adrenal-specific cytochrome p450 gene with

1Department of Medicine, Perelman School of Medicine
2Department of Pediatrics, Children’s Hospital of Philadelphia
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high conservation across mammals. Multiple alternative splice isoforms are annotated for

CYP11B1, however they are not well-documented in the literature. One isoform alterna-

tively includes cassette exons 2 and 4, which are in close physical proximity with rs6410. As

exon 2 is an annotated cassette exon in CYP11B1, we suspected that rs6410 (or a variant in

strong linkage disequilibrium with rs6410) could be acting as a splicing QTL. This suspicion

was supported both by our sQTL analysis on GTEx and by our RT-PCR analysis on two

separate donor cohorts (Figure 26, Figure 31).

The MAJIQ sQTL pipeline, all the analyses that were performed using that pipeline, and

the CYP11B1 RT-PCR analysis constitute my contributions to these projects.

4.2. Cardiovascular disease

Coronary artery disease (CAD) is a complex disease with an estimated 40-60% heritable

component (McPherson Ruth and Tybjaerg-Hansen Anne, 2016). GWAS meta-analyses

have reported over 100 genomic loci that are significantly-associated with CAD, with several

also implicated in risk for other cardiovascular phenotypes (the CARDIoGRAMplusC4D

Consortium et al., 2015; Nelson et al., 2017; Klarin et al., 2017; van der Harst Pim and Ver-

weij Niek, 2018; Tada Hayato et al., 2014; Dichgans Martin et al., 2014; Pickrell et al., 2016;

Chasman Daniel I. and Lawler Patrick R., 2017). These identified variants are non-coding

SNPs whose gene regulatory targets are not yet known. While these GWAS significant SNPs

have been tested for eQTL behavior in vascular cells, the tissues directly affected by CAD

are heterogeneous, categorized by multiple cell types (Brænne Ingrid et al., 2015; Zhao Yuqi

et al., 2016; Franzén et al., 2016). Gene expression and alternative splicing vary between

cell types, including those that are closely related, highlighting the need for cell-type spe-

cific analyses. To that end, we profiled epithelial and smooth muscle coronary artery tissue

samples from a small patient cohort for eQTLs and sQTLs. We then replicated identified

eQTL and sQTL variants in GTEx using related tissue RNA-seq (Nürnberg et al., 2017, in

review).
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4.2.1. Methods

RNA was collected and sequenced from coronary artery epithelial (EC) and smooth muscle

(SMC) cells obtained from 18 patients. Of these, thirteen patients had matching Illumina

SNP genotype calls passing quality control. These data were processed with respect to the

hg19/GRCh37 reference genome (Zerbino et al., 2018, Ensembl v75). Empirical covariates

were inferred from genotype principal components only. Tissue-specific sQTLs were called

according to the procedure described in Algorithm 2. A SNP was declared to be a signifi-

cant sQTL for an LSV junction of the corrected p-value of association was less than 0.05.

Additionally, genes reaching nominal significance for any LSV association (p < 0.05) were

followed up in GTEx artery tissue types: aorta (N = 245), coronary artery (N = 140),

and tibial artery (N = 353). As before, the RNA-seq and genotype calls from these GTEx

samples were mapped to the human reference genome hg19/GRCh37. Both expression and

genotype covariates were inferred. The same sQTL procedure was performed for each GTEx

tissue on the subset of genes reaching nominal significance in the SMC/EC cohort, and p-

values were corrected for multiple hypothesis testing as described. For both datasets, we

additionally screened for colocalization between putative sQTLs and variants implicated by

GWAS for seven different cardiovascular maladies, including migraine, coronary artery dis-

ease, and abdominal aortic aneurysm. The GWAS sentinel variants were considered along

with every variant in strong linkage disequilibrium therewith (ρ2 ≥ 0.80 in GTEx).

4.2.2. Results

To examine the effect of GWAS loci for vascular disease on the relative abundance of RNA

splice isoforms, we performed a genome-wide screen for sQTLs in HCAECs and HCASMCs.

