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transition pore in brain mitochondria
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Ca2� influx into mitochondria is mediated by the mitochon-
drial calcium uniporter (MCU), whose identity was recently
revealed as a 40-kDa protein that along with other proteins
forms the mitochondrial Ca2� uptake machinery. The MCU is a
Ca2�-conducting channel spanning the inner mitochondrial
membrane. Here, deletion of the MCU completely inhibited
Ca2� uptake in liver, heart, and skeletal muscle mitochondria.
However, in brain nonsynaptic and synaptic mitochondria from
neuronal somata/glial cells and nerve terminals, respectively,
the MCU deletion slowed, but did not completely block, Ca2�

uptake. Under resting conditions, brain MCU-KO mitochon-
dria remained polarized, and in brain MCU-KO mitochondria,
the electrophoretic Ca2� ionophore ETH129 significantly
accelerated Ca2� uptake. The residual Ca2� uptake in brain
MCU-KO mitochondria was insensitive to inhibitors of
mitochondrial Na�/Ca2� exchanger and ryanodine receptor
(CGP37157 and dantrolene, respectively), but was blocked by
the MCU inhibitor Ru360. Respiration of WT and MCU-KO
brain mitochondria was similar except that for mitochondria
that oxidized pyruvate and malate, Ca2� more strongly inhib-
ited respiration in WT than in MCU-KO mitochondria. Of note,
the MCU deletion significantly attenuated but did not com-
pletely prevent induction of the permeability transition pore
(PTP) in brain mitochondria. Expression level of cyclophilin D
and ATP content in mitochondria, two factors that modulate
PTP induction, were unaffected by MCU-KO, whereas ADP was
lower in MCU-KO than in WT brain mitochondria. Our results
suggest the presence of an MCU-independent Ca2� uptake
pathway in brain mitochondria that mediates residual Ca2�

influx and induction of PTP in a fraction of the mitochondrial
population.

Mitochondrial Ca2� uptake and the ability of Ca2� to regu-
late mitochondrial functions have been established for many
years (1–4). Ca2� uptake by mitochondria plays an important
role for the organelle and for the whole cell. It helps to maintain
low cytosolic Ca2� when Ca2� influx into the cell is increased
(e.g. following stimulation of ionotropic glutamate receptors in
neurons) (5–7). The delivery of Ca2� into the mitochondrial
matrix can activate mitochondrial dehydrogenases such as
pyruvate, �-ketoglutarate, and isocitrate dehydrogenases and,
thereby, can stimulate mitochondrial respiration and ATP pro-
duction (4). Finally, excessive Ca2� uptake may lead to mito-
chondrial damage through induction of the permeability tran-
sition pore (PTP)2 (3, 8). Ca2� transport into mitochondria is
mediated by the Ca2� uniporter, a Ca2� channel complex in the
inner mitochondrial membrane (9, 10), the molecular identity
of which was recently revealed (11, 12).

In recent studies, it was found that mitochondria contain
several proteins involved in Ca2� transport into the organelle:
MCU (mitochondrial calcium uniporter) (11, 13), MCUb (14),
MICU1 and MICU2 (15–17), EMRE (18), and MCUR (19).
Among other components of mitochondrial Ca2� transport
machinery, MCU is believed to be the Ca2� channel traversing
the inner mitochondrial membrane (IMM) (13). In experi-
ments with purified MCU reconstituted into a planar bilayer,
ruthenium red, an inhibitor of the Ca2� uniporter (20, 21),
blocked MCU-mediated Ca2� currents (11). Genetic ablation
of MCU completely prevented Ca2� uptake by skeletal muscle
and heart mitochondria and inhibited induction of the PTP but
failed to protect cells from cell death and failed to protect car-
diac tissue from ischemia–reperfusion injury (22).

The Ca2�-dependent induction of the PTP is the major
mechanism of Ca2�-induced mitochondrial damage (3, 8, 23,
24). In the brain, PTP induction and consequent mitochondrial
damage are the primary mechanisms contributing to glutamate
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excitotoxicity (25–27), a major deleterious factor in stroke, sec-
ondary traumatic brain injury, and various neurodegenera-
tions. An induction of the PTP requires Ca2� influx into mito-
chondria (28). Correspondingly, knockdown of MCU reduced
NMDA-induced increases in mitochondrial Ca2� in neurons,
leading to milder mitochondrial depolarization and elevated
resistance to excitotoxicity (29). On the other hand, MCU KO
failed to protect brain from hypoxic-ischemic damage, despite
strongly hindering mitochondrial Ca2� uptake and PTP induc-
tion (30).

One reason for this controversy could be an incomplete inhi-
bition of Ca2� uptake in brain mitochondria from MCU-KO
mice. However, brain mitochondria from MCU-KO mice are
poorly characterized in terms of Ca2� uptake, membrane
potential changes, respiratory activities, and susceptibility to
PTP induction. In the present study, we investigated the effect
of MCU KO on Ca2� uptake and membrane potential in iso-
lated brain nonsynaptic and synaptic mitochondria as well as in
liver, heart, and skeletal muscle mitochondria. We also com-
pared respiratory activities of brain mitochondria isolated from
WT and MCU-KO mice. Finally, we evaluated susceptibility of
MCU-KO and WT mitochondria to PTP induction. Our results
demonstrate that there is a unique MCU-independent, Ru360-
sensitive Ca2� uptake in brain mitochondria that results in PTP
induction in a fraction of vulnerable organelles. Thus, these
findings evince a potential mechanism by which deletion of
MCU might be not very efficacious in protecting brain mito-
chondria from PTP induction and, consequently, in protecting
the brain from ischemia–reperfusion insults.

Results

The effect of MCU deletion on mitochondrial Ca2� uptake

All MCU-KO mice used in our experiments were genotyped
(Fig. 1A) and all mitochondrial preparations were tested for
MCU by immunoblotting (Fig. 1B). The level of MCU expres-
sion in brain nonsynaptic mitochondria of MCU-KO mice was
below the detection limit of Western blotting. Expression of
MCU paralog, MCUb (18), was slightly but statistically sig-
nificantly lower in brain nonsynaptic mitochondria from
MCU-KO mice compared with mitochondria from WT ani-
mals. In our study, we used a high-resolution Ca2�-sensitive
electrode that enabled us to evaluate, with high precision,
changes in the rate of Ca2� uptake by mitochondria from
MCU-KO and WT mice. To assess the rate and capacity of
Ca2� uptake, multiple pulses of CaCl2 were applied to mito-
chondria (Fig. 1, D and E). Mitochondrial Ca2� uptake was
monitored by measuring a decrease in external Ca2�. Brain
nonsynaptic mitochondria isolated from WT mice accumu-
lated Ca2� faster than mitochondria from MCU-KO animals
(Fig. 1D). Despite this, Ca2� uptake capacity, determined as the
amount of Ca2� accumulated by mitochondria before they
failed to accumulate additional Ca2�, was not significantly dif-
ferent. BSA significantly increased the Ca2� uptake capacity
(Fig. 1E). The Ca2� uptake capacity is limited by an induction of
the PTP (30). Because BSA binds free fatty acids (31), which are
activators of the PTP (32), its inclusion in the incubation
medium defers PTP induction and, consequently, increases

Ca2� uptake capacity (33). In the presence of BSA, the Ca2�

uptake capacities of MCU-KO and WT mitochondria remain
similar (Fig. 1E). In parallel experiments, we tested the effect of
Ca2� pulses on mitochondrial membrane potential (Fig. 1, F
and G). The decreased rate of Ca2� uptake by MCU-KO mito-
chondria (Fig. 1, D and E) could result from these mitochondria
being less polarized. However, under resting conditions, mito-
chondria from MCU-KO and WT mice accumulated compara-
ble amounts of TPP�, suggesting similar polarization of both
MCU-KO and WT mitochondria. The repetitive Ca2� pulses
produced fast, transient depolarizations in WT mitochondria
(Fig. 1F), whereas in MCU-KO mitochondria, Ca2� pulses pro-
duced slower depolarizations with much smaller amplitude
(Fig. 1G). At the end of these experiments, mitochondria were
treated with the uncoupler 2,4-dinitrophenol (2,4-DNP) to pro-
duce maximal depolarization.

