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S U M M A R Y
Tomography is one of the cornerstones of geophysics, enabling detailed spatial descriptions of
otherwise invisible processes. However, due to the fundamental ill-posedness of tomography
problems, the choice of parametrizations and regularizations for inversion significantly affect
the result. Parametrizations for geophysical tomography typically reflect the mathematical
structure of the inverse problem. We propose, instead, to parametrize the tomographic inverse
problem using a geologically motivated approach. We build a model from explicit geological
units that reflect the a priori knowledge of the problem. To solve the resulting large-scale non-
linear inverse problem, we employ the efficient Ensemble Kalman Inversion scheme, a highly
parallelizable, iteratively regularizing optimizer that uses the ensemble Kalman filter to perform
a derivative-free approximation of the general iteratively regularized Levenberg–Marquardt
method. The combination of a model specification framework that explicitly encodes geolog-
ical structure and a robust, derivative-free optimizer enables the solution of complex inverse
problems involving non-differentiable forward solvers and significant a priori knowledge. We
illustrate the model specification framework using synthetic and real data examples of near-
surface seismic tomography using the factored eikonal fast marching method as a forward
solver for first arrival traveltimes. The geometrical and level set framework allows us to de-
scribe geophysical hypotheses in concrete terms, and then optimize and test these hypotheses,
helping us to answer targeted geophysical questions.
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1 I N T RO D U C T I O N

Geophysical imaging methods, in particular seismic imaging, have
offered the strongest constraints on the geometry and material pa-
rameters of the internal features of the Earth. Since the origin of
geophysical inverse theory in the 1970s (e.g. Backus & Gilbert
1968; Aki et al. 1977; Dziewonski et al. 1977), imaging methods
have rapidly progressed with increasing computational resources,
from small-scale linear tomography models to regional and global
scale inversions fully utilizing the physics of the governing for-
ward model (e.g. Rawlinson et al. 2010). Despite these significant
advancements, the interpretability of even well-constrained high-
resolution seismic imaging results has remained challenging at re-
gional and global scales, resulting in significant disagreements for
the implications of seismic images (e.g. Foulger et al. 2013). The
potentially most significant underlying reason is the ill-posed nature
of the inverse problem. Since the Earth is a 3-D continuous body,
and our data are finitely distributed on or near the surface, there
can never be a unique solution to the full continuum inverse prob-

lem. This ill-posedness necessitates regularization in imaging, either
through explicit Tikhonov type additions to the data misfit function,
which are equivalent in the Bayesian formulation to assumptions
about the prior distribution of model parameters, or through im-
plicit regularization via basis truncation (Parker 1994; Tarantola
2005; Rawlinson et al. 2014). Alternatively, some researchers have
sought to use intuition informed by geodynamical considerations
to create ad hoc images of the Earth through waveform modelling
(Ni et al. 2002; Song et al. 2009; Sun et al. 2016; Ko et al. 2017).
These waveform modelling approaches are particularly important at
higher frequencies (∼1 Hz) where a combination of computational
expense and required model complexity have precluded formal to-
mographic solutions at regional and global scales. Both the inverse
problem approach and the waveform modelling approach have defi-
ciencies. In the latter case, significant expert knowledge is required,
and it is likely that only a limited range of candidate models will be
tested. The former case does not rely on direct human intervention
and is consequently potentially more objective, but the damping and
smoothing regularization almost universally used create undesirable
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Figure 1. Schematic of the types of imaging targets that represent distinct domains with different geophysical properties; these targets are candidates for our
proposed methodology.

tomographic artefacts such as smeared rays and false compensating
wave speeds near imaging targets as the misfit function attempts to
balance penalties from the data and regularization.