Splicing analysis was done using MAJIQ, which quantifies local splicing variations (LSVs)

as percent spliced in (PSI) of alternatively-spliced mRNA segments. We identified 478 SNPs

in 196 genes (SMC) and 1,028 SNPs in 359 genes (EC) which were nominally associated

(p¡0.05) and passed 0.05 FDR correction at the gene level. Combined, these lists included

1399 unique SNPs in 512 genes. Next, we took 3,844 unique genes with at least one nomi-

nally significant sQTL in SMC or EC and tested those for sQTL using GTEx artery tissues.
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Of those, 33057 SNPS in 3310 genes were validated in at least one GTEx tissue at FDR ¡

0.05. We compared these lists with the set of SNPs and genes with putative sQTLs passing

0.05 FDR correction at the gene level in SMC and EC. 924 SNPs in 471 genes were repro-

duced in GTEx, whereas 475 SNPs in 41 genes were unique to the two cell types (Figure 21).

Finally, we also performed genome wide sQTL analysis for the three artery GTEX tissues

and identified 54298 unique SNPs in 7965 genes that passed 0.05 FDR correction at the

gene level.

The vast majority of GWAS-associated loci for vascular phenotypes have not been func-

tionally annotated. Colocalization analysis combines two different data sets to see if related

phenotypes share genetic variants. If a SNP or signal colocalizes between two phenotypes

(e.g. disease and changes of expression of nearby gene), then there is greater confidence that

the variant may be relevant to disease. We therefore queried for overlap between published

GWAS loci for vascular disease and sQTL loci identified above. First, for sQTL loci identi-

fied from HCASMCs and HCAECs with GWAS loci, we found one SNP at the TARS2 gene

locus and 4 SNPs in 3 genes (YAP1, CFDP1, and STAT6) for HCASMCs and HCAECs,

respectively, that passed 0.05 FDR correction at the gene level. All of these variants are

in linkage disequilibrium (LD ≥ 0.8) with sentinel SNPs for genome-wide association with

migraine (p < 5× 10−8). Of these, rs167769 is both a sentinel variant for association with

migraine and an sQTL associated with an alternative 5’ splice site in the first exon of five of

the six annotated transcripts of STAT6. This splicing variation affects the 5’ UTR (sQTL

FDR = 0.047) and accounts for approximately 7% increase in inclusion of the 18-nt ex-

tension. Second, from the GTEx genome wide sQTL analysis for artery tissues described

above, we identified 38 SNPs in 12 genes, 17 SNPs in 7 genes, and 38 SNPs in 11 genes, in

Aorta, Coronary, and Tibial artery respectively which overlapped GWAS SNPs or those in

strong LD with those. Among these, 20 SNPs in 5 genes, 10 SNPs in 6 genes, and 29 SNPs

in 8 genes, respectively, were the sentinel variants for their respective disease association

studies. Of note, rs324011 is a significant sQTL for STAT6 in all three GTEx tissue types

(sQTL FDR = 0.00351 in Aorta, 0.00349 in Coronary artery, and 0.00271 in Tibial artery).
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Figure 21: Upset of genes with sQTLs in the HCASMC (SMC), HCAEC (EC), and GTEx
datasets (FDR ¡ 0.05, regression test). Vertical bars represent the count of unique genes
per set. Below the bar graphs, each dot represents a dataset and intersecting sets are
represented by lines connecting dots. Horizontal bars represent the total number of genes
with putative sQTLs in each dataset.

This variant is in strong LD with the rs167769 discussed above (LD score = 0.943414),

which associates with the same splicing variation in HCAEC but also in Aorta and Tibial

artery. In addition, rs324011 was identified as a nominal eQTL for STAT6 in all three

GTEx tissue types (eQTL p = 0.00139 in Aorta, 0.0453 in Coronary artery, and 4.17x10

-5 in Tibial artery). This overlap between sQTL and eQTL was observed for several of the

aforementioned SNPs and may point to mechanistic connections such as splicing induced

frameshifts that lead to nonsense mediated decay and result in lowered expression of genes.

For more details, see Table 3

4.3. Skeletal growth in children is GWAS-mapped to a locus physically located near

an alternative splice site

Abnormal secretion of hormones from the adrenal gland can have adverse effects throughout

the body. For example, Figure 25 depicts a pediatric case of adrenocortical carcinoma

where the tumor secretes abnormal levels of sex hormones, triggering early onset of puberty.

Among other phenotypes exhibited by this patient, one quantitative measure of this effect

is the rate of skeletal development. This is readily measured by comparing an x-ray image

of the child’s hand to a set of age-based standards. In this case, the patient is 6 years of

age, but the hand x-ray most closely matches the 10-year-old standard.
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Figure 22: Upset of genes with sQTLs in the HCASMC/HCAEC and GTEx datasets that
colocalize with any GWAS signal for association with cardiovascular disease.

