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Abstract  
The ubiquitin-proteasome offers novel targets for potential therapies with their specific activities 
and tissue localization. Recently, the expansion of our understanding of how ubiquitin ligases 
(E3s) specifically regulate transcription has demonstrated their roles in skeletal muscle, 
complementing their roles in protein quality control and protein degradation. This review focuses 
on skeletal muscle E3s that regulate transcription factors critical to myogenesis and the 
maintenance of skeletal muscle wasting diseases. (Word count=68) 
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Non-standard abbreviations: C/EBPβ, CCAAT/Enhancer-binding protein β; COPD, Chronic 
obstructive pulmonary disease; HUWE1, HECT, UBA And WWE Domain Containing 1, E3 
Ubiquitin Protein Ligase; Itch, Itchy E3 Ubiquitin Protein Ligase, aka AIP4 (Atrophin-1 
Interacting Protein 4); LPS, Lipopolysaccharide, MDM2, Mouse double minute 2 homolog; 
MRF, Muscle regulatory transcription factor; MYOD, Myogenic differentiation antigen; 
NEDD4, Neural precursor cell-expressed developmentally downregulated gene 4; NEMO: NF-
κB essential modulator; NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells; 
PAX7, Paired box 7; PIC, Pre-Initiation complex; RBP-Jκ; Recombination Signal Binding 
Protein For Immunoglobulin Kappa J Region; RING, Really interesting new gene; TAF, TATA-
box binding protein-associated factors; TBP, TATA-box binding protein; TFIID, Transcription 
factor IID; TRIP12, Thyroid Hormone Receptor Interactor 12; TRAF7, TNF Receptor 
Associated Factor 7; Ub, ubiquitin; UPF1, Up-Frameshift Suppressor 1 Homolog; UPS, 
Ubiquitin protease system; USP10, Ubiquitin Specific Peptidase 10  
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Introduction 

 

Skeletal muscle homeostasis is not only essential for day-to-day activities but also the healthy 

functioning of the body. Alterations in skeletal muscle strength and function are concomitant 

with several other disease pathophysiologies including diabetes, COPD, Duchenne muscular 

dystrophy, motor neuron diseases (55). The reduction in muscle mass, recognized commonly as 

muscle wasting or atrophy, results in loss of muscle function and is associated with increased 

morbidity and mortality (1). It occurs due to various physiological and pathological 

consequences. One of the most prevalent physiological causes of atrophy is aging and termed as 

sarcopenia (62), which involves several molecular, functional and histological changes in the 

muscle leading to frailty and functional decline in older adults. The pathological causes of 

atrophy include cancer cachexia, burns, chronic heart failure, chronic kidney disease, AIDS, 

mechanical ventilation, chronic obstructive pulmonary disorder (COPD), sepsis, immune 

disorders, dystrophies, etc. which all contribute to muscle atrophy in unique ways (13). 

 

The regenerative capabilities of skeletal muscle in case of injury or damage is remarkable and is 
enabled by the presence of tissue-specific adult stem cells, termed as satellite cells which are 
located between the basal lamina and sarcolemma of the muscle fibers (Figure 1) (28). 
Inherently quiescent, satellite cells get activated by stimulus in response to injury, stretching, 
exercise, and denervation among other pathological states such as myositis, muscular dystrophy, 
genetic mutations and cancer cachexia, for example (11, 32, 44, 61). Quiescent satellite cells 
have a number of fates, including division to renew themselves and asymmetric division to both 
renew themselves and produce cells capable of differentiating (Figure 1A). Within the broader 
population of satellite cells, SCs can both divide asymmetrically and exist in asymmetric 
populations, some of which only differentiate into myocytes and do not self-renew (Figure 1B). 
In this review, we focus on these quiescent SC cells, which are Pax7 expressing (Figure 1C-1G). 
Quiescent SCs express the transcription factor paired box 7 (PAX7) (Figure 1C), whereas 
activated SCs co-express PAX7 and muscle regulatory transcription factors MyoD, Myf5 and 
drive the proliferation of these cells (termed myoblasts) (Figure 1D) (70). On the other hand, the 
activated SCs can also go back to quiescence state by losing MyoD to maintain the progenitor 
pool (Figure 1E). The myoblasts after few rounds of proliferation start to differentiate by losing 
PAX7 and expressing muscle regulatory transcription factor myogenin (Figure 1F). These 
mature myoblasts fuse to form the differentiated regenerated myofibers (Figure 1G)(58). These 
myofibers also express transcription factors like p53 and MyoD whose specific function is 
unknown and may be related to the maintenance of neuro-muscular junction support (36, 69). 
 

Muscle atrophy is the balance between protein synthesis and protein degradation, both of which 

regulate protein turn over (10). Autophagy-lysosome and ubiquitin-proteasome systems are the 
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two major cell proteolytic systems that regulate the enhanced protein degradation in myocyte 

atrophy. While the ubiquitin proteasome system (UPS) is primarily attributed to the protein 

degradation of sarcomere proteins in atrophy, its role in regulating transcription factors 

governing transcription is beginning to be appreciated in the muscle physiology and 

pathophysiology. How the ubiquitin proteasome system regulates transcription is well 

established in embryonic stem cells (15), the tumor microenvironment (17), and the heart (14, 

64). The ways in which the UPS post-translationally modifies and regulates transcription by 

directing transcription factors by ubiquitination is emerging through multiple mechanisms. They 

include the degradation of transcription factors by enhancing poly-ubiquitination leading to 

proteasome-dependent degradation. Other mechanisms include ubiquitin playing a role in 

directing the localization of transcription factors (in the case of mono-ubiquitination). Some of 

them are transcription factors part of the signaling pathways involved in the maintenance and 

regeneration of skeletal muscle, including those involved in skeletal muscle atrophy. This review 

focuses on the role of the skeletal muscle ubiquitin ligases, the enzymes giving the UPS 

specificity, in regulating transcription in skeletal muscle so that their broadening diverse roles are 

better appreciated and provide context to thinking about therapeutically targeting them in the 

future. 

