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27 Abstract

28 The pathogenesis of colorectal cancer (CRC) involves different mechanisms, such as 

29 genomic and microsatellite instabilities. Recently, a contribution of the base excision repair 

30 (BER) pathway in CRC pathology has been emerged. In this context, the involvement of 

31 APE1 in the BER pathway and in the transcriptional regulation of genes implicated in tumor 

32 progression strongly correlates with chemoresistance in CRC and in more aggressive 

33 cancers. In addition, the APE1 interactome is emerging as an important player in tumor 

34 progression, as demonstrated by its interaction with Nucleophosmin (NPM1). For these 

35 reasons, APE1 is becoming a promising target in cancer therapy and a powerful prognostic 

36 and predictive factor in several cancer types. Thus, specific APE1 inhibitors have been 

37 developed targeting: i) the endonuclease activity; ii) the redox function and iii) the APE1-

38 NPM1 interaction. Furthermore, mutated p53 is a common feature of advanced CRC. The 

39 relationship between APE1 inhibition and p53 is still completely unknown. Here, we 

40 demonstrated that the inhibition of the endonuclease activity of APE1 triggers p53-mediated 

41 effects on cell metabolism in HCT-116 colon cancer cell line. In particular, the inhibition of 

42 the endonuclease activity, but not of the redox function or of the interaction with NPM1, 

43 promotes p53 activation in parallel to sensitization of p53-expressing HCT-116 cell line to 

44 genotoxic treatment. Moreover, the endonuclease inhibitor affects mitochondrial activity in 

45 a p53-dependent manner. Finally, we demonstrated that 3D organoids derived from CRC 

46 patients are susceptible to APE1-endonuclease inhibition in a p53-status correlated manner, 

47 recapitulating data obtained with HCT-116 isogenic cell lines. These findings suggest the 

48 importance of further studies aimed at testing the possibility to target the endonuclease 

49 activity of APE1 in CRC.

50

51 Keywords: colorectal cancer, BER, APE1, APE1-inhibitors, p53, organoids
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53 1. Introduction

54 Colorectal cancer (CRC) is considered the third most common cancer and the fourth most 

55 common cause of cancer-related death worldwide [1]. CRC is a multistep process involving 

56 a series of histo-morphological and genetic changes, that accumulate over time in the 

57 epithelial layer of the intestinal tract. Interestingly, genetic and epigenetic modifications lead 

58 to the activation of oncogenes and/or the inactivation of tumor suppressor genes, as 

59 formulated by Volgestein and Fearon [2,3]. Both genetic and environmental factors are 

60 essential in the etiology of the disease. About 70% of CRC patients suffer from a sporadic 

61 form, whereas 10-30% present a familial predisposition and only 5-7% exhibit an inherited 

62 trait [4]. However, the most common, often overlapping, mechanisms involved in the 

63 pathogenesis of CRC are represented by the chromosome and microsatellite instabilities, 

64 the CpG island methylator phenotype and the deletion of the long arm of chromosome 18 

65 [1,5]. In the landscape of chromosome instability, the most common mutations occur in 

66 specific tumor suppressor genes (e.g. APC, PTEN, SMAD4, TGFBR2, TP53) or oncogenes 

67 (e.g. BRAF, KRAS, PIK3CA). Recently, the involvement of DNA repair genes has been 

68 demonstrated to be associated with the pathogenesis of CRC [6–8]. In particular, both 

69 endogenous (e.g. metabolic activity of the cells) and exogenous factors (e.g. food intake) 

70 are involved in DNA damage, which requires the activation of the DNA repair mechanisms. 

71 In particular, the base excision repair (BER) pathway is involved in repairing DNA chemical 

72 modifications, such as deamination, oxidation, and alkylation [9]. Interestingly, BER has 

73 been found altered in CRC, as demonstrated by the presence of single nucleotide 

74 polymorphisms (SNPs) in several BER genes including DNA glycosylases, 

75 apurinic/apyrimidinic endonuclease 1 (APE1) and DNA Polymerase  (Pol ) [10]. In BER, 

76 APE1 cleaves the DNA phosphodiester backbone on the 5′ side of an abasic 

77 apurinic/apyrimidinic (AP) site, previously produced by the action of damage-specific 

78 glycosylases, generating a nick in the DNA and leaving 3′ hydroxyl and 5′ dRP free termini, 



79 which are processed and replaced by a correct nucleotide by Pol  [11]. Recent molecular 

80 snapshots of the endonuclease-reaction clearly defined the APE1 catalytic mechanism of 

81 action [12]. The catalytic site of the enzymes involves a Mg2+ ion coordinated by Asp70, 

82 Glu96 and a water molecule in contact with non-bridging oxygen of the phosphate. 

83 Additionally, the nucleophilic water is in position for in-line attack of the phosphorus atom 

84 and is coordinated by Asn212 and Asp210. APE1 is also endowed of an exonuclease activity 

85 through the removal of 3’ end groups of a mismatched or DNA damaged bases to generate 

86 substrates that are processed by the downstream repair enzymes [13]. Recently, we 

87 demonstrated that APE1 plays an important role in the recognition and processing of ribose 

88 monophosphate AP sites and oxidized ribonucleotides embedded in DNA through a 

89 classical AP endonuclease activity and a nucleotide incision repair (NIR) activity, 

90 respectively [14].

91 As widely described, APE1 is implicated in cancer gene expression regulation due to its role 

92 as a redox co-activator of several transcription factors, such as Egr-1, NF-κB, p53, STAT3, 

93 HIF-1α, CREB, AP-1, and Pax-5/8 [15]. APE1 is considered as a unique nuclear redox-

94 signaling factor bearing seven Cys residues. Three of the Cys residues, C65, C93, and C99, 

95 are essential for its redox activity, that involves a redox cycle through the potential formation 

96 of intermolecular disulfide bonds with the protein target [16–20]. While C65 acts as the 

97 nucleophilic cysteine, C93 and C99 likely play roles in resolving disulfide bonds that are 

98 formed in APE1 upon oxidation. Structural studies demonstrated that APE1 exists in both 

99 native and partially unfolded conformations, controlled by Thioredoxin (TRX) [16], in which 

100 the partially unfolded state of APE1 represents the redox active intermediate of the enzyme.

101 Recently, it has been demonstrated that APE1 is not only involved in DNA repair 

102 mechanisms and transcriptional regulation, but also in miRNA metabolism [21]. 

103 Furthermore, the interaction between APE1 and Nucleophosmin (NPM1) is essential for the 

104 subcellular localization of APE1 modulating its endonuclease activity [22]. Interestingly, this 
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105 interaction was found altered in ovarian cancer promoting tumor aggressiveness and 

106 resistance. Finally, it has been demonstrated that in the majority of cases, there is a positive 

107 correlation between upregulated expression of APE1 and the development of several 

108 tumors, such as: colon [23,24], breast [25], hepatic [26], prostate [27], pancreatic [28], 

109 ovarian [29], lung cancers [30], leukemias [31] and many others [32]. Furthermore, APE1 

110 overexpression is associated with the onset of chemoresistance phenomena [22]. For these 

111 reasons, APE1 is considered a promising prognostic and predictive biomarker [33] and 

112 several strategies have been developed to inhibit its functions in cancer cells [34], leading 

113 to the development of ongoing clinical trials. 

114 In recent years, a great effort has been put in the development of specific inhibitors targeting 

115 the different functions of APE1, i.e. Compound #3, APX2009, Spiclomazine, Fiduxosin and 

116 SB206553. Compound #3 blocks the endonuclease activity of APE1 acting as a competitive 

117 inhibitor by binding the active site of the enzyme and consequently leading to a decrease of 

118 APE1-DNA complex formation in a dose-dependent manner [35]. The inhibition promotes, 

119 in turn, an increase of the unrepaired AP sites accumulation in genomic DNA, that, in 

120 combination with an alkylating agent treatment, such as methyl methanesulfonate (MMS), 

121 induces high levels of cellular death [36,37]. APX2009, an APE1 specific redox inhibitor, is 

122 the second generation molecules of the drug APX3330, previously named E3330 [38]. 

123 APX3330 inhibits the activator function of APE1 on different transcription factors such as 

124 NF-B, AP-1, HIF-1 and STAT3 [18,39,40]. In particular, APX3330 increases disulfide bonds 

125 involving C65 and/or C93 residues in APE1, impairing its redox activity [41]. APX3330 

126 recently completed cancer phase I clinical trials with demonstrated safety, response and 

127 APE1 target engagement [42,43]. Finally, Spiclomazine, Fiduxosin, and SB206553 

128 molecules inhibit the interaction of APE1 with NPM1, a protein involved in rRNA biogenesis, 

129 by directly binding to the N-terminal domain of APE1. We demonstrated that these inhibitors 

130 alter the localization and the endonuclease activity of APE1, but not the rRNA maturation 

https://www.sciencedirect.com/topics/chemistry/disulfide


131 [22] and induce apoptosis in different tumor cell lines [22,44]. To our knowledge, only one

132 study investigated the ability of the APE1-redox inhibitor (APX3330) to affect colon cancer 

133 stem cells (CCSCs) growth in vitro and to enhance the effect of the chemotherapeutic agent 

134 5-Fluorouracil (5-FU) in CCSCs xenograft mice [23]. Thus, the importance of exploring the

135 effect of different APE1 inhibitors in CRC models is apparent. Here, we used the well-known 

136 HCT-116 colon cancer cell model, to explore the relevance of p53 upon APE1 inhibition, 

137 and extended our findings using a 3D organoid cultures model derived from CRC affected 

138 patients.