Figure 23: Diagram of the ADAMTS7 locus in the UCSC genome browser, showing the exon
structure. Outlined regions show the alternative 3’ splice site (left), the tandem skipped
exons (middle), and the 3’ variation (right) on this isoform.

Figure 24: Splicegraph of ADAMTS7 built from two representative samples in the in-house
human coronary artery cohort. In all donors and both tissue types, few reads were found to
map to the downstream 3’ splice site in exon 8, and none were found to map to the junction
skipping exons 9-16.
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The trait of unusual skeletal growth rate is not limited to cancer patients, and may have a

genetic underpinning. A genome-wide association study on 3510 children performed by the

GenR project found a significantly associated variant in the coding region of CYP11B1, a

cytochrome P450-like locus on chr8 almost exclusively expressed in the adrenal gland (β =

0.15, p = 2.8×10−10). This association was validated in a meta-analysis incorporating 1048

additional patients at the Children’s Hospital of Philadelphia (β = 0.14, p = 1.1 × 10−11).

The particular variant, rs6410, is a synonymous SNP located a few bases upstream of the

3’ end of CYP11B1 exon 1. This is particularly interesting because this locus has two

annotated isoforms, with exons 2 and 4 being alternatively-included cassette exons. This

suggests that rs6410, or a variant linked to it, may act as an sQTL. RNA-seq expression

analysis published in GTEx v7 shows this locus to be expressed only in adrenal gland

(median RPKM = 2262.1) and testis (GTEx Consortium et al., 2017, median RPKM =

2.8). Therefore, we sought to test whether LSV Ψ is associated with allelic variants in the

vicinity of CYP11B1. We pursued two lines of evidence to this end. First, we employed our

pipeline for sQTL discovery against all genomic variants at the CYP11B1 locus as observed

in GTEx adrenal gland samples. We then validated the findings from this pipeline using

RT-PCR on two independent batches of patient adrenal samples.

4.3.1. Methods

sQTL screen

159 paired-end RNA-seq experiments from GTEx v6p adrenal donors were mapped to

the hg19 genome annotation using STAR 2.5.2a (Dobin et al., 2013) with the option –

alignSJoverhangMin 8. Sorted and indexed alignments were built into splicegraphs by

MAJIQ 2.0(Vaquero-Garcia et al., 2016) build using only reads mapping entirely within

the CYP11B1 locus. LSV junctions were incorporated into the splicegraph if they were

supported by at least 80 samples with a minimum of 3 reads across two start positions per

sample. LSV junctions for each sample were then quantified using MAJIQ 2.0 psi, with a

minimum of 10 reads across 3 start positions required for an LSV to be quantifiable in the

sample.
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We queried 1357 genomic variants within the CYP11B1 locus as the sQTL search space.

To limit the number of statistical tests performed, our pipeline imposes strict filters for

quantifiability of LSV-variant associations. In brief, tested variants must have a minimum

minor allele count of 5 and minimum minor allele frequency of 0.1 among the set of samples

for which junction PSI was quantifiable. Consequently, a total 570 of LSV-SNP pairs

were tested for significant association. For each LSV, missing genotypes were imputed

from the set of PSI-quantifiable samples. PSI values were logit-transformed and quantile-

normalized to a standard normal distribution. We used the subject’s gender as a known

potential confounding factor, and supplemented inferred latent covariates from genotype

principal components and expression matrix factors generated by PEERS and published by

GTEx. These confounding factors were regressed out from both the transformed PSI and

the imputed genotypes. Finally, we computed the statistic of linear association between

the PSI and genotype residuals against the null hypothesis of 0 slope. Association p-values

were adjusted using a conservative Bonferroni correction with 392 significant associations

involving two local splicing variations (see full list in Table S2).