Recent developments in Markov Chain Monte Carlo (MCMC)
driven Bayesian tomography have helped to characterize the uncer-
tainty of the results of seismic images (Tarantola 2005), including
the degree of data noise and model complexity in the now popu-
lar hierarchical transdimensional formulation (Bodin & Sambridge
2009). These uncertainty measures can help one to understand
poorly constrained parts of the resulting images, allowing more
confidence in the predictions drawn from them. Recent results in
transdimensional Bayesian tomography have highlighted the im-
portant impact of assumptions about the parametrization of internal
boundaries on inversion results (Roy & Romanowicz 2017; Gao
& Lekić 2018). Unlike the waveform modelling approach, which
relies on strong a priori expectations about what potential struc-
tures may look like, seismic tomography in both deterministic and
MCMC driven forms has typically only loosely prescribed the forms
of acceptable models. We assert that in many cases, strong a priori
knowledge does in fact exist, and that utilizing it can potentially
significantly improve the resulting image in the inverse problem
context. In addition, where intuition permits a range of potentially
feasible geological structures, explicitly modelling these options
enables us to evaluate them within a hypothesis testing framework,
quantitatively ranking potential models and rejecting models that
do not fit the data (Claeskens 2016).

At local scales, objectives of interest include the imaging of
anomalous bodies such as tunnels or salt packages, geometric dis-
tortions such as faults, and stratigraphic interfaces. At the regional
and global scale, there are clear targets of opportunity for which
we have strong information from high-frequency waveforms that
sharp physical contrasts exist, such as perturbations in important
radial discontinuities (the Moho, 410 and 660 discontinuities) and
abrupt localized features (slabs, ultra-low velocity zones [ULVZs],
sedimentary basins). Specialized methods, such as receiver func-
tion analysis, exist to image these structures but they are difficult
to use in a traditional tomographic framework. Parametrizing the
tomographic inverse problem in such a way that these boundaries
are explicitly modelled may help to overcome this limitation. This

observation leads to the fundamental idea of this study, which is
to pose the geophysical inverse problem as an optimization of ex-
plicitly defined geologic structures. Candidate structures for our
proposed methodology are shown in Fig. 1. Defining the inverse
problem in this way allows us to better test hypotheses formulated
using our a priori knowledge, as these hypotheses can be directly
modelled. Viewed from another perspective, our inverse framework
places waveform-modelling type approaches on a more rigorous
footing by allowing greater flexibility in the range of permitted
models and supplying the tools necessary for handling larger scale
inversions than is possible using an exhaustive full model-space
search. An alternative to our explicit modelling viewpoint would be
use of the null-space shuttle, which allows a priori information to
be added after an optimal solution is obtained (Deal & Nolet 1996;
de Wit et al. 2012; Fichtner & Zunino 2019).

The purpose of this paper is threefold. The first part will
describe a method of defining Earth models that allows for flexible
modelling of explicit structures, enabling an improvement in the
interpretability of inverse problems. Second, we will introduce
from the inverse problem literature a derivative-free optimizer
based on the Ensemble Kalman Filter, known as Ensemble Kalman
Inversion (EKI), and further describe the details of the algorithm
for a geoscience audience. Finally, we will illustrate the use of our
model definition scheme and EKI to solve nonlinear traveltime
tomography problems.

2 M O D E L S P E C I F I C AT I O N

Parametrization is a fundamental design choice present in all
geophysical inverse problems. Parametrizations must seek to
accurately represent potential Earth structure, interface with
forward solvers, closely predict the data, and lead to solutions of
the inverse problem that can be stabilized against the effect of data
noise. These potentially conflicting goals have led to a profusion of
different parametrization schemes, ranging from simple Cartesian
block models, to more exotic basis function sets or spectral domain
methods, to irregular multiscale parametrizations designed to tune
model complexity to match the data (Rawlinson et al. 2010). In this
study, we aim to introduce a parametrization designed to intuitively
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Figure 2. Schematic of the geologically motivated parametrization proposed by this study. (a) Schematic of a body in the Earth that is the imaging target, for
which we have some a priori knowledge. (b) Schematic of a potential geometric parametrization of the body which we optimize using EKI. M0 encodes the
background model, while �1 and M1 are the boundary and interior properties of the first model layer, respectively. H1 is a deformation rule that further alters
the model.

describe geological features. Because the model is built up from
discrete units that are fixed a priori, we use the term model specifi-
cation rather than parametrization; this highlights that the researcher
explicitly introduces their a priori knowledge into the inverse
problem by determining the number and type of geological features
solved for, and also emphasizes that the model is independent of
the form of discretization used to solve the forward problem.