139 Due to the intricate mechanisms that characterize the CRC etiology, research has focused 

140 on personalized precision medicine of CRC. The generation of patient-derived 3D tumor 

141 organoids will greatly enhance our understanding of the disease complexity and the 

142 heterogeneity in order to develop patient-specific therapies [45]. Organoids have a special 

143 property to mirror the key-features of the original patient’s tissue [46], representing an ideal 

144 tool to develop patient-specific therapies by performing drug screenings.

145 Similarly to APE1, the well-known tumor suppressor gene TP53 has been found altered in 

146 most tumors [47]. The wild-type p53 protein is a transcription factor involving in cell cycle 

147 arrest, senescence and apoptosis, besides being a key player in the DNA Damage 

148 Response (DDR) to single-strand breaks (SSBs) and double-strand break (DSBs) 

149 accumulation. Among all the mutated genes promoting CRC, p53 has an important role [48]. 

150 Indeed, loss of p53 function stimulates the development of the late stage of CRC and is 

151 associated with poor prognosis [49]. p53 plays a role not only as a modulator of the cell 

152 cycle to guarantee genome stability, but it is also directly involved in the activation of proteins 

153 that are associated with DNA repair processes [50]. In particular, it has been demonstrated 

154 that p53 prevents genomic instability through a BER gene expression regulation [51]. 

155 Importantly, p53 regulates DNA glycosylases (OGG1 and MUTYH) [52,53], APE1 [54,55], 

156 Pol β [56] expression and acts as a transcriptional repressor of DNA polymerase δ [57]. 
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157 However, it is unknown whether p53 is part of DDR starting from AP sites accumulation as 

158 a consequence of APE1 inactivation or inhibition. The present study was aimed at 

159 addressing this issue. Furthermore, data on whether APE1 inhibitors may affect cell viability 

160 of colon cancer cells through p53-induced cell response are the focus of the work presented 

161 here.

162



163 2. Materials and methods

164 2.1. Cell cultures. HCT-116 p53+/+ and HCT-116 p53-/- (ATCC®) cells were grown in 

165 Dulbecco’s modified Eagle’s medium (EuroClone, Milan, Italy) supplemented with 10% fetal 

166 bovine serum (EuroClone). CH12F3+/+/∆ and CH12F3∆/∆/∆ cells were grown in RPMI 1640 

167 (EuroClone) supplemented with 10% fetal bovine serum (EuroClone), 1X non Essential 

168 Amino Acids (EuroClone), 1 mM Sodium Pyruvate (EuroClone), 25 mM HEPES (EuroClone) 

169 and 50 μM β-mercaptoethanol (Promega, Madison, WI, USA). OCI-AML2 cells were grown 

170 in α-MEM (Invitrogen, Carlsbad, CA, USA) supplemented with 20% fetal bovine serum 

171 (EuroClone). HCC70 cells were grown in RPMI 1640 (EuroClone) supplemented with 10% 

172 fetal bovine serum (EuroClone). All culturing media were also supplemented with 2 mM 

173 GlutaMAX (EuroClone), 100 U/ml penicillin and 10 µg/ml streptomycin (EuroClone).

174

175 2.2. Human tissues. Colonic tissues were obtained upon surgical resection from the 

176 University Hospital Santa Maria della Misericordia of Udine. All patients were diagnosed with 

177 colorectal cancer. This study was approved by the ethical committee of University Hospital 

178 Santa Maria della Misericordia of Udine (CEUR-2017-PR-048-UNIUD) and all samples were 

179 obtained prior to informed consent. 

180

181 2.3. Organoid culture. The generation of patient-derived tumor organoids was performed 

182 as described by [58] with some modifications. Tumor intestinal tissue was washed with ice-

183 cold PBS supplemented with 100 U/ml penicillin and 10 µg/ml streptomycin (EuroClone) 

184 several times. Tumor tissue was homogenized with scissors and then digested with 0.26 

185 U/ml Liberase (Sigma-Aldrich, St. Louis, MO, USA) in basal medium, composed of 

186 Advanced DMEM/F12 (Life Technologies, Carlsbad, CA, USA) supplemented with 2 mM 

187 Glutamax (Life Technologies), 10 mM HEPES (Life Technologies), 100 U/ml penicillin and 

188 10 µg/ml streptomycin (EuroClone) complemented with 100 μg/ml Primocin (InvivoGen, 
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189 Diego, CA, USA) and 10 µM Y-27632 (Abcam, Cambridge, UK) for 1 h at 37 °C shaking at 

190 250 rpm. The resulting fraction was passed through a 100-mm cell strainer. The filtered 

191 solution was centrifuged at 1,200 rpm for 5 min at 4°C. The cell pellet was resuspended with 

192 Red Blood Cell (RBC) Lysis Buffer (BioLegend, San Diego, CA, USA) and incubated for 10 

193 min at room temperature (RT) in the dark. RBC buffer was neutralized adding basal medium 

194 complemented with 10% fetal bovine serum (BioWest, Nuaillé, France). The resulting 

195 solution was centrifuged at 1,200 rpm for 5 min at 4°C and the cell pellet was resuspended 

196 with 3 ml of basal medium. Cells were counted with a Burker chamber and 200,000 cells/10 

197 μl were mixed with 20 μl of Matrigel and 30 μl drop was plated in a single well of 24-well. 

198 After polymerization of Matrigel (Corning®, Corning, NY, USA) for 10-15 min at 37°C, 500 

199 µl of culture medium was added. Tumor organoids were cultured in basal medium containing 

200 1X B27 (Life Technologies), 1.15 mM N-acetylcysteine (Sigma-Aldrich), 10 mM 

201 Nicotinamide (Sigma-Aldrich), 10 nM Gastrin I (Tocris Bioscience, Bristol, UK), 10 nM 

202 Prostaglandin E2 (Sigma-Aldrich), 500 nM A83-01 (R&D System, Minneapolis, MN, USA), 

203 50 ng/ml mEGF (PeproTech, London, UK), 3 µM SB202190 (Sigma-Aldrich), 10% Noggin 

204 Conditioned Medium, 20% R-Spondin1 Conditioned Medium, 10 µM Y-27632 (Abcam) and 

205 100 μg/ml Primocin (InvivoGen). The medium was refreshed every two/three days. Tumour 

206 organoids were passaged 1:4 every one/two weeks.

207

208 2.4. Treatments. Compound #3 was kindly provided by the National Center for Advancing 

209 Translational Sciences. APX2009 was kindly provided by Professor Mark R. Kelley (Indiana 

210 University, School of Medicine). Fiduxosin, SB206553, Spiclomazine were purchased as 

211 previously described [22]. All compounds were solved in dimethyl sulfoxide (DMSO). IC50 

212 values were calculated using Combenefit 2.021 Software.

213



214 2.5. RNA interference. One day before transfection, cells were seeded in 60-mm plates at 

215 a density of 600,000 cells per plate. Cells were then transiently transfected with 100 pmol 

216 siRNA APE1 5 -́UACUCCAGUCGUACCAGACCU-3  ́or the scramble control siRNA 5 -́

217 CCAUGAGGUCAUGGUCUGdTdT-3  ́ (Dharmacon, Lafayette, CO, USA) using 

218 DharmaFECT reagent (Dharmacon). After 72 h upon transfection, cells were collected and 

219 whole cell extracts were prepared.

220

221 2.6. Preparation of the cell extracts and protein quantification. For the preparation of 

222 whole cell lysates, 200,000 HCT-116 cells were plated on 6-well plates and, the following 

223 day, cells were treated with Compound #3 or APX2009. After 48 h cells were collected by 

224 trypsinization and centrifuged at 250 x g for 5 min. The supernatant was removed, and the 

225 pellet was washed once with PBS and then centrifuged again as described before. Cell 

226 pellet was resuspended in lysis buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 

227 mM EDTA, 1% w/v Triton X-100 supplemented with 1 mM protease inhibitor cocktail (Sigma-

228 Aldrich), 1 mM DTT, 0.5 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM NaF and 1 mM 

229 Na3VO4 for 30 min at 4 °C. After centrifugation at 13,000 rpm for 20 min at 4 °C, the 

230 supernatant was collected as a whole cell lysate. The protein concentration was determined 

231 by using Bio-Rad protein assay reagent (Bio-Rad, Hercules, CA, USA). 

232

233 2.7. Antibodies and Western blotting analysis. For Western blotting analyses, whole cell 

234 lysates were prepared and 30 μg of proteins were resolved on 12% SDS–PAGE, transferred 

235 onto nitrocellulose membranes (Schleicher & Schuell Bioscience, Keene, NH, USA) and 

236 incubated with antibodies for p53 1:1000 (#sc-126, Santa Cruz Biotechnology, Dallas, TX, 

237 USA), APE1 1:1000 (#NB-100116, Thermo Fisher Scientific, Waltham, MA, USA), p21 

238 1:1000 (#2947, Cell Signaling Technology, Danvers, MA, USA) and actin 1:2000 (#A2066, 

239 Sigma-Aldrich). The corresponding secondary antibodies labelled with IR-Dye (goat 
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240 rabbit IgG IRDye 680 and goat anti-mouse IgG IRDye 800, LI-COR Biosciences, Lincoln, 

241 NE, USA) were used (1:10,000). Blots were developed by using the NIR Fluorescence 

242 technology (LI-COR Biosciences). Images were acquired and quantified by using an 

243 Odyssey CLx Infrared Imaging System (LI-COR Biosciences). 

244

245 2.8. Metabolic activity. Metabolic activity of HCT-116 cell lines was measured through the 

246 MTS CellTiter 96 AQueous One Solution Cell Proliferation Assay and through RealTime-

247 Glo™ MT Cell Viability Assay (Promega) according to the manufacturer's instructions. In 

248 details, 5,000 cells were plated on transparent or black 96-well plates, as needed, and the 

249 day after, cells were treated with the indicated drugs for 48 h. Metabolic activity of CH12F3 

250 cell lines was measured with CellTiter 96® Aqueous One Solution Cell Proliferation Assay 

251 (Promega) according to the manufacturer's instructions. In details, 10,000 cells were plated 

252 on black 96-well plates and the day after cells were treated with increasing amounts of 

253 Compound #3 or APX2009 at the indicated concentrations for 48 h. Metabolic activity of 

254 patient-derived tumor organoids was measured through the RealTime-Glo™ MT Cell 

255 Viability Assay (Promega) according to the manufacturer's instructions. In this case, 3,000 

256 cells derived from tumor organoids were plated together with Matrigel on black 96-well plates 

257 and incubated for three days for allowing the generation of the organoids. Tumor organoids 

258 were treated with increasing amounts of Compound #3 for 48 h. For metabolic assay, Y-

259 27632 was removed from the culture medium.