RT-PCR validations

Total RNA was purified from each of 15 donor adrenal glands, nine supplied by the NIH

and six provided by EMC. RNA transcripts were reverse transcribed using poly-dT oligos

and random hexamer primers. Primers were designed within the bodies of exons 2 and 3

to amplify the alternative cassette exon 4 (see Table S1). PCR was run for 34 cycles, and

amplified cDNA was size separated on a 10% acrylamide gel in TBE. Empirical PSI was

estimated from the relative band intensity of the exon 4 inclusion product relative to the

exon 4 skipping product, using ImageJ’s gel analysis tool to quantify band intensities. The

actual quantification was performed using a Python script to estimate the ratio between the

background-adjusted height of the UV intensity peak corresponding to the inclusion band

(the inclusion peak) and the sum of the inclusion peak and skipping peak heights:

Ψempirical =
H265

H265 +H187
.
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In order to test for intron retention, additional primers were designed flanking the genomic

boundary between exon 3 and the downstream intron. Amplified cDNA was size separated

on a 10% agarose gel in TBE, and the observed bands were used to qualify presence or

absence of the retained intron.

4.3.2. Results

We hypothesized rs6410 (chr8:143961005) is associated with changes of expression or isoform

usage of CYP111B1 or nearby genes. GTEx v7p reported eQTLs for rs6410 included only

the expression of CYP11B1 in the adrenal gland (p = 0.00203484, beta = 0.133608 ±

0.0424836), an association that does not pass significance when multiple SNPs in the region

are considered. In contrast we found several strong associations of rs6410 and other SNPs

with splicing variations, i.e. sQTL.

In order to identify sQTLs at CYP11B1, we used 159 patient adrenal glands in GTEx v6p.

RNA-seq experiments were mapped to the hg19 reference genome using STAR-2.5.2a, and

inclusion levels of alternative splice junctions were quantified using MAJIQ 2.0 followed by

an sQTL quantification pipeline (see Methods). This sQTL pipeline identified a total of

392 significant associations (see full list in Table S2) involving two local splicing variations

(LSV). The first LSV involves a cassette exon downstream of the second exon of the canon-

ical isoform (exon 4, chr8:143959172-143959250) (Figure 26). For this event, the sentinel

GWAS hit of rs6410 achieves strong association (p = 7.90 × 10−16 with the skipping junc-

tion, p = 1.30× 10−15 with the inclusion junction), though the strongest association is for

rs10956995 (p = 1.16× 10−23 with the inclusion junction). For rs6410 we find the common

T allele is associated with skipping of the alternative 4 exon. Notably, the raw RNA-seq

alignments clearly support this sQTL but also shows reads spanning the introns flanking

exon 4 (Figure 27). We note that the measured changed in exon 4 inclusion levels is derived

from junction-spanning reads mapped by STAR. The LSV in question is the 3’ end of the

cassette event, with splicing of exon 4 to exon 5 discernible by the change in read levels at

the 3’ end of exon 4. This indicates that the splicing events involved may be more complex

than just cassette exons and can affect both function as well as expression levels of the gene
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isoforms. Another possible explanation for these intronic reads are unannotated antisense

transcripts, as the RNA-seq experiments were not strand-specific. These findings are also

inline with additional bands observed in the RT-PCR validation experiments (see below).

The second LSV with strong sQTL associations involves an alternative 3’ splice site in exon

9 of the canonical transcript isoform of CYP11B1 (shorter 143956650-143956728 vs. longer

143956650-143956797 on chr 8, see Figure 29). Here the most significant association in

GTEx is with rs4736311 (chr8:143952950, p = 8.09×10−26 with the shorter exon) while the

sentinel GWAS hit rs6410, which is in LD with rs4736311, achieves p = 5.01 × 10−14. For

rs6410, the common T allele is associated with the shorter exon 9. Notably, the annotated

transcript containing the alternative junction also has its transcription start site at the 5’ end

of exon 6 (chr8:143957128-143957294). This splice isoform ablates both the mitochondrial

localization signal and the substrate binding domain, the coding sequences for which are

located upstream of exon 6.

To validate our findings we next performed RT-PCR experiments to quantify exon 4 skipping

using RNA from six donors provided by Erasmus Medical Center (EMC). These six samples

were distributed with one T/T, three T/C, and two C/C at rs6410. Inclusion levels of exon

4 correlated strongly with genotype at rs6410, and recapitulates the observation made in

GTEx RNA-seq (Figure 26c). Evidence of intron retention was also observed via RT-PCR

(Figure 30, Figure 28).

Finally, we also repeated the validation of the rs6410 sQTL using a second cohort of 9

donors from an NIH repository. The RT-PCR results from this cohort validates the general

trend of inclusion levels of exon 4 (Figure 30) but we had difficulties achieving high enough

amplification for those. This issue is likely the result of the donors’ micronodular adrenal

hyperplasia condition, which is associated with reduced expression of CYP11B1 (Horvath

and Stratakis, 2008).