Figure 1. Ca2� uptake and membrane potential in brain nonsynaptic
mitochondria from MCU-KO and WT CD1 mice. A, representative genotyp-
ing data of tail tissue from WT and MCU-KO mice. B, Western blotting dem-
onstrating the lack of MCU in brain nonsynaptic mitochondria from MCU-KO
mice and the presence of MCUb in mitochondria of WT and MCU-KO animals.
A 70-kDa subunit of Complex II (CII) was used as a loading control. C, statistical
analysis of immunoblotting. Data are mean � S.D. (error bars), n � 3. *, p �
0.001 comparing MCU/Complex II in WT and MCU-KO mitochondria. D, Ca2�

uptake by brain mitochondria from WT (blue trace) and MCU-KO (red trace)
mice. Here and in E, mitochondria (0.18 mg of protein/ml) were incubated in
the standard incubation medium supplemented with 3 mM pyruvate plus 1
mM malate, 0.1 mM ADP, and 1 �M oligomycin. E, Ca2� uptake by WT (blue
trace) and MCU-KO (red trace) brain mitochondria incubated in the presence
of 0.1% BSA (free from fatty acids). F and G, the effect of Ca2� on mitochon-
drial membrane potential in WT and MCU-KO mitochondria, respectively. In
these experiments, the standard incubation medium was supplemented with
0.1% BSA (free from fatty acids). D–G, Ca2� was added to mitochondria where
indicated as 10 or 20 �M CaCl2 pulses, respectively. Numbers in parentheses
indicate CaCl2 concentrations in �M. a.u., arbitrary units.
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In contrast to brain nonsynaptic mitochondria, mitochon-
dria isolated from liver, heart, and skeletal muscles of MCU-KO
mice were not able to take Ca2� up and depolarize in response
to Ca2� (Fig. 2). The MCU expression in heart mitochondria
was the lowest compared with other tissues (Fig. 2J). The level
of MCU in mitochondria from MCU-KO mice was below the
detection limit of Western blotting. The level of MCUb varied
among mitochondria from different tissues, with skeletal mus-
cle mitochondria having the least amount of MCUb and heart
mitochondria having the greatest amount of MCUb (Fig. 2K).

Expression of MCUb was distinctly lower in skeletal muscle
mitochondria from MCU-KO mice compared with MCUb level
in skeletal muscle mitochondria from WT animals.

ETH129, an electrophoretic Ca2� ionophore (34), can trans-
port Ca2� across the membrane independently of the Ca2�

uniporter (35). Ru360, an inhibitor of the Ca2� uniporter (36),
strongly inhibited Ca2� uptake (Fig. 3B). When the Ca2�

uniporter was blocked by Ru360, ETH129 restored Ca2�

uptake by brain nonsynaptic mitochondria. Similarly, ETH129
significantly increased Ca2� uptake rate in brain nonsynaptic

Figure 2. Ca2� uptake and membrane potential in liver (A–C), heart (D–F), and skeletal muscle (G–I) mitochondria from MCU-KO and WT CD1 mice. A,
Ca2� uptake by liver mitochondria from WT (blue trace) and MCU-KO (red trace) mice. Note the different time scales for WT and MCU-KO mitochondria in A, D,
and G. In A–C, liver mitochondria (1.5 mg of protein/ml) were incubated in the standard incubation medium supplemented with 3 mM pyruvate plus 1 mM

malate, 0.1 mM ADP, 1 �M oligomycin, 0.1% BSA (free from fatty acids). B and C, the effect of Ca2� on mitochondrial membrane potential in WT and MCU-KO liver
mitochondria, respectively. Where indicated, Ca2� was added to mitochondria as 20 or 40 �M CaCl2 pulses, respectively. Here and in other panels, numbers in
parentheses indicate CaCl2 concentrations in �M. In B and C, 60 �M 2,4-DNP was used to depolarize mitochondria. D, Ca2� uptake by WT (blue trace) and MCU-KO
(red trace) heart mitochondria (0.7 mg of protein/ml) incubated in the same medium as liver mitochondria. In E and F, the effect of Ca2� on mitochondrial
membrane potential in WT and MCU-KO heart mitochondria, respectively. In E and F, 60 �M 2,4-DNP was used to depolarize mitochondria. In G, Ca2� uptake
by WT (blue trace) and MCU-KO (red trace) skeletal muscle mitochondria (1.3 mg of protein/ml) incubated in the same medium as liver mitochondria. H and I,
effect of Ca2� on mitochondrial membrane potential in WT and MCU-KO skeletal muscle mitochondria, respectively. H and I, 60 �M 2,4-DNP was used to
depolarize mitochondria. J and K, Western blots demonstrating the lack of MCU in mitochondria from MCU-KO mice and the presence of MCUb in mitochondria
of WT and MCU-KO animals, respectively. A 70-kDa subunit of Complex II (CII) was used as a loading control. In L and M, statistical analyses of immunoblotting.
Data are mean � S.D. (n � 3). L, **, p � 0.001 comparing MCU/Complex II in heart mitochondria with MCU/Complex II in liver and skeletal muscle mitochondria.
M, *, p � 0.05 comparing MCUb/Complex II in skeletal muscle mitochondria from WT and MCU-KO mice; **, p � 0.001 comparing MCU/Complex II in WT or
MCU-KO heart mitochondria with WT or MCU-KO liver and skeletal muscle mitochondria. a.u., arbitrary units.
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mitochondria from MCU-KO mice (Fig. 3C). This is consistent
with unaffected polarization of MCU-KO mitochondria and
supports the notion that deletion of MCU was the main cause of
inhibition of Ca2� uptake. On the other hand, Ru360 strongly
inhibited Ca2� uptake by MCU-KO mitochondria (Fig. 3C).
Fig. 3D shows statistical analysis of the data. Fig. 3A shows a
calibration of the Ca2�-selective electrode with consecutive
100 �M CaCl2 pulses.

The intriguing finding that despite MCU deletion, MCU-KO
brain nonsynaptic mitochondria were able to accumulate Ca2�

(Fig. 1, D and E), suggested that either MCU is not a Ca2�

channel essential for Ca2� uptake and serves a regulatory role
or there are alternative pathways for Ca2� influx into mito-
chondria. Because reconstituted MCU was able to generate
Ca2� currents in experiments with planar lipid bilayer (11), the
former hypothesis seems unlikely. The alternative pathways for
Ca2� uptake by MCU-KO brain mitochondria could include
mitochondrial Na�/Ca2� exchanger, operating in reverse (37,
38), or ryanodine receptor, found in mitochondria (mRR) (39,
40). However, neither CGP37157, an inhibitor of mitochondrial
Na�/Ca2� exchanger (41), nor dantrolene, an inhibitor of ryan-

odine receptor that inhibited mRR in previous studies (39, 40),
suppressed the residual Ca2� uptake by MCU-KO mitochon-
dria (Fig. 4, C–F). Here again, Ru360, strongly inhibited Ca2�

uptake by WT and MCU-KO mitochondria (Fig. 4, B and C).
Fig. 4A shows calibration of the Ca2�-selective electrode with
consecutive 20 �M CaCl2 pulses, whereas Fig. 3F shows statis-
tical analysis of these Ca2� uptake experiments. The difference
in the rates of Ca2� uptake shown in Figs. 3 and 4 is most likely
due to the difference in the concentration of added Ca2�. In Fig.
3, Ca2� uptake was induced by adding 100 �M Ca2�, whereas in
Fig. 4, 20 �M Ca2� was added.