260

261 2.9. AP sites measurements. For the AP sites measurements, 200,000 HCT-116 cells 

262 were plated on 6-well plates and, the following day, cells were treated with Compound #3. 

263 After 48 h, genomic DNA was extracted from the collected cells using QIAamp DNA Mini Kit 

264 (Qiagen, Hilden, Germany), and concentration and purity were determined by NanoDrop 

265 Microvolume Spectrophotometer (Thermo Fisher Scientific). Samples of 100 µg/ml 
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266 genomic DNA were analyzed to quantify abasic sites in DNA using the DNA Damage 

267 Quantification Kit -AP Site Counting- (Dojindo Molecular Technologies, Kumamoto, Japan) 

268 according to the manufacturer’s instructions.

269

270 2.10. Comet assay analysis. The comet assay was performed as previously described [59]. 

271 Specifically, 25,000 cells were plated on 24-well plates and the day after cells were treated 

272 with 0.5 μM Compound #3. After 48 h, cells were collected and mixed with low melting point 

273 agarose at 37 °C, and the mixture was applied to a agarose pre-coated glass coverslip to 

274 form a thin layer. Cold lysis buffer was added to lyse cells at 4 °C. After 1 h, the glass 

275 coverslip was moved into alkaline electrophoresis buffer for 30 min to unwind DNA. 

276 Electrophoresis was carried out at 25 V and 300 mA for 30 min. The glass coverslip was 

277 washed with neutralizing buffer for three times and stained by Sybr Gold 1X (Thermo Fisher 

278 Scientific) for 30 min in dark. Comets were recorded by laser scanning confocal microscope 

279 (LEICA TCS SP2, Leica Microsystems, Wetzlar, Germany). The tail moment was analyzed 

280 for 100 cells at random by OpenComet software.

281

282 2.11. Quantitative real-time reverse transcriptase-PCR. For RNA extraction, 200,000 

283 HCT-116 cells were plated on 6-well plates and, the following day, were treated with 

284 Compound #3 or APX2009. After 48 h, total RNA was extracted from the collected cells 

285 using the NUCLEOSPIN RNA II (MACHEREY-NAGEL GmbH & Co., Duren, Germany). The 

286 quality of the RNA samples was tested on an agarose gel. Then, single-strand cDNA was 

287 obtained from 1 μg of purified RNA using SensiFAST cDNA Synthesis Kit (Bioline Meridian 

288 Bioscience, Cincinnati, OH, USA). qRT-PCR was performed using SensiFAST SYBR No-

289 ROX Kit (Bioline Meridian Bioscience) and a CFX96 Real-Time System (Bio-Rad). Each 

290 sample analysis was performed in triplicate. Samples without template and without reverse 

291 transcriptase were used as negative control,. The cycling parameters contemplate a first 

12



292 denaturation at 95 °C for 10 s and then 40-cycles of annealing/extension at 60 °C for 30 s. 

293 In order to verify the specificity of the amplification, a melting-curve analysis was performed, 

294 immediately after the amplification protocol. Relative gene expression was calculated with 

295 the 2-ΔΔCt method. The sequences of the primers used are the following: APEX1 For 5’-

296 CCTGGACTCTCTCATCAATACTGG-3’, APEX1 Rev 5’- 

297 AGTCAAATTCAGCCACAATCACC-3’, BIRC5 For 5 -́ ACCGCATCTCTACATTCAAG-3 ,́ 

298 BIRC5 Rev 5 -́CAAGTCTGGCTCGTTCTC-3 ,́ DNA polδ For 5’-

299 GCTCCGCTCCTACACGCTCAA-3’, DNA polδ Rev 5’-GTCTGGTCGTTCCCATTCTGC-3’ 

300 and Actin For 5 -́CGCCGCCAGCTCACCATG-3 ,́ Actin Rev 5 -́

301 CACGATGGAGGGGAAGACGG-3 .́

302

303 2.12. Caspases activity assay. The activities of caspases 3/7 were examined via a 

304 fluorescence-based assay using Apo-ONE® Homogeneous Caspase-3/7 Assay (Promega) 

305 according to the manufacturer's instructions. In details, 5,000 cells were plated on white 96-

306 well plates and the day after cells were treated with increasing amounts of Compound #3 or 

307 APX2009 for 48 h.

308

309 2.13. Cell Mito Stress test. Analyses of the mitochondrial function of HCT-116 cells were 

310 performed by using XFe Extracellular Flux Analyzer (Seahorse, Agilent Technologies, Santa 

311 Clara, CA, USA) as previously described [60]. In details, 5,000 cells were seeded and 

312 cultured in XF Cell Culture Microplates (Agilent Technologies). Before the measurements, 

313 the culture medium was removed from each well and replaced by 500 μl of Seahorse XF 

314 Base Medium (Agilent Technologies), pre-warmed at 37 °C and supplemented with 10 mM 

315 glucose (Sigma-Aldrich), 1 mM pyruvate (EuroClone), 2 mM glutamine (Sigma-Aldrich), at 

316 pH 7.4. Cells were incubated in a CO2-free incubator at 37 °C for 1 h and OCR (oxygen 

317 consumption rate) was detected under basal conditions. The following compounds were 

13
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318 prepared at appropriate concentrations for each injection port to reach the final 

319 concentration of 0.5 μM oligomycin A, 0.5 μM FCCP, 1 μM rotenone and 1 μM antimycin A 

320 (Sigma-Aldrich). Volumes of respectively 56, 62, 69 and 73 μl of compounds were added to 

321 each injection port. Then, after a 3-min pause, 3 response measurements were taken 

322 between each addition. OCR values were normalized to the protein content (μg) of each 

323 well obtained by the Bradford method.

324

325 2.14. Immunofluorescence. Patient-derived tumor organoids were grown on a slide and 

326 fixed in 4% paraformaldehyde for 20 min at 37°C, then washed with PBS 1X, treated with 

327 0.1 M glycine in PBS 1X for 10 min and permeabilized with 0.5% Triton X-100 in PBS 1X for 

328 5 min. After washing with PBS 1X and blocking for 1 h with 1% BSA, 10% FBS, 0.5% Triton 

329 X-100 in Washing Buffer (10 mM Tris HCl pH7.4, 150 mM NaCl and 0.01% Tween 20)

330 organoids were incubated with primary antibodies diluted in blocking solution o/n at 4°C. 

331 After several washes in PBS 1X, organoids were incubated with labeled secondary 

332 antibodies for 2 h at RT. F-actin was stained with 0.165 μM Alexa FluorTM 594 Phalloidin 

333 (Thermo Fisher Scientific) for 20 min at RT. For nuclear staining, organoids were incubated 

334 with 14.3 mM DAPI (Thermo Fisher Scientific) for 5 min at RT. Organoids were washed and 

335 mounted with Mowiol mounting medium. The following antibodies were used: anti-Ki67 

336 1:200 (#AB92742, Abcam), anti-OLFM4 1:200 (#14369S, Cell Signaling Technology), anti-

337 E-Cadherin 1:50 (#610404, BD Biosciences, San Jose, CA, USA) and anti-Lysozyme 1:200

338 (#A009902-2, Agilent Technologies). For detection, Alexa Fluor-488 (#711-546-152 and 

339 #715-546-150 Jackson ImmunoResearch, Ely, UK) antibodies were used. Fluorescent 

340 images were collected using a laser scanning confocal microscope (LEICA TCS SP8, Leica 

341 Microsystems). Brightfield images were collected using a microscope (LEICA MC170 HD, 

342 Leica Microsystems).

343



344 2.15. Library preparation and next-generation sequencing. Genomic DNA from tumor 

345 organoid was extracted using the QIAamp DNA Mini Kit (Qiagen) and quantified by using 

346 the Quant-iT™ PicoGreen™ dsDNA Assay Kit (LifeTechnologies). Briefly, barcoded 

347 libraries were generated from 50 ng of DNA per sample (N=3) using the Ion AmpliSeq 

348 Library Kit Plus (Thermo Fisher Scientific) and two premixed pools of 952 primer pairs 

349 (Thermo Fisher Scientific), according to manufacturer’s instructions. Clonal amplification of 

350 libraries was performed by emulsion PCR on an Ion Chef Instrument. The prepared libraries 

351 were then sequenced on an Ion S5 GeneStudio Sequencer using a Ion 530 Chip and the 

352 Ion 510/520/530 kit–Chef (all Thermo Fisher Scientific).

353

354 2.16. Data analysis and Variant prioritization. We analyzed data using Variant Caller 

355 v5.10 (Thermo Fisher Scientific). Variant caller format files were annotated with Ion Reporter 

356 5.10 (Thermo Fisher Scientific) and wANNOVAR. Somatic variants were called when a 

357 position was covered at least 100X. We set the clinical sensitivity of point mutations and 

358 indels at 5%. Variant prioritization for TP53 was based on population frequency, quality 

359 values and functional consequences. Synonymous variants were excluded. Variants were 

360 filtered based on their frequency ExAC datasets (http://exac.broadinstitute.org) and on 

361 clinical associations (ClinVar database) (https://www.ncbi.nlm.nih.gov/clinvar). 