65



Figure 25: Example case of abnormal skeletal growth. The six-year-old patient presents
with a sex-hormone-producing tumor and early onset of puberty. His hand x-ray (left) is
morphologically more similar to the 10-year-old standard (bottom right) than it is to the
six-year-old standard (top right) (Vicente Gilsanz and Osman Ratib, 2012, pp. 21-25).

66



Figure 26: Association between rs6410 genotype and inclusion levels of cassette exon 4. a.
Splice graph showing a local splicing variation (LSV) from exon 3 (orange). Blue junction
represents skipping of exon 4; green junction represents inclusion of exon 4; and the purple
rectangle represents retention of that intron. b. Scatterbox plot of MAJIQ PSI quantifica-
tions for the exon 4 inclusion junction (green), stratified by genotype in GTEx. The risk
(C) allele is associated with increased levels of exon 4 inclusion. c. RT-PCR validation for
the association between rs6410 genotype and exon 4 inclusion using six donor samples from
EMC. Scatterplot shows the PSI quantifications for inclusion of exon 4 as computed from
analysis of the gel electrophoresis image (inset). The trend matches that observed in the
RNA-seq (b).

Figure 27: Pileup of aligned reads at the exon 4 skipping event, using a single representative
of each genotype at rs6410. Exons 3, 4, and 5 are highlighted in red, with exon number
labels printed below the pileups.
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Figure 28: Scatterplot of Ψ for the alternative 3’ splice site in CYP11B1 exon 9, stratified
by genotype at rs6392. Trend line is approximate. p = 1.87× 10−27, F-test.

Figure 29: Pileup of aligned reads at the alternative 3’ splice site in CYP11B1 exon 9, using
a single representative of each genotype at rs6392. Exons 8 and 9 are highlighted in red.

68



Figure 30: Amplification across the CYP11B1 E3I3 boundary in the EMC donors, stratified
by genotype at rs6410 as indicated across the top.

Figure 31: Amplification of the CYP11B1 alternative exon 4 cassette event in the NIH
donor cohort using the same primers as in Figure ??c. Amplification was inconsistent
between samples and low overall, frustrating efforts to quantify Ψ.
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4.4. Discussion and conclusions

Splicing QTL discovery is an important indicator towards the function of genomic variants.

While existing methods are powerful to identify such variants in large cohorts, they often

make assumptions and corrections which are more appropriate for expression TPM estimates

than local splicing ratios or Ψ. We addressed this in our pipeline in several ways. The

foremost contribution is the power and accuracy of MAJIQ in quantifying Ψ. Second,

we handle missing values in Ψ by omitting them rather than imputing them. Lastly, we

assume a statistical distribution designed to fit Ψ, rather than using a method that assumes

a distribuion more suitable for TPMs or FPKMs.

We demonstrated the performance of this method by applying it to screen for splicing

associations with variants implicated by GWAS meta-analyses in two disease studies. In the

cardiovascular cohort, we uncovered ADAMTS7 as a putative sQTL target with functional

consequences on the transcriptome. We screened these cohorts for eQTLs and identified

ADAMTS7 as an eGene (the gene target of an eQTL) with allele-specific readout in cis.

This splicing variation is particularly interesting in that the associated alternative 3’ splice

site results in a frame shift. The transcriptome annotation links the shorter exon with

skipping of the next 9 exons, resolving the frame shift without introduction of a PTC.

The alternative open reading frame deletes the majority of the functional motifs present

in the canonical isoform. If translated, this isoform would manifest as a loss of function of

ADAMTS7, offering a possible explanation for the observed association with CAD. However,

RNA-seq evidence shows low abundance of reads mapping to this long skipping junction,

suggesting 3’-to-5’ degradation. Whether this is the result of nonsense-mediated decay or

a cytoplasmic procedure is not clear. Proteomics analysis would be necessary to verify

translation of this short isoform in risk or affected individuals.

In the bone growth association study, we identified two clusters of sQTLs near CYP11B1

in strong linkage disequilibrium with each other. One affects inclusion of canonical exon 4,

and the other impacts splice site selection in exon 9. While not explicitly considered in the
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bioinformatics screen, we observed moderate coverage of the intronic regions flanking exon

4. However, the cDNA preparation for neither the RNA-seq nor RT-PCR experiments was

strand-specific. It is possible that an unannotated (possibly non-coding) antisense transcript

is responsible for the signal in these introns in both assays. An alternative explanation is

that both screens are picking up partially-processed transcripts.