The role of MCU in regulation of mitochondrial respiration

In the mitochondrial matrix, Ca2� activates pyruvate dehy-
drogenase as well as the Krebs cycle enzymes isocitrate dehy-
drogenase and �-ketoglutarate dehydrogenase (4), and there-
fore, inhibition of Ca2� influx into mitochondria might affect
mitochondrial respiration. To test this possibility, we per-
formed respirometry experiments using a Clark electrode and
isolated brain nonsynaptic mitochondria fueled either with
pyruvate plus malate (Complex I substrates) (Fig. 5, A and B) or
with succinate (a Complex II substrate) (Fig. 5, C and D). In the
latter case, the incubation medium was supplemented with 3
mM glutamate to remove oxaloacetate in transaminase reaction
to prevent oxaloacetate accumulation and inhibition of succi-
nate dehydrogenase (42, 43). We analyzed basal respiration

Figure 3. An electrophoretic Ca2� ionophore ETH129 rescues Ca2�

uptake by WT brain nonsynaptic mitochondria treated with Ru360 and
significantly accelerates Ca2� uptake by MCU-KO mitochondria. Ru360
inhibits residual Ca2� uptake by MCU-KO mitochondria. A, calibration of the
Ca2�-selective electrode with sequential 100 �M CaCl2 pulses. B, inhibition of
Ca2� uptake by WT mitochondria with 3.3 �M Ru360 and restoration of Ca2�

uptake with 5 �M ETH129. At the end of the experiment, 1 �M FCCP was added
to depolarize mitochondria and release accumulated Ca2�. In C, acceleration
of Ca2� uptake by MCU-KO mitochondria in the presence of 5 �M ETH129.
Ru360 (3.3 �M) strongly inhibits Ca2� uptake by MCU-KO mitochondria. In B
and C, Ca2� was added to mitochondria as 100 �M CaCl2 pulses. The time bar
shown in C is also applicable to A and B. In D, statistical analysis of data. Data
are shown as mean � S.D. (error bars), n � 5. *, p � 0.05 comparing rates of
Ca2� uptake by MCU-KO mitochondria with and without 3.3 �M Ru360. **,
p � 0.001 comparing rates of Ca2� uptake by MCU-KO mitochondria versus
WT mitochondria and MCU-KO mitochondria in the presence of 5 �M ETH129.
Here and in other figures, statistical analysis consisted of one-way analysis of
variance followed by Bonferroni’s post hoc test (GraphPad Prism version 4.0,
GraphPad Software).

Figure 4. Ca2� uptake by brain nonsynaptic mitochondria from MCU-KO
mice: the effects of CGP37157, dantrolene, and Ru360. A, calibration of
the Ca2�-selective electrode with sequential 20 �M CaCl2 pulses. B, Ca2�

uptake by WT mitochondria without (blue trace) and with 3.3 �M Ru360 (red
trace). The vehicle was 5 �l of deoxygenated water, which was used to dis-
solve Ru360. C, Ca2� uptake by MCU-KO mitochondria treated with vehicle
(blue trace) or with 3.3 �M Ru360 (red trace). Here and in all other panels, Ca2�

was added to mitochondria where indicated as 20 �M CaCl2 pulses. In D and E,
the residual Ca2� uptake by MCU-KO mitochondria in the presence of 20 �M

dantrolene (D) and 10 �M CGP37157 (E). In F, statistical analysis of Ca2� uptake
data. Ca2� uptake rates were quantified as Ca2� uptake per minute per mg of
mitochondrial protein. Data are shown as mean � S.D. (error bars) (n � 5). *,
p � 0.001 comparing rates of Ca2� uptake by MCU-KO mitochondria treated
with vehicle or Ru360. The time scale shown in C is applicable to A, B, D, and E.

Ca2� uptake and PTP in MCU-KO brain mitochondria

J. Biol. Chem. (2018) 293(40) 15652–15663 15655



(V2), governed predominantly by proton permeability of the
IMM; ADP-stimulated respiration (V3), determined primarily
by activity of the oxidative phosphorylation system; the con-
trolled respiration (V4), determined by proton permeability of
the IMM and possible contaminations with ATPase activities;
and uncoupled respiration (VDNP), governed by activity of the
mitochondrial electron transport chain. In our experiments, we
did not find a significant difference in respiration of mitochon-
dria from MCU-KO and WT mice under any tested conditions.
Fig. 5 (E and F) shows statistical analyses of respirometry data.
Thus, deletion of MCU does not affect mitochondrial respira-
tion under resting, ADP-stimulated, and uncoupled conditions.

The Ca2� influx into mitochondria may induce the PTP (28),
and this may affect mitochondrial respiration (44). Interest-
ingly, this effect depends on the type of oxidative substrates
used in these experiments. With WT mitochondria oxidizing
pyruvate plus malate, Ca2� produced strong inhibition of res-
piration that could be rescued by succinate (Fig. 6A). Further
improvement was achieved by adding a combination of 3 mM

NADH and 30 �g/ml cytochrome c (Cyt c) (Fig. 6B). With
MCU-KO mitochondria, Ca2�-induced respiratory inhibition
was also apparent but was much weaker (Fig. 6C). Similar to
experiments with WT mitochondria, succinate and Cyt c plus
NADH improved respiration of MCU-KO mitochondria (Fig.
6D), and the effect of succinate was stronger than with WT

mitochondria. Glutamate added after succinate failed to fur-
ther improve mitochondrial respiration (Fig. 6, A–D). Fig. 6E
shows statistical analyses of these experiments.

The effect of MCU deletion on PTP opening

The Ca2�-induced inhibition of mitochondrial respiration
fueled by Complex I substrates was demonstrated previously
(44). This could be explained by an induction of the PTP and
loss of mitochondrial NADH (45). On the other hand, stimula-
tion of mitochondrial respiration fueled by succinate was also
attributed to PTP induction leading to uncoupling of oxidative
phosphorylation and the increased respiratory rate (44). Taken
together, the effects of Ca2� on mitochondrial respiration sug-
gested a decreased propensity of MCU-KO mitochondria for
PTP induction. To test this hypothesis, we monitored simulta-
neously changes in light scattering of mitochondrial suspen-
sion, indicative of mitochondrial swelling, and distribution of
lipophilic cation tetraphenylphosphonium (TPP�) across the
IMM, indicative of changes in mitochondrial membrane poten-
tial (Fig. 7). An addition of CaCl2 (100 �M) to WT nonsynaptic
mitochondria produced a rapid decrease in light scattering,
indicating swelling of the organelles, and an increase of TPP�

concentration in the incubation medium, indicating mitochon-
drial depolarization (Fig. 7A). To quantify mitochondrial swell-
ing, alamethicin, a pore-forming agent (46), was added to mito-

Figure 5. Respiration of brain nonsynaptic mitochondria isolated from
WT and MCU-KO mice. In A and B, respiration of WT and MCU-KO mitochon-
dria, respectively, fueled with a combination of 3 mM pyruvate plus 1 mM

malate. Where indicated in parentheses, 200 �M ADP was added to mitochon-
dria. At the end of the experiment, 60 �M 2,4-DNP was added to maximally
stimulate respiration. In C and D, respiration of WT and MCU-KO mitochon-
dria, respectively, fueled with a combination of 3 mM succinate plus 3 mM

glutamate. Where indicated in parentheses, 100 �M ADP was added to mito-
chondria. At the end of the experiment, 60 �M 2,4-DNP was added to maxi-
mally stimulate respiration. In these experiments (A--D), the standard incuba-
tion medium was supplemented with 0.1% BSA (free from fatty acids). In E
and F, statistical analyses of respiratory rates of WT and MCU-KO mitochon-
dria fueled with 3 mM pyruvate plus 1 mM malate (E) or 3 mM succinate plus 3
mM glutamate (F). V2, V3, V4, and VDNP, respiratory rates before the ADP addi-
tion, after the ADP addition, after the depletion of added ADP, and after the
addition of 2,4-DNP, respectively. Data are shown as mean � S.D. (error bars),
n � 5.

Figure 6. The effect of Ca2� on respiration of brain nonsynaptic mito-
chondria isolated from WT and MCU-KO mice. In A–D, respiration of WT
and MCU-KO mitochondria was initially fueled with a combination of 3 mM

pyruvate plus 1 mM malate. Where indicated, 100 �M CaCl2, 3 mM succinate, or
3 mM glutamate were added to mitochondria. In B and D, the incubation
medium was supplemented with 30 �g/ml Cyt c and 3 mM NADH. In E, statis-
tical analysis of respiratory rates of WT and MCU-KO mitochondria fueled with
3 mM pyruvate plus 1 mM malate. V2, VCa, and VSucc, respiratory rates before
the CaCl2 addition, after the CaCl2 addition, and after the addition of succi-
nate, respectively. Data are shown as mean � S.D. (error bars), n � 5. p � 0.001
comparing V2 with VCa and VSucc of MCU-KO mitochondria; comparing V2 with
VCa of WT mitochondria; comparing V2 and VSucc of WT mitochondria incu-
bated with Cyt c and NADH; comparing V2 with VCa and VSucc of MCU-KO
mitochondria incubated with Cyt c and NADH; comparing VCa of WT and
MCU-KO mitochondria incubated with or without Cyt c and NADH; and com-
paring VSucc of WT and MCU-KO mitochondria.
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chondria at the end of experiments to produce maximal
swelling. With MCU-KO nonsynaptic mitochondria, Ca2�

produced less swelling and depolarization compared with WT
mitochondria, suggesting suppressed PTP induction (Fig. 7B).
Ru360, an inhibitor of the Ca2� uniporter (36), strongly inhib-
ited PTP induction in MCU-KO mitochondria (Fig. 7C), con-
sistent with strong inhibition of Ca2� uptake in these mito-
chondria produced by this agent (Fig. 3C). ETH129, an
electrophoretic Ca2� ionophore (34) that accelerated Ca2�

influx into MCU-KO mitochondria (Fig. 3C), restored Ca2�-

induced mitochondrial swelling and depolarization (Fig. 7D).
To attribute mitochondrial swelling to PTP induction, we
applied a combination of cyclosporin A (CsA), ADP, and BSA,
known inhibitors of the PTP (Fig. 7E). The PTP inhibitors com-
pletely prevented Ca2�-induced mitochondrial swelling, thus
showing that it is attributable to PTP induction. Fig. 7F shows
statistical analysis of these experiments. Overall, the presented
data indicate that PTP induction in MCU-KO mitochondria is
significantly but incompletely suppressed.