362

363 2.17. Bioinformatics analysis. Analysis of APEX1 gene expression in colon cancer was 

364 performed through TCGA data retrieval from cbioportal and CMS class information were 

365 accessed from the original Consensus Molecular Stratification of colon cancer. Differential 

366 gene expression analysis was conducted by Mann Whitney test. APE1 interactors analysis 

367 in colon cancer was performed using the differential gene expression results from TCGA 

368 and normal datasets (GTEX data) for the genes encoding the interacting partners of APE1 

369 for colon cancer (COAD). Data was obtained via the GDC data portal hub 
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370 (https://portal.gdc.cancer.gov/, last accessed July 2018). The RUVSeq package inside the 

371 R/Bioconductor environment was used to eliminate the batch effect coming from the 

372 combination of two data sources [61]. In order to better estimate the differentially expressed 

373 genes between the tumor and the normal corresponding datasets, we obtained “in-silico 

374 empirical” negative controls, i.e., the least significantly DE genes based on a first-pass DE 

375 analysis performed prior to RUVg normalization [61]. Differentially expressed genes 

376 (multiple correction adjustment using the Benjamini-Hochberg method, p<0.05; absolute log 

377 fold change difference≥1) were used to perform enrichment and survival analyses. 

378 Enrichment analysis of the DE genes was performed using the DAVID functional annotation 

379 tool based on GO biological process and cellular component terms [62]. For the survival 

380 analysis, Kaplan-Meier plots were drawn using the RTCGA Bioconductor package [63], 

381 which uses maximally selected rank statistics (maxstat) to determine the optimal cutpoint 

382 for continuous variables. Division of the samples was done within the 30-70% percentile 

383 range of gene expression by the optimal cutpoint value. The Benjamini-Hochberg method 

384 was used for p-value correction of Kaplan-Meier plots.

385

386 2.18. Statistical analyses. All reported values are represented as the mean ± SD or mean 

387 ± SEM of at least three biological replicates. Statistical analyses were performed using the 

388 Student’s t-test. P<0.05 was considered as statistically significant.

389



390 3. Results

391 3.1. APE1 is overexpressed in colorectal cancer and the inhibition of its endonuclease 

392 activity triggers p53-mediated effects on cell metabolism

393 APE1 overexpression is correlated with tumor progression of many cancers, but little 

394 information is available on colorectal cancer (CRC) [23,24,64]. In order to further determine 

395 the involvement of APE1 in CRC, we took advantage of the information available from TCGA 

396 data sets of CRC. By performing differential gene expression (DEG) analysis on the TCGA 

397 COAD RNA-seq V2 data, we compared the expression profile of the four consensus 

398 molecular subtypes (CMS) of CRC versus normal control samples [PMC4636487]. The DEG 

399 was computed by the non-parametric Mann Whitney test. A significant upregulation of the 

400 APEX1 gene in the four CMS classes was identified compared to the normal one (Fig. 1A) 

401 (p-value=1.7e-15, 4e-11, 7.2e-14, 3.5e-11, for the CMS class 1-4, respectively), however there 

402 was no significant difference between the CMS classes analysed. These data demonstrate 

403 that APE1 is generally overexpressed in CRC, supporting the hypothesis that it could 

404 represent a novel target for the treatment of this cancer type. 

405 We analyzed the effects of APE1 inhibition on colon cancer cell lines using a number of 

406 APE1 specific small molecule inhibitors: Compound #3, which blocks APE1-endonuclease 

407 activity thus leading to genome instability [35]; APX2009, which inhibits APE1-redox 

408 function, leading to cell-cycle arrest and apoptosis in different cancer cell models [38], and 

409 Fiduxosin, SB206553 and Spiclomazine, as inhibitors of the well-known interaction between 

410 APE1 and NPM1, leading to an alteration of the APE1-endonuclease activity and to 

411 apoptosis in different tumor cell lines [22,44]. A schematic representation of the APE1-

412 inhibitors used in this study is shown in Fig. 1B. 

413 To determine the p53 contribution in APE1 inhibitors induced effects, we took advantage of 

414 the well-known HCT-116 p53+/+ and HCT-116 p53-/- isogenic colon cancer cell lines, which 

415 are wild-type and knock-out for p53 gene expression, respectively [65] (Fig. 1C, top left 
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416 panel). Experimentally, HCT-116 cells were treated with increasing concentrations of 

417 different APE1 inhibitors for 48 hours. The metabolic activity of viable cells was measured 

418 by using the MTS assay, a colorimetric assay which measures the reduction of MTS 

419 tetrazolium compound into formazan in mitochondrial metabolically active cells. The 

420 treatment with the APE1-endonuclease inhibitor Compound #3 demonstrated that HCT-116 

421 p53+/+ cell line was significantly more sensitive, at the doses of 0.25 µM and 0.5 µM, than 

422 HCT-116 p53-/- (Fig. 1C, top in the middle panel and Table 1 for IC50 values). In order to 

423 understand if the inhibition of APE1-redox activity could have some effects on HCT-116 cell 

424 lines, we treated cells with the APX2009 compound. We did not find a significant difference 

425 between HCT-116 p53+/+ and HCT-116 p53-/- cell metabolism upon APX2009 treatment, 

426 even if a mild effect can be observed (Fig. 1C, top right panel and Table 1 for IC50 values). 

427 Similarly, no significant differences, between the two cell lines, were found when inhibitors 

428 of APE1 and NPM1 interaction were used, with Fiduxosin being the most toxic for both cell 

429 lines (Fig. 1C, bottom panel and Table 1 for IC50 values). These findings were in agreement 

430 with the presence of no significant difference in the expression levels of both APE1 and 

431 NPM1, as measured at the mRNA and protein levels (Fig. S1A, B). Moreover, to further 

432 confirm the differential effect of Compound #3 and APX2009 on cell metabolism of HCT-116 

433 p53+/+ and HCT-116 p53-/- cell lines, we performed a luminescence-based metabolic assay 

434 (RealTime-Glo). Compared to MTS assay, previously used, RealTime-Glo is a more 

435 sensitive assay based on the measurement of the reducing potential of mitochondrial 

436 metabolic active cells, considering the luminescent signal produced from the reduction of 

437 the substrate used by the luciferase, and thus mitochondrial metabolism. RealTime-Glo 

438 assay demonstrated that HCT-116 p53+/+ cells presented an impairment of metabolic activity 

439 in comparison to HCT-116 p53-/- upon Compound #3 treatment, especially at the dose of 

440 0.5 µM, confirming the data previously obtained through MTS assay (Figure 1D, right panel 

441 and Table 1 for IC50 values). Interestingly, RealTime-Glo assay revealed that HCT-116 p53-/- 
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442 cells underwent a major loss of metabolic activity compared to HCT-116 p53+/+ cells upon 

443 APX2009 administration in a dose-dependent manner, particularly at the doses of 2.5 µM 

444 and 5 µM (Fig. 1D, right panel and Table 1 for IC50 values). These data demonstrated that 

445 the small difference in metabolic activity that we observed with MTS assay (Fig 1C, top right 

446 panel) was much more apparent when the more sensitive RealTime-Glo assay was used. 

447 in place of the MTS assay. In order to exclude that the toxic effect could be associated with 

448 an alteration of the doubling time of the HCT-116 p53+/+ and p53-/- cell lines, we calculated 

449 it (HCT-116 p53+/+ 38±2.2 h, HCT-116 p53-/- 35±2.4 h) and no difference was observed. This 

450 excludes an alteration of the proliferation index as the cause of the effects on cell viability 

451 between the two cell lines.

452 In order to further validate the specificity of Compound #3 and APX2009 as APE1 inhibitors 

453 in the range of doses used in the present study, we took advantages of CH12F3+/+/∆ and 

454 CH12F3∆/∆/∆ cell lines [66], a recently developed murine cell model containing two and zero 

455 copies of APEX1 alleles, respectively (Fig. 1E, left panel). Both CH12F3 cell lines were 

456 treated with increasing concentrations of Compound #3 or APX2009 for 48 hours and then, 

457 the cellular metabolism of viable cells was measured by using a luminescence-based assay 

458 (CellTiter-Glo), which evaluates the amount of total ATP produced by cells. As shown in Fig. 

459 1E, APE1-endonuclease and -redox inhibitors specifically affect CH12F3+/+/∆ but not 

460 CH12F3∆/∆/∆ cell line, as expected, confirming the high specificity of the inhibitors, under the 

461 experimental conditions used (Table 1 for IC50 values). In the case of the effects of 

462 Fiduxosin, SB206553 and Spiclomazine, their specificity was previously demonstrated by 

463 us [22,44].

464 In conclusion, data obtained indicate that the sensitivity of HCT-116 cells to Compound #3 

465 and APX2009 treatment was dependent on their p53 status. Moreover, the inhibition of 

466 APE1-NPM1 interaction impairs cell metabolism independently of p53 status. Interestingly, 



467 while the toxic effect of Compound #3 was dependent on the expression of p53, a more 

468 toxic effect of APX2009 was apparent in p53 knock-out cells.