 

 

Ubiquitin ligases and their degradation mechanisms 

 

The post-translational modification of proteins via ubiquitination is mediated by three classes of 

proteins in a multistep process. Conjugation of proteins to ubiquitin (Ub) begins with an ATP 

dependent step wherein there is a thioester linkage between the last residue of Ub, i.e., Gly 76 

and Cys residue of the Ubiquitin-activating enzyme, E1. The activated Ub is then transferred to 

the Cys residue of the ubiquitin-conjugating enzyme (E2). The final step is the concurrent 

interaction of the Ub-loaded E2 and ubiquitin protein ligases (E3) resulting in the formation of 

Ub chains on the substrate. When E3s polyubiquitinate their substrate with Lys48-linked 

ubiquitin, the 26S proteasome binds the ubiquitin chains and degrades the substrate. Thus, E3s 

are critical parts of this process, as they are not only responsible for substrate specificity but also 

regulate the efficiency of the process. Ubiquitination of proteins not only targets substrates for 
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degradation but also controls their activity and localization, depending upon the type of Ub-

chains added. On the other hand, there are also deubiquitinating enzymes (DUBs) which catalyze 

the removal of ubiquitin, cellular localization (e.g., mono-ubiquitin), or stability (e.g., non-

lysine48 linked poly-ubiquitin mediated modifications), and also balancing the post-translational 

modification of substrates, thus altering their susceptibility to proteasome-dependent degradation 

(4).  

 

In the pathogenesis of skeletal muscle atrophy, satellite cells play an integral role in recovery and 

regeneration of muscle cells. Once example highlighting the importance of the UPS system and 

the ubiquitin-mediated regulation of transcriptions factors has been described in the regulation of 

satellite cells in skeletal muscle atrophy. The RPT3 (regulatory protein of the 26S proteasome) 

protein is a putative ATPase integral to the 26S proteasome (19). Recent studies have identified 

that depleting RPT3 induced skeletal muscle atrophy and the loss of satellite cells in resting 

skeletal muscle (38). Mice with muscle-specific RPT3 depletion spontaneously develop skeletal 

muscle atrophy starting from three weeks of age and predominant atrophy at four weeks of age 

evidenced by a decrease in myofiber cross-sectional area in gastrocnemius and soleus muscle 

(38). The depletion of RPT3 in mice led to decreased proteasome activity, specifically 

chymotrypsin-like and trypsin-like proteasome activity in the fast-twitch-dominant tibialis 

anterior muscle at two weeks of age (38). Satellite cell-specific Rpt3 conditional knockout (Rpt3-

scKO) mice were generated to deplete Rpt3 specifically in the satellite-cell population (37). 

These mice did not have a significant phenotype as seen by no change in muscle weight or cross-

sectional area in the tibialis anterior muscle a month of tamoxifen treatment in these mice (37). 

Nevertheless, these mice had impaired regeneration due to a defective proliferative stage and 

apoptosis in primary myoblasts isolated from these mice (37). This satellite cell-specific 

proliferation defect could be rectified upon P53 depletion in primary myoblasts isolated from 

these mice (37). 

 

The underlying mechanism of RPT3’s regulation of skeletal muscle atrophy pathogenesis was 

identified to be its regulation of the transcription p53, whereby RPT3 mediated p53 degradation 

through its ATPase activity is critical to proteasome activity (37). Depletion of RPT3 in satellite 

cells led to enhanced p53 expression (37), which then mediated defect in the satellite cell 
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proliferative state and led to apoptosis (37), instead of the needed regeneration to counteract the 

atrophy (37). This example illustrates the critical role of the 26S proteasome’s degradatory 

functions and highlights the importance of upstream regulators of ubiquitination, specifically the 

ubiquitin ligases which give the process specificity. Ubiquitylation and degradation of many 

transcriptional activators at promoter sites (54) is one of the regulators of transcription among 

other regulators like activators, repressive complexes and histones. This review expands this 

basic appreciation of the importance of the proteasome-mediated degradation of transcription 

factors (p53) in satellite cells in skeletal muscle atrophy and investigates how ubiquitin ligases 

specific for transcription factors regulate the body’s resistance to skeletal muscle atrophy. 

 

 

TATA-box binding protein and TATA-box binding protein associated factors 

 

The TATA-box binding protein (TBP) and TATA-box binding protein-associated factors (TAF) 

forms the RNA polymerase II preinitiation complex (PIC) that recognizes the transcription factor 

IID (TFIID) binding to the core promoter of the gene being transcribed. The transcriptional 

activity of MYOD in activated SCs in terms of inducing Myogenin is essential for terminal 

differentiation. This mechanism involved functional interaction with the TFIID complex. Firstly, 

the binding of MYOD to its recognition site is stabilized by TFIID complex/TBP. Eventually, 

MYOD mediates and stabilizes the association of TFIIB to the PIC (33). Thus, TBP levels are 

vital in regulating the transcriptional activity of MYOD.  

 

The TATA-box binding protein (TBP) protein is regulated post-translationally by ubiquitination 

in recent studies. The ubiquitin ligase HUWE1 and deubiquitinase (DUB) USP10 coordinate to 

regulate TBP levels (Figure 2A) (42). Both HUWE1 (HECT, UBA and WWE Domain 

Containing 1), a HECT ubiquitin ligase, and the USP10 DUB are found in proliferating 

undifferentiated myoblasts (42). HUWE1 was found to polyubiquitinate TBP and drive its 

proteasome-dependent degradation (Figure 2A). In undifferentiated myoblasts, the USP10 a 

ubiquitin-specific protease prevents proteasomal degradation of TBP by counteracting HUWE1 

ubiquitination of TBP, thus maintaining stable TBP levels (Figure 2A) (42). The net result of 

this ubiquitin ligase/DUB pairing is the regulation of TBP levels during differentiation (Figure 



   7 

2B). During differentiation, HUWE1 expression increases while USP10 expression decreases, 

favoring the polyubiquitination and subsequent degradation of TBP. The resulting myocyte 

depletion of TBP during differentiation by post-translational degradation via the proteasome is 

an essential mechanism for differentiation (Figure 2B). In contrast, USP10 depletion was not 

sufficient to mediate differentiation (42). The importance of reduced TBP levels in 

differentiation has been reported to be related to TBP’s regulation of MyoD (46). By regulating 

the TBP levels through posttranslational ubiquitination and degradation, the ubiquitin ligase 

HUWE1 and deubiquitinase USP10 play a cohesive role in maintaining TBP levels during 

myogenesis (42). The HUWE ubiquitin ligase also has been reported to directly regulate MYOD 

protein level via mono-ubiquitination and proteasome-dependent degradation (51), which may 

parallel its indirection regulation of MYOD described above (42). Since the role of TBP in 

muscle regeneration has been established in previous studies, in depth understanding of how 

TBP levels are modulated would be important to have a clear understanding about various 

pathways in muscle regeneration.  