The expression of mitochondrial cyclophilin D (CyD) and
the levels of ADP and ATP in mitochondria are major factors
that regulate PTP induction (47). CyD sensitizes mitochondria
to Ca2�-triggered PTP induction (48, 49). Di- and triphosphate
adenine nucleotides antagonize PTP induction by an incom-
pletely understood mechanism (50). We assessed the CyD level
in brain nonsynaptic mitochondria isolated from WT and
MCU-KO mice and did not find a difference (Fig. 8). In parallel
experiments, we assessed the levels of ADP and ATP in WT and
MCU-KO brain nonsynaptic mitochondria (Fig. 8). ADP and
ATP levels were comparable with those we reported previously
(51). The difference in ATP levels was statistically insignificant,
whereas ADP was slightly but statistically significantly
decreased in mitochondria from MCU-KO mice. The reason
for this difference is not clear. These data indicate that sup-
pressed PTP induction in MCU-KO mitochondria was not due
to a decrease in CyD expression or elevated ADP and/or ATP
levels in these mitochondria.

Figure 7. PTP induction in brain nonsynaptic mitochondria from WT and
MCU-KO mice: ETH129 stimulates whereas Ru360 prevents Ca2�-depen-
dent PTP induction in MCU-KO mitochondria. A–D, light scattering (red
traces), indicative of mitochondrial swelling, and TPP� concentration in the
incubation medium (black traces), indicative of mitochondrial membrane
potential, in experiments with WT (A) and MCU-KO (B–D) brain mitochondria
fueled with 3 mM pyruvate plus 1 mM malate. An induction of the PTP was
triggered by a 100 �M CaCl2 pulse. Where indicated, 30 �g/ml alamethicin
(AL) was added to induce maximal mitochondrial swelling. C, 3.3 �M Ru360
was added as indicated. D, 5 �M ETH129 was added as indicated. The time bar
shown in A is applicable to B, C, and D. E, inhibition of PTP induction with PTP
inhibitors. Where indicated, mitochondria fueled with 3 mM pyruvate plus 1
mM malate were treated with 100 �M CaCl2, 5 �M ETH129, and a combination
of PTP inhibitors: 1 �M CsA, 100 �M ADP (with 1 �M oligomycin), and 0.1% BSA
(free from fatty acids). F, statistical analysis of mitochondrial swelling
recorded 8 min after Ca2� pulse and quantified as shown in A. Data are shown
as mean � S.D. (error bars), n � 5. *, p � 0.001 comparing the amount of
swelling in MCU-KO mitochondria with either WT mitochondria, ETH129-
treated MCU-KO mitochondria, or Ru360-treated MCU-KO mitochondria.

Figure 8. CyD expression and ADP and ATP content in brain nonsynaptic
mitochondria isolated from WT and MCU-KO mice. A, Western blots dem-
onstrating CyD levels in brain homogenates and nonsynaptic mitochondria
isolated from brains of WT and MCU-KO mice. Note that despite the same
protein loading for mitochondria and homogenate samples, there is enrich-
ment of CyD and VDAC1 in the isolated mitochondria fraction compared with
brain homogenates. MEK1/2 was used as a cytosolic marker to illustrate the
purity of the mitochondrial preparation. VDAC1 was used as a loading con-
trol. B, statistical analysis of immunoblotting. Data represent a ratio of CyD to
VDAC1 band intensities and are shown as mean � S.D. (error bars) (n � 5). For
ADP and ATP measurements (C and D, respectively), nonsynaptic mitochon-
dria were incubated in the standard incubation medium supplemented with
3 mM pyruvate and 1 mM malate for 10 min at 37 °C. Then ADP and ATP levels
were measured as described under “Experimental procedures.” Data are
shown as mean � S.D. (error bars), n � 6. *, p � 0.05 comparing ADP content
in WT versus MCU-KO mitochondria. a.u., arbitrary units.
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Brain nonsynaptic mitochondria used in our study origi-
nated from neuronal somata and glial cells, whereas synaptic
mitochondria are from nerve terminals and are of purely neu-
ronal origin. We tested synaptic mitochondria from MCU-KO
mice and found properties similar to nonsynaptic mitochon-
dria (Fig. 9). The level of MCU in synaptic mitochondria from
MCU-KO mice was below the detection limit of Western blot-
ting (Fig. 9A). The level of MCUb in synaptic mitochondria
from MCU-KO mice was 2-fold lower than in synaptic mito-

chondria from WT mice (Fig. 9, A and B). In synaptic mito-
chondria, deletion of MCU decreased the rate of Ca2� uptake
but did not completely prevent Ca2� influx and membrane
depolarization (Fig. 9, C and D). Consistent with this, MCU
deletion in synaptic mitochondria inhibited Ca2�-dependent
PTP induction but failed to completely prevent it (Fig. 9, E–G).

Discussion

In the present study, we discovered a unique MCU-indepen-
dent Ca2� uptake mechanism existing in brain mitochondria
isolated from MCU-KO mice (Figs. 1 and 9). We found that
deletion of MCU significantly slows the rate of Ca2� influx into
brain mitochondria, but does not completely abolish it. Consis-
tently, the Ca2�-triggered induction of PTP in brain mitochon-
dria from MCU-KO mice is hindered, but not completely pre-
vented. Based on these findings, deletion of MCU may have
limited ability to protect brain mitochondria from PTP induc-
tion and may incompletely protect neurons against glutamate-
induced Ca2� dysregulation and excitotoxicity, in which an
induction of PTP in mitochondria plays a key role (52).

Ca2� uptake by mitochondria plays an important role in reg-
ulation of cellular and mitochondrial functions. Mitochondria
can accumulate large amounts of Ca2�, contributing to main-
tenance of low resting cytosolic Ca2� (9). In the mitochondrial
matrix, Ca2� can activate pyruvate, �-ketoglutarate, and isoci-
trate dehydrogenases, thereby stimulating mitochondrial respi-
ration and oxidative phosphorylation (4). In our study, how-
ever, MCU deletion failed to cause significant changes in
mitochondrial respiration, suggesting that this kind of regula-
tion might be not essential. This is in line with the notion that
rapid Ca2� influx into mitochondria mediated by MCU does
not regulate resting mitochondrial Ca2� levels and, conse-
quently, MCU does not affect the resting mitochondrial res-
piration. On the other hand, the excessive accumulation of
Ca2� in mitochondria may lead to the induction of PTP,
manifested in mitochondrial depolarization and swelling (8).
Both events were evaluated in our study, and both were sig-
nificantly reduced in MCU-KO mitochondria compared
with WT mitochondria.