469

470 3.2. Inhibition of APE1-endonuclease activity promotes p53 activation

471 We then evaluated whether APE1 inhibition could promote p53 activation. We focused only 

472 on Compound #3 and APX2009, since the APE1-NPM1 inhibitors did not display any 

473 significant difference in terms of biological effects exerted on HCT-116 cell lines. p53 

474 activation is part of DDR triggered by single-strand breaks (SSBs) and double-strand breaks 

475 (DSBs) formation. We determined whether the amount of AP sites and SSBs could be 

476 affected by the treatment with Compound #3 in HCT-116 cell lines. AP sites measurements 

477 (Fig 2A) and comet assay analyses (Fig. 2B and C) clearly demonstrated that Compound 

478 #3 treatment promoted a significant increase of AP sites and SSBs formation in both HCT-

479 116 p53+/+ and HCT-116 p53-/- cell lines independently of the p53 status at both the doses 

480 tested (0.5 µM and 3 µM). The non-significant difference in the levels of AP sites and SSBs 

481 between both HCT-116 cell lines is in agreement with the non-differential expression of 

482 APE1 between the two cell lines used (Fig. S1).

483 In order to get a better understanding of the relationship existing between p53, its gene 

484 target genes and the inhibition of APE1 enzymatic activity in HCT-116 cell lines, we analyzed 

485 the protein and mRNA expression levels of p53 and those of some p53-target genes upon 

486 Compound #3 treatment. In details, HCT-116 p53+/+ and HCT-116 p53-/- cells were treated 

487 with increasing concentrations of Compound #3 (0.25 µM and 0.5 µM) and cells were 

488 collected and tested 48 hours later. These doses, with limited effects on cell viability, allowed 

489 to avoide epiphenomena due to general toxic effects and allowed comparison to data 

490 obtained with those obtained with the redox-inhibitor (see below). Upon the administration 

491 of Compound #3, we analyzed the protein levels of APE1, p53, and p21, one of the major 

492 downstream targets of p53 [47], through Western blotting. We observed a significant 
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493 increase of p53 and p21 protein levels upon Compound #3 administration in HCT-116 p53+/+ 

494 cells only, indicating a p53 activation possibly due as a consequence of cell DDR induction 

495 (Fig. 2D). Moreover, the inhibition of APE1-endonuclease activity did not considerably alter 

496 neither APE1 nor NPM1 protein levels in both cell lines, exerting only slight effects. 

497 Densitometric analysis of p53, p21, APE1, and NPM1 protein levels, normalized to actin 

498 levels, is shown in Fig. 2E. Moreover, to further confirm the unaltered levels of APE1 gene 

499 expression upon Compound #3 treatment, we analyzed its mRNA expression. No 

500 statistically significant changes in APE1 transcript were observed (Fig. S1C), confirming that 

501 the higher sensitivity of HCT-116 p53+/+ cell line to Compound #3 is not due to an impairment 

502 of APE1 expression. Furthermore, to test a possible impact of the activation of the p53 

503 pathway on another known p53-target gene, negatively regulated by p53 and involved in 

504 BER [11,57,67–69], we analyzed the mRNA expression level of DNA Polymerase δ (DNA 

505 Polδ). As it is shown in Fig. 2F, the level of transcripts of DNA Polδ decreased upon 

506 Compound #3 treatment in HCT-116 p53+/+ cells only, in line with p53 induction. These data 

507 support the hypothesis that APE1-endonuclease inhibition causes the functional activation 

508 of p53 protein acting both as a transcriptional activator and repressor of different target 

509 genes. 

510 In order to further support that APE1 inhibition may result in p53 activation, a knockdown 

511 approach, through specific siRNA targeting APE1, was used. As shown in Fig 2G, knock 

512 down of APE1 promoted an increased expression of p53 in HCT-116 p53+/+ cell line, 

513 demonstrating a mutual inverse relationship between APE1 and p53 (Fig. 2G). Finally, to 

514 generalize the stimulatory effect by Compound #3 on p53 expression, we treated two 

515 additional tumor cell lines, i.e. AML2 as a model of acute myeloid leukemia cells [70] and 

516 HCC70 cell line, a triple negative breast cancer cell line [71]. These cell lines harbor a wild-

517 type form [70] and a missense mutation (p.R248Q) [71] of the TP53 gene, respectively. 

518 TP53 p.R248Q is a gain-of-function mutation that causes an aberrant overexpression of the 

21



519 p53 protein. AML2 and HCC70 cell lines showed an increased expression of p53 upon 

520 Compound #3 treatment, demonstrating that the activation of p53 upon inhibition of APE1-

521 endonuclease activity could be a generalized phenomenon across different cancer cell lines 

522 (Fig. 2H and I) and not only colon specific. Altogether, these data confirm that APE1-

523 endonuclease inhibitor treatment of different cancer cell lines promotes p53 expression and 

524 its functional induction.

525 DNA damage activating the p53-p21 pathway may lead to cell apoptosis through caspase 

526 activation [47]. Therefore, we performed a caspase activity assay to measure apoptosis 

527 induction by Compound #3 treatment (Fig 2L). After 48 hours of treatment with increasing 

528 concentrations of Compound #3, Apo-ONE assay was used to quantify relative levels of 

529 apoptosis. The treatment with APE1 inhibitor induced the activation of the caspase pathway 

530 in both colon cancer cell lines (Fig. 2L) occurring only at the highest dose (3 µM) of 

531 treatment. However, no differences were apparent between the two cell lines, confirming 

532 that Caspase activation was independent of p53-activation and was present only at highest 

533 dose of treatment with Compound #3. Data not shown also demonstrated that Compound 

534 #3-treatment did not exert any significant differential effect on cell cycle of the two isogenic 

535 HCT-116 cell lines.

536 These experiments, coupled with the metabolic assays, indicate that the inhibition of the 

537 APE1-endonuclease activity promoted a p53-induced response involving mitochondria, 

538 which may explain the higher susceptibility of p53+/+ cell metabolism to Compound #3 

539 treatment in the absence of significant Caspase-3 activation and of differential effects on 

540 cell cycle between the two HCT-116 isogenic cell lines.

541

542 3.3 Inhibition of APE1-redox activity does not affect p53 expression

543 We analyzed whether inhibition of APE1-redox activity could affect p53 expression. We 

544 checked the efficacy of APX2009 treatment on HCT-116 colon cancer cell lines, 
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545 qRT-PCR on the baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5), also known 

546 as Survivin, that was already demonstrated to be a target of APE1-redox function [40]. 

547 Treatment with increasing concentrations of APX2009 (Fig. 3A) promoted a decrease in the 

548 expression levels of BIRC5 transcript in both HCT-116 cell lines (Fig. 3A), in line with 

549 previously demonstrated data on different cell lines [40].

550 To assess whether APE1-redox inhibitor stimulates the p53-pathway, we performed the 

551 same set of experiments, as with Compound #3, but with APX2009. We used APX2009 at 

552 concentrations of 5 µM and 10 µM, that promoted a reduction in cell viability of less than 

553 40% similar to the conditions used with Compound #3 treatment. As shown in Fig. 3B and 

554 C, no differences in p53 and in the expression of the p21 target gene were observed upon 

555 the administration of the redox inhibitor. Moreover, DNA Polδ transcript did not significantly 

556 change following APX2009 administration, in agreement with the lack of any stimulatory 

557 effects by the APE1-redox inhibition on p53 levels (Fig. 3D). Moreover, the caspase activity 

558 assay demonstrated a dose-dependent activation of the caspase pathway indistinctly in both 

559 colon cancer cell lines (Fig. 3E).

560 Taken together, these experiments demonstrate that the inhibition of the APE1-redox 

561 activity does not activate a p53-mediated cell response and this is in agreement with data 

562 on cell metabolism. 

563

564 3.4 Inhibition of APE1-endonuclease activity impairs mitochondrial activity in a p53-

565 dependent manner

566 Data obtained so far, through MTS and RealTime-Glo analyses, point to a major role of the 

567 p53-dependent effect of Compound #3 on cell viability due to metabolic effects associated 

568 with mitochondrial toxicity. In order to better characterize this aspect, we directly analyzed 

569 mitochondrial activity using the Cell Mito Stress Test [72] upon Compound #3 treatment. 

570 Specifically, HCT-116 p53+/+ and HCT-116 p53-/- cell lines were treated with 0.5 µM of 
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571 Compound #3 for 48 hours and were analysed for mitochondrial respiration. The parameters 

572 of basal oxygen consumption, respiration coupled to ATP production, spare respiratory 

573 capacity and maximal respiration were obtained through oxygen consumption rate (OCR) 

574 profile. As represented in Fig. 4A, OCR profile indicates that Compound #3 impaired the 

575 mitochondrial activity of HCT-116 p53+/+ cells, while the treatment did not significantly alter 

576 the mitochondrial function of HCT-116 p53-/- cells. In particular, the OCR values were 

577 comparable between the two colon cancer cell lines under basal conditions. Interestingly, 

578 Compound #3 treatment affected the majority of the respiratory parameters in a p53-

579 dependent manner (Fig. 4B). Among them, the basal and ATP-coupled respiration was 

580 significantly lower in HCT-116 p53+/+ than the isogenic p53-/- counterpart upon treatment. 

581 Moreover, the spare respiratory capacity and maximal respiration were impaired in HCT-

582 116 p53+/+ treated cells in comparison to the untreated condition. On the other hand, we did 

583 not observe any difference in mitochondrial function in p53-null colon cancer cell line upon 

584 treatment. The OCR profiles of HCT-116 p53+/+ and p53-/- cell lines with Compound #3 at 

585 different concentrations (0.25 µM and 1 µM) are shown in Fig. S2, confirming the obtained 

586 results, particularly at the dose of 1 µM. 

587 Overall, the data obtained suggest that the expression of p53 is responsible for the observed 

588 effects on cell metabolism, upon inhibition of APE1-endonuclease activity, through an 

589 involvement of mitochondrial respiratory function.