 

 

Neural precursor cell-expressed developmentally downregulated gene 4 

 

NEDD4 (Neural precursor cell-expressed developmentally downregulated gene 4) has a role in 

cellular processes involving turnover of membrane-bound channels and receptors associated with 

protein trafficking, endocytosis, virus budding, and transcription. NEDD4, along with its family 

of proteins, has a phospholipid-binding C2 domain, two to four WW domains that recognize 

substrates, and a catalytic domain homologous to the E6-AP C-terminal (HECT) domain (71). 

NEDD4 associates with cellular membranes via its C2 lipid-binding domain, allowing for the 

interaction between the WW domains of NEDD4 and PPXY motifs of its membrane-associated 

protein substrates (39). WWP2 was shown to interact with and monoubiquitinate the membrane-

anchored fragment of NOTCH3, leading to its degradation, possibly via the 

endosomal/lysosomal pathway. As a result, NOTCH signaling activity was reduced (75). 

NOTCH is a transmembrane receptor protein that is sequentially cleaved upon ligand binding, 

releasing its ‘‘activated’’ intracellular domain, which translocates from the cytosol to the nucleus 

to influence transcription. 
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The ubiquitin ligase NEDD4 has recently been implicated in mediating denervation-induced 

atrophy, with NEDD4 depletion leading to muscle mass retention (Figure 3A) (50). Activation 

of NOTCH by its ligands leads to the release and translocation of its intracellular domain 

(NICD) to the nucleus where it interacts with RBP-Jκ (Recombination Signal Binding Protein 

For Immunoglobulin Kappa J Region), a DNA binding protein that activates transcription of Hes 

and Hey which inhibit MyoD gene transcription (Figure 3A) (63). The NICD protein directly 

regulates PAX7 expression through RBP-Jκ to mediate self-renewal rather than differentiation. 

NEDD4 regulates the expression of the transcription factor PAX7, which in turn is responsible 

for myogenin induction (Figure 3A) (53, 70). Evidence for the regulation of Notch by NEDD4 

comes from studies of unloading and denervation of the rat hindlimb, resulting in a significant 

increase in NEDD4 expression in the soleus, plantaris, and gastrocnemius in rats (39). 

Simultaneous with this increased NEDD4 expression, NOTCH1 expression decreased, 

suggesting that NOTCH1 is a NEDD4 substrate that is degraded by the UPS (39). To 

demonstrate this relationship, the expression of a dominant negative NEDD4 in soleus muscles 

was tested in vivo and found to completely reverse the unloading-induced decrease in NOTCH1 

expression (39). When NEDD4 was conditionally increased in C2C12 cells, an increase in 

NOTCH1 ubiquitination was observed, indicating that NOTCH1 was a NEDD4 substrate in 

skeletal muscle atrophy (39).  

 

The mechanism by which PAX7 through NOTCH1 regulates skeletal muscle atrophy may be 

related to its regulation of muscle-derived stem cells (49). For example, NOTCH-activating 

factors from osteosarcoma cells repress myogenesis thereby inducing atrophy (49). Thus, 

NEDD4 mediated reduction in NOTCH signaling leading to the precocious differentiation and 

depletion of SC reservoir thus aggravating atrophy may be one mechanism to consider. PAX7 

regulates skeletal muscle atrophy by regulating the regenerating mechanisms as can be seen by 

cancer cachexia caused due to impaired regulation of PAX7 levels (65).  

 

Subsequent studies reported that NEDD4 modulates PAX7 during early muscle differentiation, 

by depleting PAX7 levels by subjecting it to ubiquitination; conversely, NEDD4 loss results in 

the accumulation of PAX7 (Figure 3B) (16). Transient nuclear accumulation of NEDD4 induced 
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decrease in PAX7 and precocious muscle differentiation, demonstrating that NEDD4 functions 

as a novel PAX7 regulator temporally and spatially controlled to modulate PAX7 protein levels 

and satellite cell fate (16). PAX7 levels were found to be regulated by the proteasome system in 

cells initiating differentiation, but not cells in the proliferating stage. Blocking the proteasome 

was found to increase the levels of PAX7 in differentiating myoblasts, consistent with NEDD4-

mediated degradation of PAX7 (16).  

 

Unexpectedly, the c-terminus domain of PAX7 in differentiating skeletal muscle cells was found 

to be mono-ubiquitinated by NEDD4 (16), which is not generally a signal for the proteasome-

mediated degradation observed in these studies as poly-ubiquitin chains are classically required 

to be recognized by the proteasome ubiquitin receptor subunits (21, 34). Interestingly, mono-

ubiquitination is not an uncommon signal for degradation and has been demonstrated in other 

Pax family members, including PAX3 (12). Preventing the proteasome-dependent degradation of 

PAX3 in satellite cells blocks myogenic progression due to the impaired control of PAX levels 

(41). For myogenic progression to happen after satellite cell activation, PAX3 protein is 

depleted, whereas, whereas no change in PAX7 protein levels. The mechanism by which PAX3 

is depleted during satellite cell activation has been reported to be through “mono-ubiquitination”, 

which facilitates subsequent poly-ubiquitination and degradation by the 26S proteasome (12). 

While PAX7 protein levels do not change during this early stage of myogenesis, PAX7 

degradation is a critical component in later stages of the myogenic process (i.e., differentiation) 

(27). 

 

In addition to the proteasome-dependent mechanism, caspase-3 mediated cleavage also 

contributes to reduced PAX7 levels (30). Counter-acting the proteasome-dependent PAX7 

degradation is the casein kinase 2 (Ck-2) phosphorylation of PAX7, which prevents degradation. 