The annotated splicing variation introduces two in-frame cassette exons at the 5’ end of the

transcript. A robust structural analysis of the resulting protein isoform has not yet been

published. However, the structure of the canonical CYP11B1 dimer in complex with its

substrate is available on the Protein Database (PDB) (Brixius-Anderko and Scott, 2018,

PDB ID: 6M7X). In brief, the points where the cassette exons would be inserted are on

the outer surface of the protein, distal from the steroid binding pocket. Moreover, the

exon 2 cassette insertion is downstream from the mitochondrial localization signal present

in the canonical isoform. The expected consequence of these cassette inclusions is a gain

of function in CYP11B1, likely a novel binding motif on either the protein product or the

mRNA itself. Such can be probed using CLIP-seq (for discovery of novel RNA-binding

proteins) or co-immuniprecipitation followed by mass spectrometry.

Finally, we noted that the NIH cohort of nine donors had a diagnosed condition that likely

affected expression of CYP11B1. This negatively impacted our ability to amplify CYP11B1

for quantitative splicing analysis. Moreover, early attempts to quantify Ψ of CYP11B1

exon 4 from these samples yielded irreproducible observations. The micronodular adrenal

hyperplasia diagnosis did not come to light until late in the investigation, by which point

we had successfully amplified this region in the EMC samples.

71



CHAPTER 5 : Conclusions

RNA alternative splicing is an important determinant of transcriptome complexity in hu-

mans, with an estimated 90% of multi-exon genes expressing alternative transcripts. Many

of these alternative transcripts are cell-type specific, and aberrant expression of some has

been associated with disease. The power of modern RNA sequencing technologies facili-

tates discovery of novel splice isoforms, as well as quantification of splice junction inclusion

levels and changes between conditions. These techniques are not perfect, introducing biases

and batch effects which complicate the accurate measurement of gene expression and splic-

ing. Moreover, underlying sample variation can interfere with detection of splicing changes,

leading to inflated false discovery rates. Despite being the state of the art, MAJIQ is not

immune to these effects.

In this dissertation, I describe three tools which work with MAJIQ to account for data

heterogeneity in various data contexts. Chapter 2 deals with the problem of outliers in

small replicate studies. Briefly, splicing events in samples are scored based on how well

their Ψ distributions agree with the group median for that event. The scores are used to

scale down the sample reads at the LSV level, with harsher penalties for purported outliers.

We demonstrated that this correction compensates for outliers in real data, stabilizing

detection power and reproducibility relative to a clean comparison.

As part of designing and benchmarking the outlier detection and correction scheme, we

simulated outliers by adjusting read counts relative to a fixed shift in Ψ for a subset of

LSVs. This also served as an investigation into the effects of different kinds of outliers on Ψ

quantification. We observed, for example, that increasing either the severity or abundance

of misbehaving LSVs resulted in an inflated false positive count in uncorrected MAJIQ.

We also observed that the effective total number of reads in the outlier sample has a pro-

found effect on performance. When the effective depth was reduced, true positive detections

were lost, whereas an increased effective depth caused false positives to accumulate. These
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observations motivate more general questions about how data conditions affect model per-

formance. Intuitively, a certain read count is required for adequate transcriptome coverage.

In splicing analysis, the demand for junction-spanning reads, which represent a very small

subset of the total fragment count, in turn demands deeper sequencing. The question, then,

is how deep one would need to sequence before LSV detection begins to saturate. In addi-

tion, how many biological or technical replicates are needed to accurately quantify as much

of the transcriptome as possible?

Chapter 3 lays the groundwork for addressing the latter of these questions. Here we address

datasets with a large number of RNA-seq samples which are not necessarily replicates, for

which MAJIQ’s Bayesian assumption of shared underlying Ψ does not necessarily hold.

We remedy this by implementing a framework of statistical tests over posterior bootstrap

samples, with each input experiment serving as an independent reporter of Ψ per LSV. The

purpose of this procedure is to capture the per-sample uncertainty in Ψ as a means of false

discovery control, with some cost to speed. However, the procedure is currently completely

naive to the reasons why one sample may be less certain about Ψ than another. There are

known and latent confounding factors affecting gene expression and, potentially, alternative

splicing, which MAJIQ-HET does not account for. These factors are accounted for on the

Ψ level in the sQTL pipeline, and work is underway to implement confounding factors and

bias correction in the MAJIQ pipeline.