In the inverse problem context, a model specification for domain
X must provide a set of P functions {Fp(x)}P

p=1 that determine the
P material properties of interest at an arbitrary point x ∈ X. Our
model specification framework describes the inversion domain X
via a set of simple layers. The base layer defines a background, or
reference, model M0. The background model has a set of material
property functions Fp(x; M0) that are defined for x ∈ X. So defined,
the background model could range from a homogeneous space to
a fully 3-D model depending on a priori knowledge. On top of the
base layer, J objects Mj are defined, each with their own geometries
�j ⊆ X and material parameter functions Fp(x; Mj). We define Fp

for a collection of objects as Fp(x ; {M j }J
j=0) = Fp(x ; M j ′ ) where

j′ is the largest integer with x ∈ � j ′ —in concrete terms, we select
the topmost layer that contains x, reverting to the background if
no higher layers are available. Once the objects are assembled, K
deformations (such as faults) are included. The deformations are
defined by invertible functions Hk(x), X → X. To evaluate the model
at a particular point in space, these deformations are reversed, so
that Fp(x ; {M j }J

j=0, {Hk}K
k=1) = Fp(x ′; {M j }J

j=0) where x ′ = H−1
1 ◦

H−1
2 ◦ ... ◦ H−1

K (x). These operations are shown schematically in
Fig. 2. Fig. 2(a) shows an imaging target, while Fig. 2(b) shows a
geometric parametrization for the body that can be specified using
our parametrization framework, and optimized using EKI to fit
available geophysical data.

In the applications discussed in this paper, we are typically inter-
ested in describing the interface between two or more geologic units
(i.e. the boundaries of regions �j). If the interface is expected to be
relatively simple—for instance, if we were attempting to image a
near-surface tunnel—then an explicit description of the interface is
convenient. An explicit description may be based on deformed ge-
ometric primitives, or by describing the locations of spline knots or
polygon vertices etc. These explicit definitions have the advantage of
reducing the number of parameters required to describe interfaces.
However, they are relatively inflexible descriptions, especially when
data requires that the topology of the interface should be different
from that assumed by the explicit definition (for instance, if two

bodies should be merged into one or vice versa). These situations
may require the use of transdimensional methods in which model
parameters are added and removed, which significantly increases
the complexity of the inverse problem.

Alternatively, object boundaries may be defined implicitly by
means of an auxiliary function. Implicit definitions handle com-
plex boundaries and changes in topology, while avoiding the need
to change the number of parameters during the inversion. In the
following sections, we describe the level set method as a way of
implicitly defining object boundaries, and Gaussian random fields
as a means of controlling the behaviour of level set functions.

2.1 The level set method

The level set method partitions space into disjoint regions by con-
sidering contour lines of a set of n continuous auxiliary functions
{φi }n

i=1. The rationale behind the method is that discontinuous fields
can be represented in this way by continuous fields of a higher
dimension, which often makes the handling of boundaries more
mathematically tractable. Associated with the auxiliary fields are
regional parameter fields {A j }N

j=1 that describe the value of the pa-
rameter of interest within a region. To construct a parameter field F
described by level sets, we may use either a combinatoric or a pro-
cedural definition. In this work, we employ the procedural definition
as it is simpler to implement and combine with other elements of
our model definition; however, it does not allow for explicit dif-
ferentiation of the model. The more commonly used combinatoric
definition is given in the appendix for comparison.

Procedural Definition: For N regional parameter fields of interest,
set n such that N = n. Then F(x) = Ai(x) for the largest i such that
φi(x) > 0. In this procedural definition, where multiple φ are non-
zero, we ‘paint over’ with increasing i in a similar fashion to other
elements of our model definition framework. Each auxiliary field
is individually associated with a spatial region and its associated
parameter field, which aids intuition.