In addition to this, it was also found that Pax7 phosphorylation directed by CK-2 reduces caspase 

mediated cleavage of PAX7 (22). When casein kinase 2 (Ck-2) phosphorylates PAX7 at S201, 

PAX7 degradation by the proteasome system and caspases is inhibited, thus stabilizing PAX7 

levels (30), which is prominently seen in proliferating cells. The PAX7 protein is also regulated 

by the addition of small ubiquitin-like modifiers (SUMO). SUMOylation is a post-translational 

modification process paralleling ubiquitination involving the conjugation of SUMO instead of 
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ubiquitin. SUMOlyation of PAX7 is also essential in myogenic differentiation as it mediates 

transactivation of PAX7 regulated genes prior to differentiation, as shown in C2C12 cells (45). 

Having a comprehensive understanding of various regulators of PAX7 including its modulation 

by the UPS system will help in developing a holistic understanding of the regulators of PAX7. 

 

 

Thyroid Hormone Receptor Interactor 1 

 

TRIP12 (Thyroid Hormone Receptor Interactor 1), a HECT domain encoding ubiquitin ligase, 

regulates the fiber type switching in adult skeletal muscle myocytes (5). Adult skeletal muscles 

are composed of short-twitch fibers, and fast-twitch fibers, based on various external and internal 

cues and the composition varies in healthy and diseased states (56). At a molecular level, slow-

twitch fibers express myosin heavy chain (MyHC) isoform MyHC-Iβ, Myh7 and use oxidative 

metabolism, whereas the fast-twitch fibers include those expressing MyHC-IIA, MyHC-IIX/D 

and MyHC-IIB, Myh4 which use glycolytic or mixed metabolism (52). The contraction speed of 

fast-twitch fibers is higher than that of slow-twitch fibers and they also differ in their sensitivity 

to calcium and fatigue resistance, among other characteristics (56). Muscle atrophy caused by 

distinct pathophysiological conditions have a distinct effect on the composition of either slow or 

fast-twitch fibers, based on the signaling mechanism by which the atrophic condition is induced. 

Muscle wasting induced by sepsis, cancer cachexia, AIDS, aging, glucocorticoid administration, 

starvation, acute diabetes in the diaphragm, during heart failure, and COPD is characterized by 

the presence of fast-twitch fibers and fast-to-slow fiber type shift (18). On the other hand, muscle 

wasting caused by hand denervation, spinal cord injury, limb immobilization, hindlimb 

suspension in a shortened position, spinal cord injury, bed rest, microgravity and in limb muscles 

during heart failure and COPD are characterized by a shift from slow to fast fiber types. The 

TRIP12 ubiquitin ligase regulates fiber type switching by regulating the expression of the SOX6 

transcription factor (Figure 4), which is critical in enhancing the transcription of fast fiber genes 

such as Myh5 and suppressing the transcription of slow fiber genes such as Myh7 and myogenin. 

 

The TRIP12 HECT domain is the SOX6 substrate recognition module and catalytic domain, 

which mediates SOX6 polyubiquitination, resulting in SOX6 targeting to the 26S proteasome for 
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degradation (Figure 4A) (5). In C2C12 myotubes, TRIP12 or proteasome inhibition was found 

to increase SOX6 protein levels (5). Control of SOX6 by TRIP12 ubiquitination resulted in 

significant changes in the resulting myocyte phenotype. TRIP12 knock-down in C2C12 

myotubes resulted in SOX6 upregulation, a decrease in slow fiber-specific Myh7 and myogenin 

expression and an upregulation of the fast-fiber Myh4 (5). Together these studies demonstrate 

that the TRIP12 ubiquitin ligase regulates the SOX6 protein level, which itself controls the fiber 

type gene expression and phenotype critical to the alterations seen in different types of skeletal 

muscle atrophy (Figure 4B). In this way, Trip-12 mediated fiber-type switching could 

potentially alter the work-load capacity and function in skeletal muscle atrophy, although this 

hypothesis has not directly been tested to date (5). The SOX6 protein is also regulated by the 

addition of small ubiquitin-like modifiers (SUMO). Recent studies have reported that SOX6 is 

modified in vivo by SUMO on two distinct lysine residues in a process dependent upon the E2 

conjugating UBC9 enzyme, involving the addition of the SUMO2 isoform, resulting in the 

enhancement of SOX6 activity (24). The significance of SOX6 SUMOlyation in skeletal muscle 

has not been tested direct to date but may offer complementary regulatory mechanisms to 

TRIP12 since both SUMO and Ubiquitin bind lysine residues and have been reported to compete 

in other biological systems.  

 

 

TNF Receptor Associated Factor 7 

 

Tumor necrosis factor-associated factor (TRAF) proteins are cytosolic protein functioning as 

signal transduction pathways for receptors. TRAF7 (TNF Receptor Associated Factor 7) is a 

member of the tumor necrosis factor (TNF) receptor-associated factors. TRAF7 activates several 

signaling pathways and mediates cellular processes like proliferation, differentiation, and 

apoptosis. TRAF7 is unique among TRAFs as the only member to physically associate with IκB 

kinase/NF-κB essential modulator (NEMO) and the p65 (RelA/p65) member of the NF-κB 

transcription factor family (Figure 5) (74). TRAF7 is composed of an N-terminal RING domain 

with an adjacent zinc-domain and seven WD40 repeats at the carboxy terminal (73). Studies of 

TRAF7 in cancer cells identified that the TRAF7 ubiquitin ligase poly-ubiquitinates NEMO and 

p65 with Lysine 29-linked chains which promote their degradation (Figure 5A) (74). In addition 
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to inhibiting NF-κB signaling, TRAF7 appears to promote AP-1 transcriptional activity (74) and 

the C/EBP-homologous protein (CHOP) transcriptional activity (66). While considerable 

information about TRAF7’s regulation of NF-κB in cancer cells is known, its role in myocyte 

differentiation suggests that TRAF7’s role may go beyond NF-κB signaling. 

 

TRAF7 regulates myoblast differentiation through its activity as a ubiquitin ligase. The RING 

domain of TRAF7 promotes Lys-29-linked mono-ubiquitination of NEMO (IKKγ) (Figure 5C) 

(60). This leads to activation of the NF-κB signaling which transcriptionally regulates cyclin D1 

and mediates myoblast proliferation (Figure 5D) (31). MYOD1 is one of at least four 

transcription factors that regulate myocyte differentiation, in addition to MYF5, myogenin, and 

MRF4 (57). Chromatin IP (ChIP) studies in C2C12 myoblasts identified that MYOD directly 

regulates the expression of ubiquitin ligase, including Traf7 (60). When MYOD is depleted, a 

reduction of Traf7 gene expression results, implicating MYOD regulation of the NF-κB pathway 

via Traf7. In contrast, when TRAF7 is reduced in C2C12 myoblasts, significantly reduced NF-

κB transcriptional activity is observed in luciferase reporter assays, consistent with TRAF7’s 

support of NF-κB activity by regulating the p65 subunit (60). Depletion of TRAF7 reduces p65 

nuclear translocation, thereby diminished NF-κB mediated cyclin D1 transcription leading to 

premature differentiation (Figure 5E) (60). However, the NF-κB dependent cyclin D1 activation 

was reduced in the later stages of myogenesis wherein the cells moved from a proliferating state 

to a differentiating state (48).  