590

591 3.5 Inhibition of APE1-endonuclease activity sensitizes p53 expressing cell lines to 

592 MMS treatment

593 Based on the results obtained so far, we analyzed the effect of p53 on cell metabolism in 

594 combination with a genotoxic insult, which is specifically repaired through the enzymatic 

595 activity of APE1 and BER [73]. We used methyl methanesulfonate (MMS), an alkylating 

596 agent generating damages specifically repaired through BER [73]. Experimentally, HCT-116 
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597 cells were treated with increasing concentrations of Compound #3 (0.25 µM and 0.5 µM) for 

598 40 hours and in combination with MMS (range from 200 µM to 600 µM) for additional 8 hours 

599 (Fig. 5). After a total of 48 hours of treatment, cell metabolism was measured using the MTS 

600 assay (Table 1 for IC50 values). The graphs in Fig. 5A-C clearly shows that the two isogenic 

601 cell lines responded similarly sensitive to MMS. Interestingly, when Compound #3 was used 

602 in combination with MMS, the sensitivity to the drug treatment increased (Fig. 5A-C); 

603 however, the p53-null colon cancer cells were significantly less sensitive to combination 

604 treatment than the isogenic counterpart (Table 1 for IC50 values), in particular at the dose of 

605 600 µM of MMS, in agreement with the stimulatory effect of Compound #3 on p53 expression 

606 demonstrated above. 

607 These results suggest that p53-status is essential for cellular resistance to genotoxic stress 

608 upon the inhibition of APE1-endonuclease activity.

609

610 3.6 Inhibition of APE1-endonuclease activity exerts toxic effects on patient-derived 

611 tumor organoids metabolism and is associated with the p53-mutational status

612 In order to further validate the possible opportunity of targeting the APE1-endonuclease 

613 activity in CRC and further supporting our data previously obtained with HCT-116 isogenic 

614 cancer cell lines, we performed targeted experiments by using 3D tumor organoids derived 

615 from three different patients affected by colon cancer (P12, P14 and P16). The molecular 

616 and morphological characterization, obtained through immunofluorescence, is shown in Fig. 

617 6A. Patient-derived tumor organoids were positive for the most common intestinal markers, 

618 such as Ki67 (proliferating cells), OLFM4 (intestinal stem cells), E-Cadherin (intestinal 

619 epithelial cells) and Lysozyme (Paneth cells). Representative images of the molecular 

620 morphology of the patient-derived tumor organoids are shown in Fig. 6B. To check the p53-

621 functional status of these model organoids, genomic DNA was isolated from tumor 

622 organoids and used as a template for next generation sequencing analysis, using the 
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623 Torrent S5 GeneStudio NGS platform. After variant calling filtration and annotation, we 

624 detected a c.586C>T stop-gain mutation (p.R196X) in P14 and a c.524G>A missense 

625 mutation (p.R175H) in P16, the latter being a structural aminoacidic substitution causing a 

626 TP53 gain-of-function and wild-type alleles in P12 (Fig. 6C). All samples did not bear any 

627 pathogenic alteration of APEX1 gene sequence. The western blotting analysis 

628 demonstrated that p53 was expressed in P12 and P16 but not in P14, in agreement with 

629 sequencing data (Fig. 6D). No major differences in APE1 protein expression level were 

630 assessed among tumor organoids (Fig. 6E), with only a mild increase in P14 and P16 with 

631 respect to P12. We treated the different tumor organoids with increasing concentrations of 

632 Compound #3 (range from 0.5 to 5 µM) and cell metabolism was measured by using 

633 RealTime-Glo assay upon 48 hours of treatment. Interestingly, the treatment with APE1-

634 endonuclease inhibitor impaired the cell metabolism of all tumor organoids in a dose-

635 dependent manner but to different extents (Fig. 6F and Table 1 for IC50 values). The 

636 reduction of cell metabolism was observed within a range of 40-65% at the concentration of 

637 5 µM. Interestingly, we observed a different cytotoxic sensitivity of the three tumor organoids 

638 to Compound #3 that was dependent on their p53 status. In particular, tumor organoids 

639 expressing wild-type p53 (P12) and the R175H gain-of-function mutant (P16) were more 

640 sensitive to APE1 inhibition than the P14 null-mutant, in agreement with the data obtained 

641 with the colon cancer cell lines. 

642 Even though the limited number of sample patients, these results indicate that the inhibition 

643 of APE1-endonuclease activity significantly hampers the patients-derived tumor organoids 

644 metabolism and is associated with the p53 mutational status, in agreement with data 

645 obtained with HCT-116 cell lines.

646



647 4. Discussion

648 Human cells are constantly subjected to potentially damaging events to the stability of 

649 nucleic acid, with tens of thousands of DNA lesions occurring per day [74]. The intestinal 

650 tract is exposed to multiple insults coming from metabolic activity of the microenvironment 

651 [75] and from the diet [7], that can lead to mutations or deletions in the DNA of epithelial

652 cells. In the intestinal tract, the involvement of the direct reversal of DNA damage by O6-

653 methylguanine-DNA methyltransferase (MGMT), nucleotide excision repair (NER) and base 

654 excision repair (BER) have been described [7]. Alterations of these repair mechanisms are 

655 clearly associated with tumor development but also represent an emerging ‘Achilles’ heel’ 

656 for the development of new anticancer strategies [76]. Indeed, a dysregulation of BER has 

657 been observed in different tumors, such as breast, liver, melanoma, bladder and colorectal 

658 cancer (CRC) [6,77–81]. In the case of CRC, an increased expression of BER enzymes is 

659 associated with a poor prognosis and contributes to chemoresistance [6]. In particular, 

660 higher levels of N-methylpurine-DNA glycosylase (MPG), 8-oxoguanine-DNA glycosylase 

661 (OGG1), APE1, PARP1, DNA polymerase β (Polβ) and XRCC1 are associated with adverse 

662 outcomes in patients with sporadic CRC [6,81]. Interestingly, the tumor suppressor p53, 

663 frequently mutated in the late stages of CRC [48], is involved in the regulation of DNA 

664 glycosylases (OGG1 and MUTYH) [52,53], APE1 [54,55], Pol β [56] and Pol δ [57] 

665 expression. Generally, upon genotoxic lesions, p53 regulates the expression of DNA repair 

666 genes [68], as in the case of APE1 that is negatively regulated by p53 through modulation 

667 of Sp1 stability [57]. Therefore, impaired p53 results in a loss of transcriptional regulation 

668 thus leading to BER imbalance and genome instability. Moreover, the DNA repair capacity 

669 of BER has been taken into account as a prognostic factor to 5-Fluorouracil (5-FU) treatment 

670 in CRC-affected patients, as demonstrated by a recent publication showing that a good 

671 therapy response is correlated with an observed higher activity of BER in non-malignant 

672 adjacent mucosa and a lower BER activity in tumor tissue [82]. To date, the 
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673 effect of the only APE1-redox inhibitor has been highlighted in different cancer cell lines. For 

674 example, APX3330 inhibits cell growth in tumor endothelium/endothelial progenitor cells 

675 [83], leukemia [31], pancreatic [84,85], breast [86], hepatocellular [87], prostate cancer cells 

676 [88] and colon [23]. It should be noted that APE1-redox inhibitor APX3330 recently

677 completed a cancer Phase I clinical trial (https://clinicaltrials.gov/ct2/show/NCT03375086) 

678 [42,43]. Thus, discovering new drugs able to inhibit the activity of APE1 in a CRC context 

679 could be a promising field in the precision medicine. However, no studies targeting the 

680 APE1-endonuclease activity and its effect on p53 activation have been published. Here, we 

681 demonstrated the anticancer effects of different APE1 inhibitors in colon cancer cells and 

682 their relationship with p53 activation. By using different technical approaches, we observed 

683 a p53-dependent metabolic impairment, impacting on mitochondrial respiratory 

684 mechanisms, of HCT-116 cell lines upon treatment with APE1-endonuclease inhibitor, 

685 proving the effectiveness of the treatments also in a CRC context. It is noteworthy to mention 

686 that the APX2009 redox inhibitor resulted more toxic to p53 knock-out cells than wild-type 

687 counterpart. This observation will need additional studies to understand the molecular basis 

688 for this effect.

689 In our case, the increased p53 level, following the DNA damage (AP site accumulation and 

690 SSBs generation) caused by APE1-endonuclease inhibition, was not associated with any 

691 changes in APE1 mRNA and protein levels, in contrast to what was previously demonstrated 

692 in other papers, in which p53 was demonstrated to negatively regulate APE1 gene 

693 expression [55]. Moreover, we did not observe any p53 stimulation caused by APX2009 

694 treatment, therefore suggesting the possibility to target different APE1 activities by acting 

695 through different response mechanisms either involving the DNA-repair or the redox-

696 functions. We also observed that the inhibition of APE1-endonuclease activity promotes p53 

697 activation not only in colon cancer cells, but also in breast and leukemia cancer cell lines, 

698 suggesting that the APE1 inactivation and the consequent accumulation of DNA damage 
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699 converge toward p53 activation. Thus, the use of APE1-endonuclease inhibitors could be 

700 particularly relevant considering the p53-functional status of the specific tumor.

701 Another relevant finding regards the effect of APE1-endonuclease inhibitor on CRC patient-

702 derived tumor organoids. Our study demonstrates that Compound #3 impairs the viability of 

703 CRC patient-derived organoids in a dose-dependent manner and in a p53-dependent 

704 mutational status, which is in agreement with our findings obtained from cancer cell lines.