The Ca2�-induced PTP damages mitochondria and, there-
fore, is inextricably involved in mitochondrial pathophysiology.
The molecular identity of PTP is still a matter of debate (53).
However, it is well established that Ca2� must enter mitochon-
dria to induce the PTP (28). The Ca2� uniporter is the main
pathway for Ca2� influx into mitochondria (10). Recently, the
molecular identity of the Ca2� uniporter was revealed (11, 12).
It appears that the Ca2� uniporter is composed of several sub-
units, among which MCU serves as the Ca2� channel spanning
the IMM (9). Consequently, genetic ablation of MCU in
MCU-KO mice led to complete inhibition of Ca2� uptake in
skeletal muscle and heart mitochondria (22). How MCU dele-
tion affects Ca2� transport in brain mitochondria was not com-
pletely clear. Recently, Nichols et al. (54) reported that Ca2�

influx in brain mitochondria from MCU-KO mice was inhib-
ited and PTP induction was hindered. However, in this study,
mitochondrial depolarization induced by Ca2� was not
unequivocally attributed to PTP induction by preventing it with
PTP inhibitors. In addition, it was not unambiguously proven

Figure 9. Ca2� uptake, membrane potential, and PTP induction in brain
synaptic mitochondria from MCU-KO and WT CD1 mice. A, Western blot-
ting demonstrating the lack of MCU in brain synaptic mitochondria from
MCU-KO mice and the presence of MCUb in mitochondria of WT and MCU-KO
animals. A 70-kDa subunit of Complex II (CII) was used as a loading control. B,
statistical analysis of immunoblotting. Data are mean � S.D. (error bars) (n �
3). *, p � 0.05 comparing MCUb/Complex II in WT and MCU-KO mitochondria;
**, p � 0.001 comparing MCU/Complex II in WT and MCU-KO mitochondria. C,
Ca2� uptake by brain synaptic mitochondria from WT (blue trace) and
MCU-KO (red trace) mice. Here and in D, mitochondria (0.18 mg of protein/ml)
were incubated in the standard incubation medium supplemented with 3 mM

pyruvate plus 1 mM malate, 0.1 mM ADP, 1 �M oligomycin, and 0.1% BSA (free
from fatty acids). D, effect of Ca2� on mitochondrial membrane potential in
WT (blue trace) and MCU-KO (red trace) synaptic mitochondria, respectively. In
these experiments, 60 �M 2,4-DNP was used to depolarize mitochondria. E
and F, light scattering (red traces), indicative of mitochondrial swelling, and
TPP� concentration in the incubation medium (black traces), indicative of
mitochondrial membrane potential, in experiments with WT (E) and MCU-KO
(F) brain synaptic mitochondria fueled with 3 mM pyruvate plus 1 mM malate.
E and F, mitochondria were incubated in the standard incubation medium
without ADP, oligomycin, and BSA. An induction of the PTP was triggered by
a 100 �M CaCl2 pulse. Where indicated, 30 �g/ml alamethicin (AL) was added
to induce maximal mitochondrial swelling. G, statistical analysis of mitochon-
drial swelling recorded 8 min after Ca2� pulse. Data are mean � S.D. (error
bars), n � 3. *, p � 0.01 comparing the amount of swelling in WT and MCU-KO
mitochondria. a.u., arbitrary units.
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that inhibition of mitochondrial Ca2� uptake is indeed due to
MCU deletion. Whether putative inhibition of PTP induction
was the result of suppressed Ca2� influx into mitochondria or
due to other factors remained unclear.

The lack of difference in CyD expression and comparable or
higher levels of ADP and ATP in WT mitochondria are incon-
sistent with the idea that these factors might contribute to the
decreased PTP induction in MCU-KO mitochondria. On the
other hand, restoration of PTP induction in MCU-KO mito-
chondria in the presence of ETH129, an electrophoretic Ca2�

ionophore that can deliver Ca2� into mitochondria (34, 35) and
accelerate Ca2� influx into MCU-KO mitochondria (Fig. 3C),
suggests that inhibition of Ca2� uptake due to MCU deletion is
the main cause of PTP inhibition in MCU-KO mitochondria.
Nevertheless, the residual Ca2� uptake in MCU-KO mitochon-
dria apparently could induce PTP in the fraction of vulnerable
mitochondria. This explains why Ca2� could inhibit respiration
of MCU-KO mitochondria fueled by Complex I substrates.
Under these conditions, recovery of mitochondrial respiration
with succinate is consistent with previously published results
(44). Further improvement with Cyt c and NADH suggests the
loss of Cyt c and depletion of mitochondrial NADH due to PTP
induction (44, 45) as the main mechanisms for respiratory
inhibition.

The main unanswered question in our study concerns the
mechanism of residual Ca2� uptake in MCU-KO mitochon-
dria. Previously, it was reported that mitochondria may possess
an mRR that may contribute to mitochondrial Ca2� uptake (39,
40). In addition, it has been well established that mitochondria
possess a Na�/Ca2� exchanger (mNCX) responsible for Ca2�

efflux from mitochondria (55). It is possible that mNCX, simi-
larly to plasmalemmal NCX (56, 57), may work in reverse under
conditions of metabolic inhibition and/or elevated cytosolic
Ca2�, bringing Ca2� into mitochondria (37, 38). To test these
possibilities, we used dantrolene, an inhibitor of ryanodine
receptor, previously used in experiments with mitochondria
(39, 40), and CGP37157, an inhibitor of mNCX (41). We used
these agents in concentrations that previously produced inhib-
itory effects on the corresponding targets, mRR or mNCX. In
our experiments, however, neither of these agents affected the
residual Ca2� uptake by MCU-KO mitochondria. On the other
hand, Ru360, an inhibitor of the Ca2� uniporter (36), com-
pletely blocked Ca2� uptake by MCU-KO mitochondria. The
question remains as to which protein(s) interacts with Ru360 in
the absence of MCU and how this leads to complete inhibition
of residual Ca2� uptake.

It is possible that mitochondria possess MCU-independent
pathways for Ca2� uptake (58, 59). One of the possible candi-
dates for the MCU-independent Ca2� uptake pathways is
MCUb (14), which was detected in isolated brain mitochondria
(Figs. 1B and 9A). Although Raffaello et al. (14) proposed that
MCUb forms a nonconducting channel and this correlated with
the lack of Glu-257 in MCUb, the structure study by Oxenoid et
al. (60) argued against that conclusion. They found that the
Glu-257 is dispensable for Ca2� uptake, thus implying that
MCUb could also conduct Ca2�. In addition, it is known that
Ser-259 of MCU is responsible for inhibition of the MCU-me-
diated Ca2� uptake by Ru360 (12, 60). This Ser-259 is con-

served both in MCU and MCUb. These previous studies there-
fore raised the possibility that MCUb could be responsible for
the MCU KO–resistant and Ru360-sensitive mitochondrial
Ca2� uptake found in the present study. Alternatively, our data
obtained with brain mitochondria do not rule out the possibil-
ity that MCU might not be a Ca2� channel, but instead could be
an accessory, regulatory subunit of the mitochondrial Ca2�

transport complex. However, our experiments with liver, heart,
and skeletal muscle mitochondria as well as experiments with
MCU reconstituted in the planar lipid bilayer, in which MCU
ion channel activity has been detected (11), argue against these
hypotheses.

Interestingly, a low expression of MCU and high expression
of MCUb in WT heart mitochondria correlated with high Ca2�

uptake capacity of heart mitochondria compared with liver and
skeletal muscle mitochondria. The amount of Ca2� that can be
accumulated by mitochondria is limited due to PTP induction
(30). Consequently, our findings suggest that the levels of
expression of MCU and MCUb may determine the propensity
to PTP induction in mitochondria.

The failure to completely block Ca2� uptake by genetic abla-
tion of MCU in brain mitochondria and, subsequently, incom-
plete prevention of PTP induction suggests that targeting MCU
alone might not be very efficacious in protecting neurons from
glutamate-induced Ca2� dysregulation and glutamate excito-
toxicity. It is conceivable that combined deletion of MCU and
CyD might be much more effective in neuroprotection. CyD
deletion increases mitochondrial Ca2� uptake capacity, inhib-
its PTP induction, and augments resistance of neurons to dele-
terious effect of glutamate (52). However, this neuroprotection
is limited. An exposure to higher glutamate concentrations that
cause larger Ca2� influx in the cell and, subsequently, into
mitochondria, may overcome neuroprotection achieved by
CyD deletion (52). It would be very interesting to test in future
studies whether a combination of CyD and MCU deletions
would result in stronger neuroprotection and whether simulta-
neous pharmacological inhibition of CyD and MCU could be a
valid approach in protecting brain cells from insults associated
with elevation of Ca2� influx into neurons.

Experimental procedures

Materials

Pyruvate, malate, succinate, glutamate, EGTA, ADP, oligo-
mycin, 2,4-dinitrophenol, CGP37157, ETH129, dantrolene,
and carbonyl cyanide p-trifluoromethoxyphenylhydrazone
(FCCP), rat Cyt c, and NADH were purchased from Sigma.
Tetraphenylphosphonium chloride was from Fluka (Buchs,
Switzerland). Percoll was from GE Healthcare. Ru360 was from
Calbiochem. BSA, free from free fatty acids, was from MP Bio-
medicals (Irvine, CA). Alamethicin was from Enzo (Farm-
ingdale, NY).