 

 

Up-Frameshift Suppressor 1 Homolog 

 

Up-Frameshift Suppressor 1 Homolog (UPF1) is an RNA helicase initially found to be a key 

component in the nonsense-mediated RNA decay (NMD) pathway, and later reported to have a 

RING like domain of UPF1 which has ubiquitin ligase activity (37). Interestingly, the UPF1 

ubiquitin ligase activity was found to regulate myogenesis by regulating the MYOD transcription 

factor (23). UPF1 regulates MYOD levels both degrading mRNA encoding MYOD and also 

directly by ubiquitinating the MYOD protein and targeting it for proteasome-dependent 

degradation (23). This was confirmed by studies wherein depleting RING domain of MYOD did 
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not reduce MYOD protein (23). Blocking UPF enhanced myogenesis in myoblasts due to 

sustained MYOD levels (23). UPF1 thus was found to play a critical role in myogenesis process 

by regulating MYOD’s targeted proteasome-mediated degradation, a key transcription factor in 

myogenesis.  

 

 

Mouse double minute 2 homolog 

 

Mouse double minute 2 homolog (MDM2) is a RING finger family ubiquitin ligase that 

regulates the differentiation of myoblasts via its post-translational regulation of p53 via 

ubiquitination (27). The role of p53 in myocyte differentiation is well established in previous 

studies. Using an unbiased approach, studies of satellite cell-derived myoblast transcriptional 

regulation found that p53 is a key regulator of myoblast quiescence (25). Specifically, when 

cultured myoblasts are activated and proliferate, an upregulation of p53 is seen and cells fail to 

differentiate (25). The sustained p53 increases in myoblast subpopulations of activated and 

proliferating cells not only hinders differentiation of these cells after their exit from cell cycle, it 

also leads to their quiescence (25). P53 binds to myogenin and represses its transcription, thus 

preventing the differentiation of myoblasts under genotoxic stress (67). It was also found that 

p53 expression is increased during atrophic conditions and plays an important role during 

atrophic conditions (26). 

 

Satellite cells express CCAAT/Enhancer-binding protein β (C/EBPβ) that maintains them in their 

quiescent state by stimulating PAX7 expression and by triggering decreased MYOD protein 

expression (Figure 6A). Recent studies have identified that increased MDM2 expression 

accompanies the loss of C/EBPβ proteins, which led to the hypothesis that MDM2 interacts with 

and ubiquitinates C/EBPβ (Figure 6B) leading to its degradation in a proteasome-dependent 

manner (Figure 6C) (27). Consistent with this mechanism of action, knock-down of MDM2 

expression in myoblasts resulted in increased C/EBPβ and the blockade of myogenesis; similarly 

knockdown of MDM2 in primary myoblasts resulted in the inability of muscle regeneration 

when grafted into cardiotoxin-injured muscle (27). Since the differentiation defect seen with 

increased MDM2 could be rescued by inhibiting the proteasome or by increasing C/EBPβ, a 
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mechanism by which MDM2 regulates myogenesis by degrading C/EBPβ has been proposed 

(Figure 6D) (27). Studies demonstrating the interaction between MDM2 and C/EBPβ by co-IP 

and ubiquitination assays illustrate this mechanism as a pivotal regulator of myogenic 

differentiation and regeneration in vivo (27).  

 

 

Atrogin-1/Muscle Atrophy F-box (MAFbx) 

 

During myocyte differentiation, the Atrogin-1 ubiquitin ligase regulates differentiation by 

targeting MYOD1 for ubiquitination and 26S proteasome-dependent degradation, in addition to 

regulation of other transcription factors critical for muscle differentiation (40). Atrogin-1 is a 

muscle specific ubiquitin ligase implicated in skeletal muscle atrophy (9). Atrogin-1 has been 

upregulated in skeletal muscle atrophy induced by glucocorticoids, denervation, spinal cord 

transection, hind limb suspension, immobilization, renal failure, diabetes, long-term mechanical 

ventilation, Cachexia, HIV, COPD, lipopolysaccharide (LPS)-induced changes in muscle 

catabolism, aging, alcohol, spinal muscle atrophy, heart failure, space flights, thermal injury, 

cytokine mediated muscle loss, smoking, myositis, acute lung injury, statins, arthritis, hypoxia, 

knee arthroplasty, pulmonary arterial hypertension (8). Previous studies have reported that 

increased Atrogin-1 in atrophy contributes to the degradation of the myofibrillar proteins in the 

cytoplasm (Figure 6E) (29). In myotubes undergoing starvation mediated atrophy, reduction in 

MyoD was observed upon activation of Atrogin-1 and its translocation to the nucleus (Figure 

6F). Conversely, shRNA knock-down of Atrogin-1 blocked MYOD proteolysis associated with 

muscle atrophy (40). Additionally, mutant MYOD (K113R), which lacked the Atrogin-1 

ubiquitination site, prevented atrophy of primary mouse myotubes and skeletal muscle fibers in 

vivo illustrating that Atrogin-1 plays a critical role in atrophy as a regulator of MYOD via poly-

ubiquitin-mediated degradation during atrophic conditions. 