Implicit definition of potentially discontinuous boundaries via
the level set method has been actively developed since its intro-
duction for the solution of interface evolution problems (Osher &
Sethian 1988). In the level set method, an interface is represented
by a particular contour on a continuous auxiliary field, examples of
which are shown in Fig. 3. Level-set based tomographic methods
have recently been intensively studied in the context of Electrical
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Figure 3. A table of sample zero-mean Gaussian random fields (GRFs) shown by continuous contours. These are overlain by a transparent two-colour image
showing a possible level set partition into two fields, defined by the zero contour level of the GRFs. The underlying continuous GRFs, which are visible
underneath the two-colour image, give rise to the discontinuous final level set partitioning.

Impedance Tomography (EIT, also known as resistivity tomogra-
phy, e.g. Chung et al. 2005), hydrology (Cardiff & Kitanidis 2009;
Iglesias et al. 2013), and in various exploration geophysics contexts,
especially crosswell seismic tomography and to a more limited ex-
tent gravity and magnetic applications (Isakov et al. 2011; Zheglova
et al. 2013; Li et al. 2014; Lu & Qian 2015; Li & Qian 2016; Li
et al. 2017; Zheglova et al. 2018). Existing work has typically as-
sumed piecewise constant fields, often of prescribed value, as this
strong a priori knowledge is often available in exploration contexts.
Under this framework, authors have found significantly improved
reconstruction of interfaces compared to the smoothed images avail-
able from traditional Tikhonov regularized tomographic methods.
Work within the geophysics community has exclusively employed
the level-set evolution equation, which requires the calculation of
the Fréchet derivative of the data misfit functional with respect to
the level set function. The misfit functional is typically equipped
with regularization that penalizes longer interface lengths (i.e. Total
Variation, or TV regularization; Osher et al. 2005). The level-set
evolution equation allows for efficient inversion but restricts the
applicability of the level set formulation to contexts for which the
Fréchet derivatives are available. Additionally, existing applications
using the level set evolution equation (Li et al. 2017; Zheglova
et al. 2018) require significantly more mathematical machinery
when multiple level sets are used, limiting their applicability to
complex models. When the derivatives are not available, for exam-
ple when using externally supplied black-box forward models, the
level-set evolution equation and also traditional iterative gradient-
based tomographic methods break down. An alternative to TV reg-
ularization of level sets is specification of a Gaussian random field
prior for the auxiliary field used to generate the level set (e.g. Chada
et al. 2018). Using a Gaussian random field prior allows explicit
control of the dominant length scale and roughness of the resultant
level set, as shown in Fig. 3. A possible alternative would be to learn
appropriate basis function representations of the level-set auxiliary
field from data using a dictionary learning approach (e.g. Bianco &
Gerstoft 2018). Due to its conceptual simplicity, the Gaussian ran-
dom field based level-set approach is taken in the examples below to
specify the boundary of object layers with our model specification
framework.

2.2 Gaussian random fields

Gaussian random fields (GRFs, also commonly referred to as Gaus-
sian processes, especially in 1-D applications) have a long history in
geostatistics where they provide the framework for kriging estima-
tors of fields with observed training data (Chiles & Delfiner 2012).
In the inverse problem setting, the quantities of interest are not
observed directly. For the linear or weakly nonlinear case, Hansen
et al. (2006) has supplied theory for conditioning GRF priors on
averaged observations such as traveltimes in fixed ray path tomog-
raphy. An intriguing further development in applying GRFs to geo-
physical inverse problems has recently been provided by Ray &
Myer (2019), which utilizes transdimensional MCMC for sampling
training points on which the GRFs are conditioned. In this study, we
use GRF priors, without conditioning on training data points, for
the auxiliary fields used by the level set method. Thus, the material
parameter fields are not determined by the GRFs directly, but rather
by a nonlinear transform of them that can encode abrupt changes in
material properties.