705 To our knowledge, the observation that the APE1-endonuclease inhibitor effects are 

706 possibly related to the p53 role on mitochondrial metabolism is extremely important. Besides 

707 cell cycle arrest, apoptosis and senescence, p53 plays an important function also in 

708 mitochondrial respiration [89]. As a regulator, p53 induces the expression of cytochrome c 

709 oxidase 2 (SCO2), ferredoxin reductase (FDXR) and glutamine 2 (GLS2), thus modulating 

710 oxidative phosphorylation and tricarboxylic acid (TCA) cycle [89,90]. Moreover, the 

711 involvement of BER in mitochondrial homeostasis has been extensively demonstrated. 

712 Indeed, p53 regulates mitochondrial BER in removing oxidized bases of the mtDNA 

713 generated by reactive oxygen species (ROS) metabolism [91]. Notably, Compound #3 

714 sensitizes p53-expressing colon cancer cells to genotoxic treatment, such as MMS. Due to 

715 the relevance of APE1 inhibition on mitochondrial functionality in a p53-dependent manner, 

716 we performed additional bioinformatics analyses that clearly pointed to a major role of 

717 mitochondrial toxicity correlated with APE1 functional dysregulation in tumors. It is also 

718 possible that the effect of Compound #3 could be also exerted through inhibition of 

719 mitochondrial APE1 [92–94], whose role is still debated. An important confirmation of the 

720 mitochondrial role of APE1 linking to p53 activation is also supported by our recent findings 

721 (Ayyildiz D. et al., submitted). In fact, when characterizing the APE1 protein-protein 

722 interactome (PPI) in different cancers cells, we found that the differential expression status 

723 of APE1 PPI was clearly associated with bad prognosis signatures in cancers (Ayyildiz D. 

724 et al., submitted). TCGA analyses demonstrated that in CRC, 79% (n=287) of APE1 

PPI 29



725 resulted in upregulation, while 21% (n=77) of the genes altered in expression were 

726 downregulated (Fig. 7A). Based on the relationship existing between these differentially 

727 expressed interactors, by focusing on their subcellular localizations through functional 

728 enrichment analysis based on GO CC terms, we observed that 24% (n=70) of the 

729 upregulated and 12% (n=9) of the downregulated interactors were mitochondria-associated 

730 proteins (Fig. 7A). The subcellular localizations and enrichment results of these 

731 differentially-regulated physical-interactors of APE1 are shown in Fig. 7B. The enrichment 

732 analysis highlighted pathways that can improve our understanding of the importance of 

733 APE1 for mitochondrial activity. Among them, mitochondrial RNA processing, fatty-acid 

734 oxidation, respiratory complex III and apoptosis represented the most important ones (Fig. 

735 7B). All these processes are essential for cancer metabolism [95,96], as in the case of the 

736 mitochondrial respiratory complex III, that plays a role in CRC progression [97]. Interestingly, 

737 some of these interactors were found to be significantly regulated in our previously published 

738 microarray data [98], such as AK2, CKB, CLIC4, DNAJA1, DUT, HSPA1A, IDH1, KYNU, 

739 MTCH2, SHMT2, SIRT1 and YWHAH (marked in red circle in Fig. 7B). SIRT1, which 

740 regulates BER modulating the acetylation status of APE1 [73], has been found upregulated 

741 in various cancer cell lines, including HCT-116 cell line [99]. The survival signature of the 79 

742 interactors were also confirmed by Kaplan-Meier analysis in TCGA colon cancer dataset 

743 (COAD) and BCAP31, CDKN2A, DUT, NIF3L1 and SHMT2 were associated to poor 

744 prognosis (marked with red star in Fig. 7B). Together, this evidences support our findings, 

745 namely the mitochondrial impairment related to p53 upon Compound #3 treatment. The 

746 experimental data we provide, together with these bioinformatics analyses, support the 

747 hypothesis to target mitochondrial function in cancer cells through APE1-endonuclease 

748 inhibitors. More tailored studies are needed along these lines.

749 In conclusion, our data highlights novel relevant aspects regarding developing new 

750 strategies for targeting BER, and especially APE1 functions, in CRC. Therefore, the 

30
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751 opportunity to use APE1-endonuclease inhibitors, such as Compound #3, in cancer therapy 

752 should not be underestimated. Finally, greater treatment efficacy and reduced drug 

753 resistance onset mechanisms have been demonstrated when different anti-cancer drugs 

754 are combined together [100], thus the possibility of studying the effects of the different 

755 combination of APE1 inhibitors with well-known chemotherapeutic agents may open new 

756 perspectives in cancer biology research.

757
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1147 Table

1148

Model used Drug Time (hours) IC50 (
M)

Assay
CH12F3+/+/∆ 1.44
∆/∆/∆CH12F3 1.9
HCT-116 p53+/+ 0.58
HCT-116 p53-/- 0.69
HCT-116 p53+/+ 1.04
HCT-116 p53-/- 1.50
CH12F3+/+/∆ 6.61
∆/∆/∆CH12F3 9.64
HCT-116 p53+/+ 11.7
HCT-116 p53-/- 11.6
HCT-116 p53+/+ 10.0
HCT-116 p53-/- 6.39
HCT-116 p53+/+ 16.1
HCT-116 p53-/- 15.6
HCT-116 p53+/+ n.d. (>100)
HCT-116 p53-/- n.d. (>100)
HCT-116 p53+/+ 30.4
HCT-116 p53-/- 31.2
HCT-116 p53+/+ 721
HCT-116 p53-/- 938
HCT-116 p53+/+ 0.373
HCT-116 p53-/- 0.58
tumor organoid P12 1.36
tumor organoid P14 2.8
tumor organoid P16 0.71

RealTime-Glo

CellTiter

MTS

CellTiter

RealTime-Glo

MTS

RealTime-Glo

MTS

Compound #3 48

Fiduxosin

SB206553

Spiclomazine

MMS

Compound #3

48

8

40 + 8

Compound #3

APX2009

1149 Table 1: List of IC50 values obtained from each model used. The analysis was carried 

1150 out using the Combenefit 2.021 software allowing to calculate the IC50 values for each drug 

1151 tested on the models analyzed. Cell models (cell lines and patient-derived 3D tumor 

1152 organoids), types of assays, drugs and time points are reported. n.d. indicates that the 

1153 goodness of fit value is too low or a standard Hill equation does not correctly account for the 

1154 specific agent used. In some cases, the expected interpolated IC50 value has been reported. 
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1155

1156 Figure legends

1157 Fig. 1. APE1 is overexpressed in colorectal cancer and the inhibition of its 

1158 endonuclease activity triggers p53-mediated effects on cell metabolism.

1159 (A) Gene expression level of APEX1 in the CRC samples of the four CMS classes and

1160 normal controls (CMS1 MSI Immune n=71; CMS2 Canonical n=130; CMS3 Metabolic n=58; 

1161 CMS4 Mesenchymal n=98; control n=42). For left to right, the violin plots illustrate the 

1162 log(FPKM+1) normalized gene expression level in the CMS 1-4 class CRC and normal 

1163 control samples, respectively. (B) Schematic representation of different functions of APE1. 

1164 The specific inhibitors of the different functions of APE1 are also indicated. (C) Western blot 

1165 analysis of p53 and APE1 protein levels in HCT116 p53+/+ and p53-/- cell lines. Actin was 

1166 used as a loading control. MTS assay on HCT-116 p53+/+ and p53-/- cell lines. Cells were 

1167 treated with increasing amounts of APE1 inhibitors (Compound #3, APX2009, Fiduxosin, 

1168 SB206553 and Spiclomazine) at the indicated concentrations for 48 h. Untreated cells were 

1169 treated with DMSO. In graph, the percentage of metabolic activity relative to untreated cells, 

1170 arbitrary set to 100%, is represented. Values are mean±SD (n≥3). (D) RealTime Glo assay 

1171 on HCT-116 p53+/+ and p53-/- cell lines. Cells were treated with increasing amounts of 

1172 Compound #3 or APX2009 for 48 h. Untreated cells were treated with DMSO. In graph, the 

1173 percentage of metabolic activity relative to untreated cells, arbitrary set to 100%, is 

1174 represented. Values are mean±SD (n=3). (E) Western blot analysis of APE1 in CH12F3+/+/∆ 

1175 and CH12F3∆/∆/∆ cell lines. Actin was used as a loading control. CellTiter assay on 

1176 CH12F3+/+/∆ and CH12F3∆/∆/∆ cell lines. Cells were treated with increasing amounts of 

1177 Compound #3 or APX2009 at the indicated concentrations for 48 h. The percentages of 

1178 viable cells relative to untreated cells, arbitrary set to 100%, are represented in graph. 

1179 Values are mean±SD (n=3). Data were evaluated statistically by two-tails Student t-test. 

1180 Resulting p-value is indicated (* p<0.05, ** p<0.01, *** p<0.005).
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1181

1182 Fig. 2. Inhibition of APE1-endonuclease activity promotes p53 activation.

1183 HCT-116 p53+/+ and p53−/− cell lines were treated with Compound #3 (#3) at the indicated 

1184 concentrations for 48h. Untreated cells were treated with DMSO (A-F, L). (A) The amount 

1185 of abasic (AP) sites was measurement. Values are mean±SD (n=3). (B) Representative 

1186 fluorescence confocal microscope images of in vitro comet assay. Scale bars, 25 μm.  (C) 

1187 Tail moment was analysed for 100 cells at random by OpenComet software. Untreated cells 

1188 was used as reference and set to 1. Values are mean±SD. (D) Western blot analysis of p53, 

1189 p21, APE1 and Nucleophosmin (NPM1) protein levels. Actin was used as a loading control 

1190 (n=3). (E) Densitometric analysis of p53, p21, APE1 and NPM1 protein expression. Levels 

1191 were normalized to actin. Fold change values relative to untreated control cells, arbitrary set 

1192 to 100%, are shown. Values are mean±SD (n=3). (F) Expression level of DNA Polimerase 

1193 δ (DNA Pol δ) was determined by qRT-PCR analysis. DNA Pol δ levels were normalized to 

1194 β-actin. Fold change values relative to untreated control cells, arbitrary set to 1, are shown. 

