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We review the theory of geometric flows on nonholonomic manifolds and tangent bun-
dles and self-similar configurations resulting in generalized Ricci solitons and Einstein-
Finsler equations. There are provided new classes of exact solutions on Finsler-Lagrange
f(R,F,L)-modifications of general relativity and discussed possible implications in accel-
eration cosmology.
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Current important and fascinating problems in modern accelerating cosmology and

dark energy and dark matter physics involve the finding of canonical (optimal) met-

ric and connection spacetime structures, search for possible topological configura-

tions, and to find the relevant physical applications, see5,6,8 and references therein.

There are strong observational cosmological data and theoretical arguments (e.g.

the fundamental unsolved problem of constructing a self-consistent model of quan-

tum gravity) that the standard general relativity, GR, theory of gravity should be

modified in a non–Riemannian geometric form and/or as modified gravity theory,
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MGT. In a more conservative approach, cosmological scenarios have to be at least

extended for new classes of solutions of nonlinear systems of partial differential

equations, PDEs, with generic off-diagonal metrics determined by generating and

integration functions depending on all spacetime coordinates, nontrivially polarized

vacuum, non-minimal coupling with matter fields etc.7.

The first our goal is to summarize and develop the results on the geometric evo-

lution theory of Einstein metrics, and possible generalized metric and connection

structures, under nonintegrable (equivalently, nonholomic/ anholonomic) constaints

resulting in nonholonomic Finsler–Lagrange configurations1,9. We argue that self–

consistent and physically motivated ”minimal” Finsler modifications of the standard

Ricci flow and gravitational field equations can be elaborated using the so–called

Cartan and canonical distinguished connections (d–connection) structures. The

approaches with metric noncompatible Finsler connections, or without linear con-

nections, do not have limits to standard theories of particle physics and do not allow

formulations of certain analogs of the axiomatic formalism as GR2,3. The second

goal of our works is to analyze possible implications of the geometric unifications of

nonholonomic Ricci flow evolution and modified gravity theories, MGTs, in modern

acceleration and study of dark energy and dark matter problems4,6.

Intuitively, generic locally anisotropic spacetime constructions with fundamen-

tal geometric/physical objects (for instance, metric g and/or almost symplectic

structure, θ; see details in1,3 and references therein) depend additionally to space-

time coordinates x = {xi} on velocity/momentum type coordinates, y = {ya � va

[velocity], or � pa [momentum]}, for instance, in the form g(x, y) and/or θ(x, y).

For different geometric model of mechanical, statistical and classical and quantum

field theories with nonlinear dispersion relations , there are considered correspond-

ing types of space, and spacetime, manifolds, their (co) tangent bundles, phase

spaces etc., endowed with classical and quantum variables. In a similar manner,

we can consider certain nonholonomic conventional splitting with local or gener-

alized coordinates u = (x, y) = {uα = (xi, ya)}, where indices i, j, ... = 1, 2, ...n

and a, b, ... = n + 1, n + 2, ..., n+m, for n ≥ 2 and m ≥ 1, for a fibered (n +m)–

structure on a generalized nonholonomic manifold. We use the boldface symbol

V, dimV = n+m, for a conventional fibered manifold, or bundle space, enabled with

certain classes of nonholonomic distributions, in particular, nonholonomic frames.

Let V be a real Lorentz C∞–manifold, dimV = n ≥ 2, of signature (+,+, ...,−),

and denote by TV its tangent bundle. A regular Lagrangian L, i.e. a fundamental/

generating Lagrange function (or Lagrange metric) is a function L : TM → [0,∞)

with nondegenerate Hessian g̃ab =
1
2∂

2L/∂ya∂yb.

In particular, we can take L = F 2(x, y) for a fundamental Finsler function

subjected to the conditionsa:

aThe main difference of our approach from that with standard Finsler geometries is that we con-
sider for the base manifolds certain Lorentz signatures instead of Euclidean ones; this is necessary
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(1) F (x, y) is C∞ on V � T̃ V := TV \{0}, where {0} denotes the set of zero

sections of TV on V ;

(2) it is imposed the homogeneity condition F (x, βy) = βF (x, y), ∀β > 0, and

(3) ∀u ∈ T̃xV , the vertical, v, induced g̃ab is non-degenerate and positive defi-

nite for a Riemannian structure, but such conditions are relaxed for relativistic

systems.b

Contrary to the (pseudo) Riemannian geometry which is completely defined by

a metric tensor gαβ(u), a (pseudo) Lagrange, or Finsler, geometry model is not

completely defined only by L(u), or F (u), fundamental generating element without

assumptions on two other fundamental geometric objects: the nonlinear connection,

N–connection, and the distinguished connection, d-connection, see details in2,3.

Certain models of Finsler geometry are elaborated with the so-called Akbar-Zaedh

definition of Ricci type tensor, in term of the semi-spray function

G̃k =
1

4
g̃kj(yi

∂2L

∂yj∂xi
− ∂L

∂xj
),

not involving the concept of linear connection. This is a nice geometric construction

but it is not enough for a physical viable theory. In order to include interactions

with matter fields and elaborate a variational calculus adapted to the nonholonomic

structures in Largange-Finsler spaces, we must consider a physically motivated f

covariant derivative (linear connection) and corresponding assumptions on physical

frames (determined by a N–connection structure).