A comprehensive review of GRFs is given by Rasmussen &
Williams (2006); here we offer a brief summary of definitions that
are important to the model specification scheme outlined in this
study. A scalar valued GRF on R

n is a spatial process analogous to
a Gaussian distribution. It is defined by a mean function m(x) and
symmetric covariance function C(x, y) = C(y, x) and has the property
that any finite set of points {xk}M

k=1 on the field are distributed as a
multivariate Gaussian distribution N (m, �) with

m =

⎡
⎢⎣

m(x1)
...

m(xM )

⎤
⎥⎦, � =

⎡
⎢⎣

C(x1, x1) . . . C(x1, xM )
...

. . .
...

C(xM , x1) . . . C(xM , xM )

⎤
⎥⎦. (1)

The covariance function encodes the GRF’s spatial correlation
behaviour, and may be anisotropic and spatially varying (non-
stationary); in many typical applications, a subclass of isotropic,
stationary GRFs are employed for which only the distance between
x and y matters, i.e. C(x, y) = C(||x − y||). Within this class, the
prototypical covariance functions with spatially constant variance
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σ 2 are the exponential covariance with characteristic length scale l

C(x, y) = σ 2 exp

(
−||x − y||

l

)
, (2)

and the Matérn covariance function with smoothness parameter ν

and length scale parameter ρ

C(x, y) = σ 2 21−ν

�(ν)

(√
2ν||x − y||

ρ

)ν

Kν

(√
2ν||x − y||

ρ

)
, (3)

where � is the gamma function and Kν is the modified Bessel func-
tion of the second kind. The Matérn covariance function includes the
exponential covariance function (as well as the squared-exponential
variance function) as a special case. Fig. 3 shows a table of example
GRFs defined by Matérn covariances of different length scales and
smoothness parameters, as well as level set partitions that can be
defined by them. GRFs form a useful class of fields for defining
boundaries in models using the level set method as they encode a
wide range of potential prior information that can be tailored to a
particular geophysical problem.

3 E N S E M B L E K A L M A N I N V E R S I O N

The model specification framework proposed in this paper aims to
map the a priori information of a researcher into an Earth model in
a way that is independent of the computational requirements of the
forward solver used by the inverse problem. While defining mod-
els in this fashion is advantageous from the perspectives of ease
of usage and interpretation, it potentially makes derivatives of the
desired geophysical observables with respect to model parameters
difficult to calculate using fast analytic or adjoint methods—that is,
the model function F may not be easily differentiable. Additionally,
derivatives of the physical model may not be available when using
closed source or legacy code. Since explicit calculation of deriva-
tives via finite differencing is intractable for models with many
parameters, and we wish to maintain solver independence, in gen-
eral precluding the use of algorithmic automatic differentiation, we
are motivated to employ an efficient derivative-free optimizer for
inverse problems defined using our model specification framework.
In particular, we have employed the Ensemble Kalman Inversion
optimizer (Iglesias et al. 2013), which we define below.

The Ensemble Kalman Inversion (EKI) scheme was introduced
by Iglesias et al. (2013) as a derivative-free ensemble-based approxi-
mation of the iteratively regularized Levenberg–Marquardt (LM) in-
version scheme (Hanke 1997). Further development has resulted in
applications to hydraulic reservoir modelling (Iglesias 2015; Chada
et al. 2018), electrical impedance tomography (Chada et al. 2018),
and for optimizing neural-network parameters in machine learning
(Kovachki & Stuart 2019). For comparison, we first describe the
regularizing LM scheme from which the EKI scheme is derived.
We closely follow the development in Iglesias (2016).

Iteratively Regularized Levenberg–Marquardt scheme: The iter-
atively regularized LM scheme considers an inverse problem with
model parameters u ∈ X and data y ∈ Y. X and Y are Hilbert spaces
with appropriate norms || · ||X and || · ||Y; in a geoscience applica-
tion X will typically be either a finite dimensional space R

P or a
function space on R

P and Y will be a finite dimensional observation
space R

M . We assume that y = G(u†) + η for some model oper-
ator G, ‘true’ set of model parameters u†, and noise η. Using our
model framework, we typically have a set of model parameters that
are transformed by the model function F to the physical model of
interest on an evaluation grid, which are then input into a forward

solver H so that G(u) = H(F(u)). We assume a priori knowledge of
the noise level

η = ||�−1/2(y − G(u†))||Y , (4)

where � is an operator that encodes the measurement precision,
so that the absolute misfit (y − G(u)) is weighted to account for
the quality of measurements. For finite dimensional observations
equipped with the normal Euclidean norm, if we assume that η ∼
N(0, σ ) (i.e. Gaussian noise with variance σ 2) and we set � = I so
that observations are equally weighted, then η ≈ σ