Animals

All procedures with animals were performed in accordance
with the institutional animal care and use committee–
approved protocol. The breeders of MCU-KO mice were
obtained from Dr. Toren Finkel (Center for Molecular Medi-
cine, NHLBI, National Institutes of Health), and breeding col-
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onies were established in the Laboratory Animal Resource
Center at Indiana University School of Medicine (Indianapolis,
IN). The mice were maintained on a CD1 (Charles River Labo-
ratories, Wilmington, MA) background, and experimental
homozygous mice were obtained by heterozygous crosses (22).
Age- and sex-matched WT littermates were used as controls.
The mice were housed under standard conditions with free
access to water and food. In our experiments, we used animals
of both sexes. However, in every individual experiment, we only
used animals of the same sex. We did not find any significant
difference in the results obtained with either sex, and therefore,
the data were pooled together for statistical analysis.

Genotyping

All offspring were genotyped using a PCR assay on tail DNA
with the forward primer: GT F2 (5�-GGAGTTAAGTCAT-
GAGCTGCTAT-3�) and reverse primers GT R2 (5�-CTG-
GCTTAGTTGGCAGAGTTC-3�) and V76R (5�-CCAATA-
AACCCTCTTGCAGTTGC-3�) (22) and the Platinum PCR
Super Mix (Invitrogen) for amplification. The PCR conditions
were as follows: initial denaturation at 94 °C for 2 min, followed
by 35 cycles (94 °C for 30 s, 60 °C for 30 s, and 72 °C for 30 s) and
then 5 min at 72 °C. Reaction products were analyzed on 1.2%
agarose gel run at 100 V for 60 min with Tris acetate–EDTA
running buffer containing 1� GelRedTM nucleic acid gel stain
(Biotium, Fremont, CA).

Isolation of brain, liver, heart, and skeletal muscle
mitochondria

Percoll gradient–purified brain nonsynaptic and synaptic
mitochondria from homozygous MCU-KO mice and WT lit-
termates were isolated as we described previously (61). Briefly,
brains from three mice of each strain were harvested and pro-
cessed simultaneously. Following brain tissue homogenization
in a 15-ml glass Dounce homogenizer (10 strokes with pestle A,
30 strokes with pestle B) on ice, homogenates were diluted with
30 ml of Isolation Buffer 1 and centrifuged for 10 min at 2,400
rpm in the Beckman centrifuge Avanti J-26XP, rotor JA-25.50
(700 � g). This and all other procedures and centrifugations
were performed at 0 –2 °C. Then supernatant was centrifuged
for 10 min at 12,500 rpm (18,900 � g) in the Beckman centri-
fuge Avanti J-26XP, rotor JA-25.50. Supernatant was discarded,
and the pellet was resuspended in 35 ml of Isolation Buffer 2
and centrifuged for 10 min at 12,500 rpm (18,850 � g) in the
Beckman centrifuge Avanti J-26XP, rotor JA-25.50. Next, the
pellet was resuspended in 5 ml of Isolation Buffer 3. The sus-
pension was layered onto the top of the Percoll gradient (26%/
40%) in Beckman Ultra-Clear centrifuge tubes and centrifuged
for 28 min at 15,500 rpm (41,100 � g) in the Beckman ultracen-
trifuge Optima L100K, bucket rotor SW41Ti. Nonsynaptic
mitochondria were resuspended in Isolation Buffer 3 and cen-
trifuged for 20 min at 15,500 rpm (41,100 � g) in the Beckman
ultracentrifuge Optima L100K, bucket rotor SW41Ti. The pel-
let was resuspended in Isolation Buffer 3 and centrifuged again
for 20 min at 15,500 rpm (41,100 � g) in the Beckman ultracen-
trifuge Optima L100K, bucket rotor SW41Ti. The pellet of non-
synaptic mitochondria was collected, resuspended in 0.15 ml of
Isolation Buffer 3, and stored on ice. Isolation Buffer 1 con-

tained 225 mM mannitol, 75 mM sucrose, 10 mM Hepes, pH 7.4,
adjusted with KOH, 0.1% BSA, free from fatty acids, and 1 mM

EGTA. Isolation Buffer 2 contained 225 mM mannitol, 75 mM

sucrose, 10 mM Hepes, pH 7.4, adjusted with KOH, 0.1
mM EGTA. Isolation Buffer 3 contained 395 mM sucrose, 0.1
mM EGTA, 10 mM Hepes, pH 7.4. 26% Percoll in Percoll Buffer
was prepared with 5.2 ml of Percoll (Sigma) and 14.8 ml of
Percoll Buffer; 40% Percoll in Percoll Buffer was prepared with
8 ml of Percoll and 12 ml of Percoll Buffer. Percoll Buffer con-
tained 320 mM sucrose, 1 mM EGTA, 10 mM Hepes, pH 7.4.

Synaptic mitochondria were isolated from synaptosomes by
the nitrogen cavitation method using a nitrogen cell disruption
bomb, model 4639 (Parr Instrument Co., Moline, IL), cooled on
ice (42) with some modifications. Briefly, the synaptosomes
obtained during preparation of nonsynaptic mitochondria were
transferred to a cooled beaker and placed into the nitrogen
bomb on ice under 1,100 p.s.i. for 13 min. Then synaptosomes
were layered on top of the discontinuous Percoll gradient (24%/
40%) and centrifuged at 15,500 rpm (41,100 � g) for 28 min in a
ultracentrifuge Optima L100K, bucket rotor SW41Ti. The
mitochondrial fraction in the interface between Percoll layers
was transferred into a fresh tube; diluted 1:5 with medium con-
taining 395 mM sucrose, 0.1 mM EGTA, 10 mM Hepes, pH 7.4;
and centrifuged for 20 min at 15,500 rpm (41,100 � g) in the
Beckman ultracentrifuge Optima L100K, bucket rotor SW41Ti.
The pellet was resuspended in 0.15 ml of the latter medium and
kept on ice.

Liver, heart, and skeletal muscle mitochondria were isolated
and purified in the same way as nonsynaptic brain mitochon-
dria, but without Percoll gradient purification. Liver tissue from
one mouse per strain was homogenized using 30 ml of Potter–
Elvehjem homogenizers, and then mitochondria were isolated
using differential centrifugation as described for nonsynaptic
mitochondria before Percoll gradient purification. Hearts from
three mice per strain as well as skeletal muscle (quadriceps of
one hind limb) from one mouse per strain were disintegrated
using Tissue Master 125 grinder (OMNI International, Kenne-
saw, GA). Then tissues were homogenized using 30-ml Potter–
Elvehjem homogenizers, and mitochondria were isolated using
differential centrifugation as described for nonsynaptic mito-
chondria without Percoll gradient purification. Mitochondrial
protein concentration was measured by the Bradford method
(44) with BSA as a standard.

Mitochondrial Ca2� uptake measurements

Mitochondrial Ca2� uptake was measured with a miniature
Ca2�-selective electrode in a 0.3-ml chamber at 37 °C under
continuous stirring. A decrease in Ca2� concentration in the
incubation medium indicated mitochondrial Ca2� uptake.
Here and in other experiments with isolated mitochondria, the
standard incubation medium contained 125 mM KCl, 0.5 mM

MgCl2, 3 mM KH2PO4, 10 mM Hepes, pH 7.4, 10 �M EGTA and
was supplemented with 3 mM pyruvate plus 1 mM malate. In
addition, in some experiments, the incubation medium was
supplemented with 0.1 mM ADP and 1 �M oligomycin as
described previously (30) and with 0.1% BSA (free from fatty
acids, MP Biochemicals, Santa Ana, CA) as indicated. Ca2� was
delivered to mitochondria as 10, 20, or 100 �M CaCl2 pulses.
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Ca2� uptake rates were quantified as nmol of Ca2�/min/mg of
mitochondrial protein.