A Lagrange/Finsler geometry model is completely defined by the data

(g̃, Ñ, D̃, L), where L generates for some stated geometric/physical principles a

Sasaki type lift of g̃ab to total space metric g̃ = [g̃ij ,g̃ab, Ñ
a
i := ∂G̃a/∂yi], for a

canonical N–connection

Ñ : TV = hV ⊕ vV, Ñ =Ña
i dx

i ⊗ ∂/∂yi

(a nonholonomic distribution with conventional horizontal, h, and vertical, v, split-

ting).

The Cartan (Finsler like) d–connection D̃ is uniquely defined by the properties

that it is metric compatible, D̃g̃ = 0, and compatible with the almost symplectic

structure θ̃ := g̃(x, J̃y), D̃θ̃ = 0, where the almost complex structure J̃ is naturally

determined by Ñ. It is important to note that D̃ is with nontrivial torsion T̃ (with

zero pure h- and v-components, but non-zero h− v mixed components), completely

determined by generic off-diagonal terms of g̃ determined by a nonintegrable Ñ

(in general, with nonzero Neijenhuis tensor). Another important property is that

for elaborating relativistic like generalized gravity theories with well defined limits to GR and
special relativity theories.
bThe symbols L and F is taken respectively from the Lagrange and Finsler nonlinear quadratic
elements, ds2 = L(x, dx) and = F 2(x, dx), which generalize the quadratic element in (pseudo)
Riemannian geometry, ds2 = gij(x)dxidxj , dxi ∼ yi.
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there is a canonical distortion relation D̃[g̃] = ∇̃[g̃] + Z̃[g̃], where the Levi-Civita,

LC, connection ∇̃ and the Cartan distortion tensor Z̃[T̃] = Z̃[g̃] are completely

determined by L, or g̃, or θ̃.

Using frame transforms, g̃ → ĝ = (hg, vg) and Ñ → N, we can consider the

so-called canonical d–connection, D̂ = (hD̂, vD̂), for which D̂ĝ = 0 if and only if

hD̂(hg) = 0 and vD̂(vg) = 0. This induces another canonical distortion relation,

D̂[g] = ∇[g]+Ẑ[g] for any metric g onV, which can be always expressed as g̃ and/or

ĝ by corresponding frame transforms and nonholonomic deformations of the linear

connection structure.

As a matter of principle, any Lagrange-Finsler and (pseudo) Riemannian geom-

etry can be described in equivalent Finsler-Cartan like, (g̃, Ñ, D̃), almost Kaehler

Finsler-Cartan, (θ̃, Ñ, D̃) and canonical d–connection, (g,N, D̂), variables. For in-

stance, in the first case, we keep an explicit analogy between the Lagrange and

Finsler geometry; in the second case, we introduce almost symplectic variables with

allow to perform a rigorous deformation quantization of such geometries; in the third

case, it is possible to decouple certain generalize Einstein-Finsler equations for D̂

and solve such equations in very general forms with generic off-diagonal metrics de-

termined by generating and integration functions, correspondingly depending on all

spacetime coordinates (such variables can be introduced also in GR); see discussion,

examples and references in2–4,7,8

Finally, we consider generalized Grisha Perelman’s functionals c,

F(g, D̂,f) =

∫
V̂
(R̂+ |D̂f |2)e−f vol,

W(g, D̂,f, τ) =

∫
V̂
[τ(R̂ + |hD̂|+ |vD̂|)2 + f − 2n]μ̂ vol,

where R̂ is the scalar curvature of D̂, vol is the volume form defined by g(u,τ) gen-

erated by a families of L(x, y, τ) parameterized by real parameter τ ; the integration

is taken over V̂ ⊂ V as a 2n dimensional volume determined as a time like evolution

of some initial data on a 3-d compact hypersurface on V (we consider a (n− 1)+ 1

spitting of V, naturally imbedded in TV ); μ̂ = (4πτ)−ne−f for a scaling function

f(u, τ) and
∫
V̂ μ̂ vol = 1 and τ > 0. Self–similar and stationary point configurations

of F– and W–functionals result in generalized Ricci soliton eqs and Einstein eqs for

MGTs and various Finsler modifications.

New classes of generic off–diagonal solutions, Raychaudhuri eqs on Finsler

spaces6,7 and inhomogeneous and locally anisotropic Finsler cosmology scenarios

have been recently studied in Refs.4,5,8,10. Mathematically, the approach was re-

cently developed for almost Kähler Ricci flows and Lagrange-Finsler structures on

Lie algebroids11.

cOriginally, he postulated them for the geometric evoluton of three dimensional Riemannian met-
rics in the R. Hamilton Ricci flow theory; on nonholonomic constructions, see1,3,9.

 T
he

 F
ou

rt
ee

nt
h 

M
ar

ce
l G

ro
ss

m
an

n 
M

ee
tin

g 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

E
C

H
N

IS
C

H
E

 I
N

FO
R

M
A

T
IO

N
SB

IB
L

IO
T

H
E

K
 (

T
IB

) 
on

 0
1/

28
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 30, 2017 17:18 ws-procs961x669 MG-14 – Proceedings (Part C) C277 page 2375

2375

Acknowledgments

SV is supported by a travel grant from MG14 and reports certain research related

to his basic activity at UAIC, a DAAD fellowship and the Program IDEI, PN-II-ID-

PCE-2011-3-0256. He is grateful for DAAD hosting to D. Lüst and O. Lechtenfeld.
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