A parallel problem in methods development is that of assessing methods performance. Our

approach to this has been to design new metrics for assessing the performance of a method

on a given dataset. The difficulty lies in the differences between methods, in this case how

splicing events are defined. For example, for every splicing event that rMATS quantifies,

MAJIQ identifies two congruent LSVs. The ratio is even greater when comparing between

MAJIQ’s LSVs and LeafCutter’s intron clusters. In order to properly compare these meth-

ods, there needs to be a one-to-one mapping between events classified by all methods. Such a

mapping would also improve communication of splicing events by making it easier to match
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up splicing events described in the literature by two different software packages. This need

has recently motivated two new projects in MAJIQ’s development. First, a simplifier is in

development to remove excess junctions that have enough read support to incorporate into

the splice graph but have low inclusion levels across all samples. Second, an event classifier

is planned to assign labels to clusters of LSVs that describe the same splicing event, similar

to how intron clusters are defined by LeafCutter. These two additions to MAJIQ’s pipeline

will benefit end users as well, as the simplified, classified events will be easier to describe

and prioritize for experimental follow-up.

Finally, Chapter 4 introduces a pipeline for associating genotype with MAJIQ splicing

levels and applied it to two collaborative projects. I exercised this pipeline to call sQTLs

relevant to two unrelated disease conditions, coronary artery disease and aberrant skeletal

growth. In doing so, I identified a handful of disease-relevant loci which could potentially

be explained by splicing variations and are therefore key targets for functional validation.

While I was able to replicate one such variation by RT-PCR, namely the rs6410 association

with inclusion of CYP11B1 exon 4, the relevance of this splicing variation in the abnormal

phenotype remains unclear. A likely hypothesis is that the alternatively included exons

result in a gain of function in CYP11B1. Whether this new function is sequestration of

factors which regulate the production of growth hormones, or an increase in cytochrome

p450 efficiency, remains to be seen. Furthermore, the ADAMTS7 splicing variation has yet

to be validated experimentally. In addition to the alternative 3’ splice site event captured

by the sQTL screen, association between that and the downstream tandem skipping event

and 3’-truncated transcript should be confirmed by RT-PCR. Additionally, translation of

both the alternative isoforms of CYP11B1 and ADAMTS7 should be verified by targeted

peptide analysis.

A natural application of this pipeline would be to perform genomewide, tissue-specific dis-

covery of putative sQTLs in GTEx. However, there remain several inefficiencies that need

to be addressed prior to large-scale application. The pipeline presented and exercised in
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this work is a prototype which scales poorly to larger datasets. Ψ quantifications are read

from the VOILA text output files, collated into Python objects, and associated with SNPs

read at runtime from the variant call file. This results in a great deal of overhead both

in disk operations, processor time, and memory demands. Much of this overhead can be

resolved by integrating the sQTL pipeline into the MAJIQ workflow. In addition to remov-

ing multiple intermediate file I/O steps from the pipeline, this move would simultaneously

necessitate the transpilation of this pipeline from Python to parallelized C++, which alone

has improved the running time and memory efficiency of MAJIQ tenfold (see Figure 11a).

In summary, the methods I have developed and presented in this dissertation implement

novel solutions for addressing data heterogeneity in RNA-seq splicing analysis. These tools

can be applied in functional studies of splicing and transcriptome regulation, or to dis-

cover new disease mechanisms. MAJIQout and MAJIQ-HET are publicly available at

https://majiq.biociphers.org as part of MAJIQ. The sQTL pipeline remains in devel-

opment pending efficiency improvements to support genomewide screens on larger datasets.
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APPENDIX
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A.1. Attachments

Table 1: validations 51pct.tsv: Performance of MAJIQ and MAJIQ-HET on simulated
GTEx samples, requiring that events only be quantifiable in a minimum of 51% of samples
per group.

Table 2: validations 100pct.tsv: Performance of MAJIQ and MAJIQ-HET on simulated
GTEx samples, requiring that an event be quantifiable in all input samples.

Table 3: twist1-supp-tables.xlsx: Summary of sQTLs in arterial tissues. See the
README in the document itself.
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