1195 Values are mean±SD (n=3). (G) HCT116 p53+/+ cell lines silenced for APE1 expression. 

1196 Western blot analysis of p53 and APE1 protein levels. Actin was used as a loading control. 

1197 Fold change values relative to untreated control cells, arbitrary set to 1, are shown. (H and 

1198 I) Western blot analysis of p53 protein levels upon Compound #3 (#3) at the indicated

1199 concentrations of AML2 cell lines treated with for 48 h (H) and HCC70 cell lines treated for 

1200 24 h (I). Actin was used as a loading control. Fold change values relative to untreated control 

1201 cells, arbitrary set to 1, are shown (n=3). (L) Apo-ONE assay was used to quantify relative 

1202 levels of apoptosis. The activities of caspases 3/7 were examined using a fluorescence-

1203 based assay. Untreated control cells were used as reference and set to 100%. Values are 

1204 mean±SD (n=2). Data were evaluated statistically by two-tails Student t-test. Resulting p-

1205 value is indicated (* p<0.05, ** p<0.01).
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1206

1207 Fig. 3. Inhibition of APE1-redox activity does not affect p53 expression. 

1208 HCT-116 p53+/+ and HCT-116 p53 −/− cells were treated with APX2009 (APX) at the indicated 

1209 concentrations for 48h. Untreated cells were treated with DMSO. (A) Expression level of 

1210 BIRC5 was determined by qRT-PCR analysis. BIRC5 levels were normalized to β-actin. 

1211 Fold change expression values relative to untreated cells, arbitrary set to 1, are shown. 

1212 Values are mean±SD (n=3). (B) Western blot analysis of p53, p21, APE1 and 

1213 Nucleophosmin (NPM1) protein levels. Actin was used as a loading control (n=3). (C) 

1214 Densitometric analysis of p53, p21, APE1 and NPM1 protein expression. Levels were 

1215 normalized to actin. Fold change values relative to untreated control cells, arbitrary set to 

1216 100%, are shown. Values are mean±SD (n=3). (D) Expression level of DNA Polimerase δ 

1217 (DNA Pol δ) was determined by qRT-PCR analysis. DNA Pol δ levels were normalized to 
β-

1218 actin. Fold change expression values relative to untreated control cells, arbitrary set to 1, 

1219 are shown. Values are mean±SD (n=3). (E) Apo-ONE assay was used to quantify relative 

1220 levels of apoptosis. The activities of caspases 3/7 were examined using a fluorescence-

1221 based assay. Untreated control cells were used as reference and set to 100%. Values are 

1222 mean±SD (n=3). Data were evaluated statistically by two-tails Student t-test. Resulting p-

1223 value is indicated (* p<0.05, ** p<0.01).

1224

1225 Fig. 4. Inhibition of APE1-endonuclease activity impairs mitochondrial activity in a 

1226 p53-dependent manner.

1227 (A and B) HCT-116 p53+/+ and p53-/- cells were seeded in a Seahorse XF-24 analyzer and 

1228 treated with 0.5 µM of Compund#3 for 48 h. Untreated cells were treated with DMSO. (A) 

1229 Real-time oxygen consumption rate (OCR) was determined during sequential treatments 

1230 with oligomycin (ATP-synthase inhibitor), FCCP (uncoupler of oxidative phosphorylation), 
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1231 rotenone (complex I inhibitor) and antimycin-A (complex III inhibitor). (B) The rates of basal 

1232 respiration, ATP-coupled respiration, spare respiratory capacity and maximal respiration 

1233 were quantified by normalization of OCR level to total protein content. Data represent 

1234 means±SEM (n=3). Data were evaluated statistically by two-tails Student t-test. Resulting 

1235 p-value is indicated (* p<0.05, *** p<0.005).

1236

1237 Fig. 5. Inhibition of APE1-endonuclease activity sensitises p53 expressing cell lines 

1238 to MMS treatment.

1239 MTS assay on HCT-116 p53+/+ and HCT-116 p53-/- cells. Cells were treated with Compound 

1240 #3 (#3) at the indicated concentrations for 40 h and in combination with 200 µM (A), 400 µM 

1241 (B) or 600 µM (C) methyl methanesulfonate (MMS) for additional 8 h. Untreated cells were

1242 treated with DMSO. In graph, the percentage of metabolic activity relative to untreated cells, 

1243 arbitrary set to 100%, is represented. Values are mean±SD (n=3). Data were evaluated 

1244 statistically by two-tails Student t-test. Resulting p-value is indicated (* p<0.05, ** p<0.01).

1245

1246 Fig. 6. Inhibition of APE1-endonuclease activity exerts toxic effects on patient-derived 

1247 tumor organoids metabolism and is associated with the p53 mutational status.

1248 (A) Fluorescence confocal microscope imaging of patient-derived organoids. Patient-

1249 derived organoids were stained with Ki67 (proliferating cells), OLFM4 (intestinal stem cell), 

1250 E-Cadherin (intestinal epithelial cells) or Lysozyme (Paneth cells). F-actin was stained with

1251 Phalloidin. Nuclei were visualized with DAPI. Scale bars, 50 µm (Ki67 and Lysozyme) and 

1252 25 µm (OLFM4 and E-Cadherin). (B) Brightfield representative images of colorectal cancer 

1253 organoids derived from different patients (P12, P14 and P16). Scale bars, 200 µm. (C) TP53 

1254 mutational status in colorectal cancer organoids was assessed by NGS. Patient P12, 

1255 represented by the green box, harboured a wild-type p53, patient P14, represented by the 
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1256 blue box, beared a stop-gain mutation while patient P16, represented by the orange box, 

1257 harboured a missense one. (D) Western blot analysis of p53 protein level in CRC patient-

1258 derived organoids. The graph shows the densitometric analysis of p53 protein expression 

1259 in patient-derived organoids. Fold change values relative to P12, arbitrary set to 1, are 

1260 shown. Values are mean of 3 measurements±SD. (E) Western blot analysis of APE1 protein 

1261 level in CRC patient-derived organoids. The graph shows the densitometric analysis of 

1262 APE1 protein expression in patient-derived organoids. Fold change values relative to P12, 

1263 arbitrary set to 1, are shown. Values are mean of 3 measurements±SD. (F) RealTime-Glo 

1264 assay on patient-derived tumor organoids. Patient-derived tumor organoids were treated 

1265 with increasing amounts of Compound #3 (range from 0.5 µM to 5 µM) for 48 h. In graph, 

1266 the percentage of metabolic activity relative to untreated organoids, arbitrary set to 100%, 

1267 is represented (n=1). Values are mean of 5 measurements±SD. 

1268

1269 Fig. 7. Differentially expressed interactors of APE1 in colorectal cancer.

1270 (A) Differentially expressed genes (DEGs) coding APE1 interactors in colon cancer (COAD)

1271 are in the middle. Cellular locations of upregulated interactors in upper panel and 

1272 downregulated interactors in lower panel. The colour codes are as follows: green colour for 

1273 up-regulation, orange colour for down-regulation, blue colour for mitochondrial location and 

1274 grey colour for other cellular locations. (B) Representation of DEGs on mitochondrial 

1275 scheme. Grey shaded boxes indicate mitochondrial locations while boxes without any shade 

1276 indicate enriched pathways. Green upside arrows indicate up-regulation while red downside 

1277 arrows indicate down-regulation. Genes that were also regulated in previously published 

1278 microarray data were shown in red circles. Poor prognostic interactors were marked with 

1279 circled skull symbol. 

1280
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1281 Fig. S1. APE1 mRNA and protein levels remain stable in basal condition and upon 

1282 APE1 endonuclease inhibition in colon cancer cell lines. 

1283 (A) Expression level of APE1 were determined by qRT-PCR analysis. APE1 levels were

1284 normalized to β-actin. Fold change expression values relative to HCT-116 p53+/+ cells, 

1285 arbitrary set to 1, are shown. Values are mean±SD (n=3). (B) Densitometric analysis of 

1286 basal APE1 expression. Levels were normalized to actin. HCT-116 p53+/+ cells were used 

1287 as reference and set to 100%. Values are mean±SD (n=6). (C) HCT116 p53+/+ and HCT116 

1288 p53-/- cells were treated with Compound #3 (#3) at the indicated concentration for 48 h. 

1289 Expression level of APE1 were determined by qRT-PCR analysis. APE1 levels were 

1290 normalized to β-actin. Fold change expression values relative to untreated control cells, 

1291 arbitrary set to 1, are shown. Values are mean±SD (n=3).The p-value was calculated using 

1292 Student’s two-tailed t-test. Resulting p-value is indicated (NS, not significant).

1293

1294 Fig. S2. Inhibition of APE1-endonuclease activity impairs mitochondrial activity in a 

1295 p53-dependent manner.

1296 HCT-116 p53+/+ and HCT-116 p53-/- cells were seeded in a Seahorse XF-24 analyzer and 

1297 treated with 0.25 µM (A) and 1 µM (B) of Compound #3 at the indicated concentrations for 

1298 48 h. Untreated cells were treated with DMSO. Real-time oxygen consumption rate (OCR) 

1299 was determined during sequential treatments with oligomycin (ATP-synthase inhibitor), 

1300 FCCP (uncoupler of oxidative phosphorylation), rotenone (complex I inhibitor) and 

1301 antimycin-A (complex III inhibitor). Values are mean of 5 measurements±SD.
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