√
M where M is

equal to the number of observations.
The objective of any iteratively regularized scheme is to find a

model uη that is a stable approximation of u† with respect to the
noise in the sense that as η → 0, then uη → u
 for some u
 ∈ X
with G(u
) = G(u†). In contrast to standard Tikhonov regularization
methods, in which the problem is explicitly regularized and then
optimized, iteratively regularized schemes fundamentally seek an
approximate solution to the unregularized problem but stabilize the
parameter updates and terminate at an appropriate level of fitting to
avoid being dominated by noise. In the LM scheme, this condition
is achieved by solving a succession of Tikhonov regularized updates
with regularizing parameter αn

un+1 = u + v∗, (5)

v∗ = arg min
v∈X

(||�−1/2(y − G(un) − DG(un)v)||2Y
+αn||C−1/2v||2X

)
, (6)

where DG(un) is the Frechét derivative of G in respect to u, so that
y − G(un) − DG(un)v is a linear approximation of the misfit about un.
C is an operator X → X that encodes regularity or prior information
on X, and αn controls the strength of the regularization at each
update step. Note that within the LM scheme, the linear term of the
first quadratic form gives rise to a steepest descent update, while the
second order term gives the Gauss–Newton approximation of the
Hessian (see Appendix A2 for the derivation in finite dimensions).
The desired stable convergence property of LM was shown by Hanke
(1997) to require that αn at each iteration must satisfy

ρ||�−1/2(y − G(un))||Y ≤ αn||�−1/2(y − G(un) − DG(un)v∗)||Y
(7)

for a tuning parameter ρ ∈ (0, 1) that is set a priori and fixed for all
iterations. The scheme is terminated when

||�−1/2(y − G(un))||Y ≤ τη < ||�−1/2(y − G(un−1))||Y (8)

for some fixed τ > 1/ρ, where this inequality is required to ensure
stable convergence of the scheme (Hanke 1997). This termination
criterion is a form of Morozov’s discrepancy principle (Scherzer
1993), and ensures that the LM scheme does not overfit to the
noise; without the termination criterion the scheme is equivalent to a
modification of a standard unregularized Levenberg–Marquardt op-
timizer. Eq. (6) can be shown to be equivalent to the explicit update

un+1 = un + (
DG
(un)�−1 DG(un) + αnC−1

)−1

×DG
(un)�−1(y − G(un)), (9)

with DG
 the adjoint operator of DG (Iglesias & Dawson 2013).
For finite dimensional X, the mth component of DG is DmG(un) =
J(un) · em where J is the Jacobian of G and em is the unit vector for m;
eq. (9) then simplifies to the standard finite dimensional LM update

un+1 = un + (J (un)T �−1 J (un) + αC−1)−1 J (un)T �−1(y − G(un)).

(10)
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When the Frechét derivative of G is available, the iteratively reg-
ularizing LM scheme provides a useful framework for the general
solution of nonlinear inverse problems, and has been applied suc-
cessfully in geophysical applications for groundwater flow (Hanke
1997; Iglesias & Dawson 2013).

Ensemble Kalman Inversion scheme: The Ensemble Kalman In-
version (EKI) scheme is an ensemble approximation of the itera-
tively regularized LM scheme. The general concept is to update an
ensemble of particles (where each particle represents a realization
of the model) using the ensemble Kalman filter (Evensen 1994; Igle-
sias 2016). Ensemble Kalman filters have recieved recent attention
in the seismology community as a means of uncertainty quantifi-
cation in large-scale full-waveform inverse problems (Thurin et al.
2017; Eikrem et al. 2019), although this usage is still in its prelim-
inary stages. In this study, we utilize the EKI dynamic purely as a
high-performance iteratively regularized optimizer.