Mitochondrial respiration

Mitochondrial respiration was assessed in a 0.4-ml continu-
ously stirred chamber containing the standard incubation
medium, which was supplemented either with 3 mM pyruvate
plus 1 mM malate or 3 mM succinate plus 3 mM glutamate. In
experiments with succinate, glutamate was used to prevent
inhibition of succinate dehydrogenase by oxaloacetate due to
elimination of oxaloacetate in the reaction catalyzed by aspar-
tate aminotransferase (43, 62). The chamber was maintained at
37 °C and was equipped with a Clark-type oxygen electrode and
a tightly sealed lid. The slope of the oxygen consumption trace
corresponded to the respiratory rate.

Mitochondrial swelling and membrane potential

Mitochondrial swelling was evaluated in a 0.3-ml continu-
ously stirred chamber at 37 °C by following changes in light
scattering of mitochondrial suspension at 525 nm with an inci-
dent light beam at 180° relative to the photodetector. The incu-
bation medium for light scattering measurements contained
215 mM mannitol, 70 mM sucrose, 0.5 mM MgCl2, 3 mM

KH2PO4, 10 mM Hepes, pH 7.4, 10 �M EGTA, 3 mM pyruvate, 1
mM malate. A decrease in light scattering of mitochondrial sus-
pension indicated mitochondrial swelling. Maximal mitochon-
drial swelling was induced by alamethicin (30 �g/ml), which
was considered as 100% swelling. Ca2�-induced swelling was
calculated as a percentage of maximal, alamethicin-induced
swelling (63). Mitochondrial membrane potential was assessed
simultaneously with mitochondrial swelling with a TPP� elec-
trode by monitoring TPP� distribution between the incubation
medium and mitochondria (64). A decrease in external TPP�

concentration corresponds to mitochondrial polarization,
whereas an increase of TPP� concentration in the incubation
medium corresponds to depolarization.

Immunoblotting

Brain isolated mitochondria pretreated with Protease Inhib-
itor Mixture (Roche Diagnostics) were solubilized by incuba-
tion in NuPAGE LDS sample buffer (Invitrogen) supplemented
with a reducing agent at 70 °C for 15 min. BisTris Mops gels
(12%; Invitrogen) were used for electrophoresis (10 �g of pro-
tein/lane). After electrophoresis, proteins were transferred to
Hybond-ECL nitrocellulose membrane (Amersham Biosci-
ences). Blots were incubated for 1 h at room temperature in
blocking solution of 5% BSA, PBS, pH 7.2, and 0.15% Triton
X-100. Then blots were incubated with one of the following
primary antibodies: mouse monoclonal anti-Complex II
70-kDa subunit (Invitrogen; 1:1000), mouse monoclonal anti-
cyclophilin D antibody (Calbiochem; 1:500), and rabbit poly-
clonal anti-VDAC1 (Calbiochem; 1:1000), rabbit monoclonal
anti-MEK1/2 (Pierce; 1:1000). For detection of MCU, we used a
rabbit polyclonal antibody (Atlas Antibodies (Bromma, Swe-
den), catalog no. HPA016480; 1:1,000) previously used by other
investigators (22, 65, 66). For detection of MCUb, we used goat
polyclonal antibody (Santa Cruz Biotechnology, Inc. (Dallas,
TX), catalog no. sc-163985; 1:250). Blots were incubated with

goat anti-mouse or goat anti-rabbit IgG (1:20,000) coupled with
horseradish peroxidase (Jackson ImmunoResearch Laborato-
ries, West Grove, PA) and developed with Supersignal West
Pico chemiluminescent reagents (Pierce). Molecular mass
markers See Blue Plus 2 Standards (5 �l) and HiMark
prestained high-molecular weight protein standards (10 �l)
(Invitrogen) were used to determine molecular masses of the
bands. NIH ImageJ version 1.48 (National Institutes of Health)
was used to quantify band densities.

Mitochondrial ADP and ATP content

ADP and ATP levels were determined using a luciferin/lucif-
erase-based ATP bioluminescent somatic cell assay kit (Sigma)
and a GloMax 20/20 luminometer (Promega, Madison, WI).
Mitochondria were incubated for 10 min at 37 °C in the stan-
dard incubation medium supplemented with 3 mM pyruvate
plus 1 mM malate, and then ADP and ATP were measured.
Measurements were made in 4% perchloric acid extracts neu-
tralized by KOH following the kit manufacturer’s suggestions.
ADP was converted to ATP using pyruvate kinase in the pres-
ence of phosphoenolpyruvate (67).

Statistics

Data are shown as mean � S.D. of the indicated number of
separate experiments. Statistical analysis of the experimental
results consisted of unpaired t test or one-way analysis of vari-
ance followed by Bonferroni’s post hoc test if applicable
(GraphPad Prism� version 4.0, GraphPad Software Inc., La
Jolla, CA). Every experiment was performed using several dif-
ferent preparations of isolated mitochondria.
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MCUR1 is an essential component of mitochondrial Ca2� uptake that
regulates cellular metabolism. Nat. Cell Biol. 14, 1336 –1343 CrossRef
Medline

20. Moore, C. L. (1971) Specific inhibition of mitochondrial Ca�� transport
by ruthenium red. Biochem. Biophys. Res. Commun. 42, 298 –305
CrossRef Medline

21. Vasington, F. D., Gazzotti, P., Tiozzo, R., and Carafoli, E. (1972) The effect
of ruthenium red on Ca2� transport and respiration in rat liver mitochon-
dria. Biochim. Biophys. Acta 256, 43–54 CrossRef Medline

22. Pan, X., Liu, J., Nguyen, T., Liu, C., Sun, J., Teng, Y., Fergusson, M. M.,
Rovira, I. I., Allen, M., Springer, D. A., Aponte, A. M., Gucek, M., Balaban,
R. S., Murphy, E., and Finkel, T. (2013) The physiological role of mito-
chondrial calcium revealed by mice lacking the mitochondrial calcium
uniporter. Nat. Cell Biol. 15, 1464 –1472 CrossRef Medline

23. Mnatsakanyan, N., Beutner, G., Porter, G. A., Alavian, K. N., and Jonas,
E. A. (2017) Physiological roles of the mitochondrial permeability transi-
tion pore. J. Bioenerg. Biomembr. 49, 13–25 CrossRef Medline

24. Izzo, V., Bravo-San Pedro, J. M., Sica, V., Kroemer, G., and Galluzzi, L.
(2016) Mitochondrial permeability transition: new findings and persisting
uncertainties. Trends Cell Biol. 26, 655– 667 CrossRef Medline

25. Schinder, A. F., Olson, E. C., Spitzer, N. C., and Montal, M. (1996) Mito-
chondrial dysfunction is a primary event in glutamate neurotoxicity.
J. Neurosci. 16, 6125– 6133 CrossRef Medline

26. Nieminen, A. L., Petrie, T. G., Lemasters, J. J., and Selman, W. R. (1996)
Cyclosporin A delays mitochondrial depolarization induced by N-methyl-
D-aspartate in cortical neurons: evidence of the mitochondrial permeabil-
ity transition. Neuroscience 75, 993–997 CrossRef Medline

27. White, R. J., and Reynolds, I. J. (1996) Mitochondrial depolarization in
glutamate-stimulated neurons: an early signal specific to excitotoxin ex-
posure. J. Neurosci. 16, 5688 –5697 CrossRef Medline

28. Hunter, D. R., and Haworth, R. A. (1979) The Ca2�-induced membrane
transition in mitochondria. I. The protective mechanisms. Arch. Biochem.
Biophys. 195, 453– 459 CrossRef Medline

29. Qiu, J., Tan, Y. W., Hagenston, A. M., Martel, M. A., Kneisel, N., Skehel,
P. A., Wyllie, D. J., Bading, H., and Hardingham, G. E. (2013) Mitochon-
drial calcium uniporter Mcu controls excitotoxicity and is transcription-
ally repressed by neuroprotective nuclear calcium signals. Nat. Commun.
4, 2034 CrossRef Medline

30. Chalmers, S., and Nicholls, D. G. (2003) The relationship between free and
total calcium concentrations in the matrix of liver and brain mitochon-
dria. J. Biol. Chem. 278, 19062–19070 CrossRef Medline

31. Spector, A. A., John, K., and Fletcher, J. E. (1969) Binding of long-chain
fatty acids to bovine serum albumin. J. Lipid Res. 10, 56 – 67 Medline

32. Di Paola, M., and Lorusso, M. (2006) Interaction of free fatty acids with
mitochondria: coupling, uncoupling and permeability transition. Biochim.
Biophys. Acta 1757, 1330 –1337 CrossRef Medline