 

 

PRAJA1 
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The PRAJA1 ubiquitin ligase promotes skeletal muscle myogenesis through its regulation of the 

EZH2 transcription factor upon P38α activation (Figure 7) (20). In myogenesis, PRAJA1 is first 

identified in the cytoplasm of MYOD-positive cells three days after cardiotoxin-induced muscle 

damage (20). The expression of PRAJA1 itself is increased during muscle cell differentiation 

(Figure 7A) (20). At later stages of the regeneration process, PRAJA1 re-localizes to the nucleus 

of the MYOD-positive cells and the number of PJA1-positive cells begins to decline (20). The 

cytoplasm-to-nuclear changes suggest the PRAJA1 may have different targets in proliferating 

myoblasts when they are induced to differentiate (20). Recent bioinformatics analysis predicted 

that PRAJA1 would interact with Enhancer of zeste homologue 2 (EZH2), which has been 

independently shown to be true experimentally (20). In skeletal muscle progenitor cells, EZH2 

maintains muscle gene chromatin in a repressive conformation with the catalytic subunit of 

Polycomb Repressive Complex 2 (PRC2) (20). EZH2’s gene repression plays a vital role in the 

satellite cell retention and proliferative phase of myogenesis, whereas in differentiating 

myoblasts the EZH2 levels are depleted (65). In C2C12 cells depleting PRAJA1 blocks terminal 

differentiation, thus indicating the vital role of PRAJA1 in myogenesis (20).  

 

A recent publication reported that the P38α kinase promotes the EZH2 by phosphorylating it at 

the threonine 372 position (Figure 7B) (20). In addition, both biochemical and genetic studies 

provided evidence that MYOD-induced PRAJA1 expression regulates EZH2 levels when P38α 

is activated (20). EZH2-associated proteins were then found to be targets of the PJA1-induced 

ubiquitination in muscle cells (20), consistent with previous studies using a cell-free system (72). 

The resulting EZH2 poly-ubiquitinated protein is then degraded in a proteasome-dependent 

manner (Figure 7C) (20). When EZH2 degradation is blocked in proliferating myocytes by 

decreasing PRAJA1 levels, EZH2 stays localized in the cytoplasm and has lower activity 

towards un-phosphorylated EZH2 (20). Together these studies demonstrate that p38α signaling 

is necessary to induce the PJA1/EZH2 interaction, whereby EZH2 is ubiquitinated and degraded 

during satellite cell differentiation. 

 

 

Summary 
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Post-translational regulation is emerging as a critical regulator of skeletal muscle repair and 

regeneration in physiological and pathophysiological states. In this review, we discuss the role of 

both ubiquitin ligases (HUWE1, NEDD4, TRIP12, TRAF7, UPF1, MDM2, ATROGIN-1, 

PRAJA1) and deubiquitinase (USP10) in regulating multiple transcription factors known to 

control myogenesis, including the regulation of muscle fiber type switching in differentiated 

myocytes in skeletal muscle atrophy (Table 1). TRAF7, HUWE1, PRAJA1, and MDM2 regulate 

the transition of quiescent satellite cells to activated, proliferating satellite cells by regulating the 

NF-kB, TBP, EZH2, and C/EBPβ transcription factors, respectively, via ubiquitination (Figure 

8A-C). Interestingly, the HUWE and PRAJA1 ubiquitin ligases further regulate SC 

differentiation in concert with NEDD4 and a yet to be identified E3, which regulates the PAX7 

and PAX3 transcription factors (Figure 8D-E). In addition, NEDD4 temporally and spatially 

mediates different stages of myogenesis by independently inhibiting NOTCH signaling (Figure 

8F). Both Atrogin-1, UPF-1, and HUWE1 ubiquitin ligases direct the post-translational 

degradation of MYOD and are altered accordingly to allow MYOD expression during 

differentiation (Figure 8G). The TRIP12 ubiquitin ligase has an interesting role in serving as the 

focal point in slow-fast twitch fiber transition and vice-versa in different kinds of atrophies 

(Figure 8H). Together these findings illustrate an array of examples by which ubiquitin ligases 

regulate transcription factors critical to myogenesis and likely are only a small sample of all the 

ubiquitin ligases involved. 

 

Impaired myogenesis is seen in several diseases like cachexia, muscle dystrophy, neuromuscular 

junction degeneration (2, 35, 43). Myogenesis capabilities are impaired upon aging and there 

have been several therapeutic options evolved to rejuvenate satellite cell function and activity in 

order to improve muscle regeneration. Apart from therapeutic strategies for dealing with aging, 

simple changes in lifestyle like regular exercise, low-calorie diet have been shown to have 

profound impact in improving the satellite cell number and activity (6). Similarly, atrophy has 

also been shown to be reversed by regular exercise and rehabilitation. Myogenesis is also 

blocked in rhabdomyosarcoma (RMS), a pediatric soft tissue sarcoma and it involves modulation 

of several transcription factors like Pax3, EZH2, Notch, NF-κB etc., which were discussed in this 

review (68). Differentiation therapy is one of the most possible therapeutic options being 

considered for RMS, in addition to targeting MYOD and MYF5 (59). There are several examples 
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in the literature indicating how therapeutic targets are feasible at various stages of the myogenic 

lineage. The atrophy condition indicated by the extent of muscle mass present is an 

amalgamation of protein degradation and myogenesis. Several E3s including Atrogin-1, NEDD4, 

TRAF6, TRIM32, TRIM72, USP10 either directly or indirectly impact the transcription factors 

which are key to myogenic progression in addition to regulating other signaling mechanisms that 

mediate myogenesis (7). Targeting the proteasome system has been a prominent therapeutic 

strategy for cancer cachexia (3) and further understanding of the intricate mechanisms regulated 

by the proteasome in mediating atrophy is critical. For example, MDM2 which degrades C/EBPβ 

discussed in this paper could be another possible therapeutic target in cancer cachexia, as it was 

shown earlier that C/EBPβ inhibits myogenesis (47). The possibility of specific E3 being 

assessed as the therapeutic target for the muscle wasting diseases varies, as each of the diseases 

encompassing atrophy is regulated by distinct signaling mechanisms(s). 
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Table 1. Summary of ubiquitin ligases regulating transcription in skeletal muscle. Abbreviations: HUWE1: HECT, UBA 
And WWE Domain Containing 1, E3 Ubiquitin Protein Ligase; MDM2, Mouse double minute 2 homolog; NEDD4: Neural 
precursor cell-expressed developmentally downregulated gene 4; TRIP12: Thyroid Hormone Receptor Interactor 12; TRAF7: 
TNF Receptor Associated Factor 7; UPF1, Up-Frameshift Suppressor 1 Homolog; USP10: Ubiquitin Specific Peptidase 10. 