The dynamics driving the EKI ensemble are designed to drive
the mean of the particles towards the solution of the inverse prob-
lem of interest (Iglesias et al. 2013). At each step, the ensemble of
particles solves an approximate Tikhonov regularized update with
iteration-dependent regularization αn, the strength of which is con-
trolled by a global regularization parameter ρ (Iglesias 2015). We
let the ensemble at iteration n be {u( j)

n }J
j=1 where J is the number of

ensemble members. Means of collections are denoted by overbars
(i.e. ūn is the mean over the collection of {u( j)

n }J
j=1). Approximating

G(u( j)
n ) to first order about the mean of the ensemble

G(u( j)
n ) ≈ G(ūn) + DG(ūn)

(
u( j)

n − ūn

)
. (11)

Iglesias (2016) shows that using this approximation, explicit calcu-
lation of the Frechét derivative DG(u) may be eliminated, leading to
an approximation of the iteratively regularized LM scheme by the
following algorithm:

Initialization Draw {u( j)}J
j=1 ensemble members from prior distri-

bution. Set ρ ∈ (0, 1) and τ > 1/ρ. Then for n = 0, 1...
Prediction Evaluate w( j)

n = G(u( j)
n ); calculate w̄n

Termination If ||�−1/2(y − w̄n)|| ≤ τη, terminate and output ūn as
the solution
Analysis At each iteration, an ensemble of perturbed data {y( j)

n }J
j=1

is generated with additional noise y( j)
n = y + η. Addition of extra

noise helps the ensemble to better explore parameter space by pre-
venting the ensemble from converging to a single point from which
ensemble gradients cannot be computed. Let 〈·, ·〉Y being the inner
product on Y and define covariance operators Cuw

n and Cww
n by

Cww
n (·) = 1

J − 1

J∑
j=1

(G
(
u( j)

n

) − w̄n

)〈G(
u( j)

n

) − w̄n

)
, ·〉Y , (12)

Cuw
n (·) = 1

J − 1

J∑
j=1

(
u( j)

n − ūn

)〈G(
u( j)

n

) − w̄n

)
, ·〉Y , (13)

then update the model ensemble {u( j)
n } with the ensemble of per-

turbed data {y( j)
n }J

j=1 by

u( j)
n+1 = u( j)

n + Cuw
n

(
Cww

n + αn�
)−1(

y( j)
n − w( j)

n

)
, (14)

where αn is heuristically chosen to be αn = 2iα0, with α0 an initial
guess, such that i ≥ 0 is the first integer with

αn||�1/2
(
Cww

n + αn�
)−1

(y − w̄n)|| ≥ ρ||�−1/2(y − w̄n)||. (15)

α0, ρ and τ are tuning parameters of the scheme; typically α0

= 2 so that αn ≥ 1—the choice of αn = 2iα0 is a heuristic that
tries to balance choosing as small as possible αn without computing

eq. (15) many times for each analysis step; theoretically any αn that
satisfies eq. (15) is acceptable, but this heuristic provides a good
balance of computational effort without overregularizing. Higher
values of ρ provide greater regularization by forcing larger αn; this
typically also results in more iterations until the termination crite-
rion is reached (Iglesias 2016). If P is the dimension of the model
space (potentially after discretization in the case where G operates
on fields) and M is the number of observations, then Cuw

n is a P ×
M matrix and Cww

n is an M × M matrix. For large data and model
spaces, constructing and especially inverting these matricies can
be very expensive—O(M3) for the construction of (Cww

n + αn�)−1.
However, due to their construction, both covariance matrices are
of rank at most min (J − 1, M). Consequently, for J � M, it is
more efficient to implement them within the algorithm as operators
defined by eqs (12) and (13). For constructing the inverse, we em-
ploy a low rank approximation of Cww

n to compute the approximate
Hermitian eigen decomposition of the operator, as it is symmetric
positive semi-definite by construction (Halko et al. 2011). The low
rank approximation is exact if an approximation of rank J − 1 is
sought. This decomposition allows us to write

Cww
n = QQT , (16)

where  is a square diagonal matrix of dimension at most (J − 1)
× (J − 1) containing the largest eigenvalues of Cww and Q, which is
a M by at most J − 1 matrix, has columns equal to the eigenvectors
of Cww corresponding to the elements of . We may then use the
Woodbury matrix identity to compute

(Cww
n + αn�)−1 = (QQT + αn�)−1

= �−1

αn
− �−1

αn
Q(−1 + QT −1 Q)−1 QT �−1

αn
.