33. Brustovetsky, N. (2016) Mitochondrial permeability transition: a look
from a different angle. In The Functions, Disease-related Dysfunctions,
and Therapeutic Targeting of Neuronal Mitochondria (Gribkoff, V. K.,
Jonas, E. A., and Hardwick, J. M., eds) p. 3–30, John Wiley & Sons, Inc.,
Hoboken, NJ

34. Prestipino, G., Falugi, C., Falchetto, R., and Gazzotti, P. (1993) The iono-
phore ETH 129 as Ca2� translocator in artificial and natural membranes.
Anal. Biochem. 210, 119 –122 CrossRef Medline

35. Jung, D. W., Bradshaw, P. C., Litsky, M., and Pfeiffer, D. R. (2004) Ca2�

transport in mitochondria from yeast expressing recombinant aequorin.
Anal. Biochem. 324, 258 –268 CrossRef Medline

36. Ying, W. L., Emerson, J., Clarke, M. J., and Sanadi, D. R. (1991) Inhibition
of mitochondrial calcium ion transport by an oxo-bridged dinuclear
ruthenium ammine complex. Biochemistry 30, 4949 – 4952 CrossRef
Medline

37. Griffiths, E. J. (1999) Reversal of mitochondrial Na/Ca exchange during
metabolic inhibition in rat cardiomyocytes. FEBS Lett. 453, 400 – 404
CrossRef Medline

38. Smets, I., Caplanusi, A., Despa, S., Molnar, Z., Radu, M., VandeVen, M.,
Ameloot, M., and Steels, P. (2004) Ca2� uptake in mitochondria occurs via
the reverse action of the Na�/Ca2� exchanger in metabolically inhibited
MDCK cells. Am. J. Physiol. Renal Physiol. 286, F784 –F794 CrossRef
Medline

39. Beutner, G., Sharma, V. K., Giovannucci, D. R., Yule, D. I., and Sheu, S. S.
(2001) Identification of a ryanodine receptor in rat heart mitochondria.
J. Biol. Chem. 276, 21482–21488 CrossRef Medline

40. Jakob, R., Beutner, G., Sharma, V. K., Duan, Y., Gross, R. A., Hurst, S., Jhun,
B. S., O-Uchi, J., and Sheu, S. S. (2014) Molecular and functional identifi-
cation of a mitochondrial ryanodine receptor in neurons. Neurosci. Lett.
575, 7–12 CrossRef Medline

41. Cox, D. A., and Matlib, M. A. (1993) Modulation of intramitochondrial
free Ca2� concentration by antagonists of Na�-Ca2� exchange. Trends
Pharmacol. Sci. 14, 408 – 413 CrossRef Medline

42. Wojtczak, A. B. (1969) Inhibitory action of oxaloacetate on succinate ox-
idation in rat-liver mitochondria and the mechanism of its reversal.
Biochim. Biophys. Acta 172, 52– 65 CrossRef Medline

Ca2� uptake and PTP in MCU-KO brain mitochondria

15662 J. Biol. Chem. (2018) 293(40) 15652–15663

http://dx.doi.org/10.1523/JNEUROSCI.15-02-01318.1995
http://www.ncbi.nlm.nih.gov/pubmed/7869100
http://dx.doi.org/10.1152/jn.1996.76.3.1611
http://www.ncbi.nlm.nih.gov/pubmed/8890280
http://dx.doi.org/10.1152/physrev.1999.79.4.1127
http://www.ncbi.nlm.nih.gov/pubmed/10508231
http://dx.doi.org/10.1016/j.yjmcc.2014.11.015
http://www.ncbi.nlm.nih.gov/pubmed/25463276
http://dx.doi.org/10.1016/j.bbamcr.2015.04.008
http://www.ncbi.nlm.nih.gov/pubmed/25896525
http://dx.doi.org/10.1038/nature10230
http://www.ncbi.nlm.nih.gov/pubmed/21685888
http://dx.doi.org/10.1038/nature10234
http://www.ncbi.nlm.nih.gov/pubmed/21685886
http://www.ncbi.nlm.nih.gov/pubmed/23755363
http://dx.doi.org/10.1038/emboj.2013.157
http://www.ncbi.nlm.nih.gov/pubmed/23900286
http://dx.doi.org/10.1016/j.molcel.2014.01.013
http://www.ncbi.nlm.nih.gov/pubmed/24560927
http://dx.doi.org/10.1371/journal.pone.0055785
http://www.ncbi.nlm.nih.gov/pubmed/23409044
http://dx.doi.org/10.1016/j.cmet.2013.04.020
http://www.ncbi.nlm.nih.gov/pubmed/23747253
http://dx.doi.org/10.1126/science.1242993
http://www.ncbi.nlm.nih.gov/pubmed/24231807
http://dx.doi.org/10.1038/ncb2622
http://www.ncbi.nlm.nih.gov/pubmed/23178883
http://dx.doi.org/10.1016/0006-291X(71)90102-1
http://www.ncbi.nlm.nih.gov/pubmed/4250976
http://dx.doi.org/10.1016/0005-2728(72)90161-2
http://www.ncbi.nlm.nih.gov/pubmed/4257941
http://dx.doi.org/10.1038/ncb2868
http://www.ncbi.nlm.nih.gov/pubmed/24212091
http://dx.doi.org/10.1007/s10863-016-9652-1
http://www.ncbi.nlm.nih.gov/pubmed/26868013
http://dx.doi.org/10.1016/j.tcb.2016.04.006
http://www.ncbi.nlm.nih.gov/pubmed/27161573
http://dx.doi.org/10.1523/JNEUROSCI.16-19-06125.1996
http://www.ncbi.nlm.nih.gov/pubmed/8815895
http://dx.doi.org/10.1016/0306-4522(96)00378-8
http://www.ncbi.nlm.nih.gov/pubmed/8938735
http://dx.doi.org/10.1523/JNEUROSCI.16-18-05688.1996
http://www.ncbi.nlm.nih.gov/pubmed/8795624
http://dx.doi.org/10.1016/0003-9861(79)90371-0
http://www.ncbi.nlm.nih.gov/pubmed/383019
http://dx.doi.org/10.1038/ncomms3034
http://www.ncbi.nlm.nih.gov/pubmed/23774321
http://dx.doi.org/10.1074/jbc.M212661200
http://www.ncbi.nlm.nih.gov/pubmed/12660243
http://www.ncbi.nlm.nih.gov/pubmed/5773785
http://dx.doi.org/10.1016/j.bbabio.2006.03.024
http://www.ncbi.nlm.nih.gov/pubmed/16697347
http://dx.doi.org/10.1006/abio.1993.1160
http://www.ncbi.nlm.nih.gov/pubmed/8489006
http://dx.doi.org/10.1016/j.ab.2003.10.029
http://www.ncbi.nlm.nih.gov/pubmed/14690690
http://dx.doi.org/10.1021/bi00234a016
http://www.ncbi.nlm.nih.gov/pubmed/2036363
http://dx.doi.org/10.1016/S0014-5793(99)00726-7
http://www.ncbi.nlm.nih.gov/pubmed/10405185
http://dx.doi.org/10.1152/ajprenal.00284.2003
http://www.ncbi.nlm.nih.gov/pubmed/14665432
http://dx.doi.org/10.1074/jbc.M101486200
http://www.ncbi.nlm.nih.gov/pubmed/11297554
http://dx.doi.org/10.1016/j.neulet.2014.05.026
http://www.ncbi.nlm.nih.gov/pubmed/24861510
http://dx.doi.org/10.1016/0165-6147(93)90063-P
http://www.ncbi.nlm.nih.gov/pubmed/8296399
http://dx.doi.org/10.1016/0005-2728(69)90091-7
http://www.ncbi.nlm.nih.gov/pubmed/4387597


43. Oestreicher, A. B., van den Bergh, S. G., and Slater, E. C. (1969) The
inhibition by 2,4-dinitrophenol of the removal of oxaloacetate formed by
the oxidation of succinate by rat-liver and -heart mitochondria. Biochim.
Biophys. Acta 180, 45–55 CrossRef Medline

44. Brustovetsky, N., Brustovetsky, T., Jemmerson, R., and Dubinsky, J. M.
(2002) Calcium-induced cytochrome c release from CNS mitochondria is
associated with the permeability transition and rupture of the outer mem-
brane. J. Neurochem. 80, 207–218 CrossRef Medline
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