Ubiquitin 
ligase 

Substrate Known E3 – Substrate Interaction System E3 / 
Substrate 

Tested 

Role in Skeletal 
Muscle Atrophy 

Refere
nces 

 
 

HUWE1 
(E3) 

 
 

 
USP10 
(DUB) 

 
 
 

TATA-
binding 
protein 
(TBP) 

HUWE1 targets TBP for K48-linkedin 
ubiquitination and proteasome-mediated 

degradation 
 

USP10 is a de-ubiquitinase (DUB) that removes 
poly-ubiquitin from TBP to counteract HUWE1 

ubiquitination 
 

Increase in HUWE1 and decrease in USP10 
leads to depletion of TBP in differentiating cells 

 
C2C12 

myoblasts 
and myotubes 

 
 
 

C2C12 
myoblasts 

 
Reduction in TBP levels 

which regulate MyoD 
during terminal 
differentiation 

 
 

Increased HUWE1 (or 
decreased DUB) decrease 

TBP protein levels and 
block differentiation and 
myogenic progression.  

 
(42) 

 
 
 
 
 

(46) 

 
 
 

 
 

NEDD4 
(E3) 

 

 
 

PAX7 
 
 
 
 
 
 

NOTCH 

 
NEDD4 and PAX7 interact during early muscle 

differentiation 
 
 

PAX7 ubiquitinated and degraded 
 

Intracellular domain of activated NOTCH 
translocates to the nucleus wherein it 

upregulates PAX7. NEDD4 blocks translocation 
of NCID to the nucleus 

Adult primary 
myoblasts and 

isolated 
myofibers 

 
C2C12 cells 

 
Primary 

myoblasts 
from hindlimb 

skeletal 
muscles 

 
 

Promotes differentiation 
 
 

 Promotes differentiation 
 

Down-regulated in 
denervation and 

unloading induced 
atrophy 

 
 

(16) 
 
 
 
 

(39) 

 
TRIP12 

(E3) 

 
SOX6 

 
TRIP12 interacts with and polyubiquitinates 
SOX6 for proteasome-dependent degradation 

 
C2C12 

myotubes 

Focal-point in mediating 
the transition between 

fast-slow fiber and slow-
fast fiber. 

 
 

(5)  
 

 
 

TRAF7 
(E3) 

 
 

NEMO 

TRAF7 binds IκB kinase/NF-κB essential 
Modulator (NEMO) and the p65 NF-κB 
transcription factor to promote Lys-29 
polyubiquitination of NEMO targeting 

lysosomal degradation of both proteins (74). 

 
C2C12 

myoblasts 
and myotubes 

Essential in myogenesis 
during the proliferation 

phase 
 

Prevents precocious 
differentiation 

 
 

(60) 

 
UPF1 
(E3) 

 
MYOD 

 
UPF1 poly-ubiquitinates MYOD and targets for 

proteasome-dependent degradation 

54-1 and 
MB135 

myoblasts 

 
Inhibits myogenesis 

 
(23) 

 
 
 
 

MDM2 
(E3) 

 
 
 
 

C/EBPβ 

 
 
 

MDM2 interacts with, ubiquitinates, and targets 
C/EBPβ for 26S proteasome dependent 
degradation and can alter C/EBPβ-mediated 
satellite cells in the quiescent state 

C2C12 cells 
 
 
 
 

Myoblasts 
 

MDM2 degrades p53 
thus enabling 

differentiation after exit 
from cell cycle  

 
MDM2 knockdown in 

primary myoblasts results 
in the inability of muscle 

regeneration when 
grafted into cardiotoxin-

injured muscle 

 
 
 
 
 

(25, 27) 

 
ATROGIN-1 

(E3) 

 
 

MYOD 

 
Atrogin-1 translocates to the nucleus during 

atrophic conditions and depletes MYOD levels 
 

C2C12 
myotubes and 

in cellulo 
C2C12 

myoblasts 

Mediates atrophic 
conditions by degrading 

MYOD proteins in a 
proteasome-dependent 

manner 

 
 

(40) 

 
PRAJA1 

(E3) 

 
EZH2 

PRAJA1 poly-ubiquitinates EZH2, targeting it 
for proteasome-dependent degradation, resulting 

in a shift from proliferation to differentiation 

 
C2C12 cells 

Mediates terminal 
differentiation 

 
(20) 
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Figure legends. 

 

Figure 1. Stem cell renewal and the molecular regulation of muscle cell differentiation 

(myogenesis). Skeletal muscle satellite (stem) cells can divide asymmetrically into differentiated 

cells and renew (A) with different stem cell populations asymmetrically dividing, with some 

satellite cells dividing asymmetrically and other just differentiative (B). In generally, satellite cell 

levels of PAX7 are low in the asymmetrically dividing cells (A), while higher in the cells that 

differentiate (C). Upon myogenic stimuli (e.g., contractile activity, direct/indirect myocyte 

damage), PAX7 expressing quiescent cells (C) have increased expression of muscle regulatory 

gene, (D) MYOD thus activating the cells and leading to proliferation (D). At this stage, the cells 

can return to quiescent state by losing MYOD (E) or differentiate (F) by losing PAX7 which 

increases expression of myogenin. G. The terminally differentiated cells fuse to form myofibers. 

 

Figure 2. Regulation of TATA-box binding protein (TBP) levels by the ubiquitin 

proteasome system. (A) The HUWE1 ubiquitin ligase polyubiquitinates TBP4 and targets it for 

recognition by the 26S proteasome, which degrades the protein. The deubiquitinase (DUB) 

USP10 removes TBP polyubiquitin chains to counteract this targeted degradation. (B) In 

proliferating myoblasts, HUWE1 ubiquitin ligase activity (polyubiquitination) is counteracted by 

USP10 DUB removing TBP polyubiquitin chains resulting in the stabilization of TBP levels. 

C2C12 myoblasts induced to undergo differentiation have reduced TBP levels resulting from an 

increase in HUWE1 levels and a decrease in USP10, resulting in the enhanced ubiquitin-

mediated proteasome degradation of TBP. TBP, TATA-box binding protein; UPS, ubiquitin 

proteasome.  

 

Figure 3. NEDD4 mediated transcriptional regulation in myogenesis. (A) During the 

proliferation phase of myogenesis, NEDD4 regulates myogenesis by its effects on NOTCH 

signaling. NEDD4 polyubiquitinates NCID (NOTCH) preventing its nuclear translocation and 

activation of the RBP-Jκ (Recombination Signal Binding Protein For Immunoglobulin Kappa J 

Region) transcription factor. By inhibiting RBP-Jκ, NEDD4 prevents the transcription of 

proteins critical to myocyte differentiation. Recent studies have demonstrated that increased 

NEDD4 expression leads to precocious myocyte differentiation by inhibiting Hes and Hey, 
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allowing the enhanced myogenin expression/activity. (B) Myogenic stimuli enhances NEDD4 

translocation to the nucleus where it ubiquitinates PAX7, targeting it for 26S-dependent 

proteasome degradation. Since PAX7 inhibits myogenin (Panel A), increased myogenin and 

myocyte differentiation results from enhanced nuclear NEDD4 activity.  

 

Figure 4. The TRIP12 ubiquitin ligase regulates muscle fiber type switching through its 

regulation of the SOX6 transcription factor. (A) TRIP12 polyubiquitinates SOX6 which 

enhances SOX6 degradation via the 26S proteasome. By blocking SOX6 activity, enhanced 

expression of Myh7 (enhancing the slow-twitch muscle phenotype) and concurrent decrease in 

Myh5 expression (decreasing the fast-twitch muscle phenotype) results. In contrast, deletion of 

TRIP12 (leading to enhanced SOX6 expression) enhances a fast-twitch muscle phenotype. (B) 

Muscle fiber type switches are typical in skeletal muscle atrophy. The significance of TRIP12’s 

regulation of SOX6 stems from its potential role in skeletal muscle atrophies characterized by 

slow-twitch fibers (left) or fast-twitch fibers (right).  

 

Figure 5. Proliferating myocytes exit the cell cycle during differentiation that is dependent 

upon the TRAF7 ubiquitin ligase involved in down-regulating Cyclin D1 expression/ 

activity. (A) TRAF7 ubiquitin ligase polyubiquitinates NEMO and targets it for 26S 

degradation. When the NEMO component of the inhibitor of kB kinase (IKK) complex is 

degraded. (B) In the studies described in the body of the text, the MYOD transcription factor 

depletes TRAF7 transcription and protein expression, leading to inactivation of the NF-κB 

activity and reduced cyclin D1, leading to exit from cell-cycle and thereby driving the cells from 

proliferation to differentiation stage. (C) The IKK complex is released from NEMO and can then 

phosphorylate the IκB protein (inhibitory kappa B protein) complexed with the p65 and p50 NF-

κB subunits. This results in degradation of the IκB protein, allowing the p65/p50 NF-κB 

transcription factor to (D) translocate to the nucleus and regulate gene transcription, including 

Cyclin D1 critical to cell cycle and proliferation of cells. (E) Summary of TRAF7 activity in 

myocyte differentiation.  

 

Figure 6. The MDM2 ubiquitin ligase activity poly-ubiquitinates C/EBPβ targeting it for 

proteasome-dependent degradation. (A) In the undifferentiated state, C/EBPβ supports the 
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expression of Pax7 and inhibits MYOD expression. (B) The MDM2 ubiquitin ligase can poly-

ubiquitinate C/EBPβ targeting it for degradation by the 26S proteasome resulting in (C) 

enhanced MYOD transcription secondary to the loss of C/EBPβ activity and (D) myogenic 

induction (differentiation). (E) During atrophic conditions, Atrogin-1 expressed is increased 

which in turn degrades the myofibrillar protein. (F) In addition, Atrogin-1 also translocates to the 

nucleus wherein it ubiquitinates and degrades MYOD, thus blocking differentiation, as described 

in more detail in the text.  

 

Figure 7. PRAJA1’s ubiquitin ligase activity regulates differentiation by targeting 

phosphorylated EZH2 for degradation by the 26S proteasome. (A) PRAJA1 ubiquitin ligase 

expression is low during satellite cell proliferation and increases during differentiation. (B) 

During differentiation, the P38 MAPK phosphorylates the EZH2 transcription factor, which is 

then recognized by the PRAJA1 ubiquitin ligase. (C) PRAJA1 then poly-ubiquitinates EZH2, 

targeting it for degradation by the 26S proteasome. (D) Since EZH2 drives the transcription and 

expression of Praja1, PRAJA1-mediated degradation of EZH2 effectively forms a negative 

feedback which decreases EZH2 expression. 

 

Figure 8. Summary of the role of ubiquitin ligase regulation of transcription factors during 

myocyte differentiation (myogenesis). (A) TRAF7’s ubiquitin ligase activity activates NF-κB 

signaling via NEMO ubiquitination to support the SC proliferation. (B) The TBP transcription 

factor is regulated by the HUWE1 ubiquitination ligase and the USP1 deubiquitinase to maintain 

stable levels of TBP during proliferation stage. However, in the later stages there is an increase 

in Huwe1 and decrease in USP1 levels thereby leading to reduced TBP levels which is essential 

for differentiation. (C) The PRAJA1 and MDM2 ubiquitin ligases are increased during 

proliferation and poly-ubiquitinate and degrade the EZH2 and C/EBPβ, respectively, effectively 

releasing the inhibition on proliferation. PRAJA1 levels are tightly regulated throughout the 

myogenic lineage, which in a positive feedback loop mechanism degrades phosphorylated 

EZH2, a vital gene regulator in myogenesis. (D) The NEDD4 ubiquitin ligase inhibits PAX7 

protein levels during myogenesis while and (E) a yet to be identified ubiquitin ligase (E3?) 

inhibits the PAX3 transcription factor. NEDD4 leads to PAX7 depletion by ubiquitination and 

26S proteasome degradation. (F) NEDD4 also inhibits Notch signaling to accelerate 



   22 

differentiation in an unrelated mechanism. (G) The ubiquitin ligases Atrogin-1 and UPF-1 

independently degrade MYOD, thereby modulating MYOD levels essential for differentiation. 

(H) The TRIP12 ubiquitin ligase regulates SOX6 protein levels to control the transition of fast-

twitch fibers to slow-twitch fibers. This is an original figure based on the synthesis of the data 

discussed throughout this review. *Enhances MyoD transcription; **Ubiquitination/26S 

Proteasome-dependent Degradation; # Mono-ubiquitination and degradation; E3?=yet to be 

identified ubiquitin ligase. 
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