(17)

The matrix (−1 + QT−1Q) is of dimension at most (J − 1) ×
(J − 1), and all other inverses are of diagonal matricies. Construct-
ing the Hermitian eigendecomposition requires only matrix-vector
products (Halko et al. 2011); due to the structure of the covariance
matrix Cww

n , only J vector–vector products are actually required
if we use Cww

n in its operator form. This means that Cww
n never

needs to be explicitly constructed, which can result in significant
memory savings for large data sets. The cost of constructing the
eigendecomposition is amortized across the need to update J en-
semble members. Consequently, using a low rank approximation
and applying the Woodbury matrix identity can dramatically reduce
the cost of updating the ensemble in both number of operations and
memory. Fig. 4 shows a schematic of the EKI algorithm applied
to a two parameter linear inverse problem. Far from the optimum,
ensemble members take scaled gradient descent steps as the regu-
larization provided by αn� dominates the dynamics. Closer to the
optima, the ensemble becomes more aware of the curvature of the
objective as the Cww term dominates.

In the basic EKI algorithm, the final model uη lies in the span
of the initial ensemble. Appropriate choice of the initial ensemble
therefore acts to encode prior information into the inverse problem.
Within our model specification framework, the actual geological
model F(u) used to predict data by the forward solver is a nonlinear
transform of the model parameter vector u defining the underly-
ing Gaussian random fields and geometric parameters. This allows
significant flexibility even when the underlying space of potential
models is constrained to lie within a low-dimension subspace of the
full space of models. Specifically, though the final parameter vector
ūn describing the model specification is in the span of the initial
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Two Updates of EKI

Ensemble
Ensemble Mean
Truth

Figure 4. Two updates of the EKI alogrithm with four ensemble members for a toy linear objective with two parameters. Elliptical lines show the contours of
the objective function.

ensemble {u( j)
0 }J

j=1, the corresponding physical model F(ū) is not

necessarily in the span of {F(u( j)
0 )}J

j=1.
The EKI algorithm offers several compelling benefits for the

derivative-free solution of PDE constrained inverse problems. From
a theoretical standpoint, the stable convergence to an approximate
solution depending on the noise level is appealing. Furthermore,
the scheme is practical, easy to implement, and handles large pa-
rameter spaces. In particular, the calculation of the forward models
G(u( j)

n ) and the updates of models u( j)
n+1 have no interaction between

ensemble members. Consequently, these parts of the algorithm are
embarrassingly parallelizable and scale trivially to meet available
computational resources (Herlihy & Shavit 2011). Since the forward
model calculations are typically the most expensive part of the al-
gorithm, this is a particularly useful property. Finally, an important
consideration for practical employment of the algorithm is that it
allows black-box forward models, such as legacy or proprietary
closed-source codes for which derivatives of the misfit function
with respect to model parameters are not available, to be used with-
out expensive explicit finite differencing. Compared to obtaining
the gradient from the adjoint method, the EKI method uses J for-
ward solves for every step, compared to Ja for an adjoint method, so
that the ratio of computational effort is J/Ja if the solution of model
updates is negligible in cost. Ja depends on the forward model but
is typically 2–3, while the optimum J depends on the problem but
is typically larger. Despite this, as the J ensemble members are
independent, the ensemble method is particularly amenable to dis-
tributed computing even if communication between processes has
high latency. Additionally, for non-self-adjoint forward solvers, the
EKI algorithm does not utilize a backwards pass and so does not
require complex checkpointing schemes for managing storage re-
quirements (e.g. Komatitsch et al. 2016), which may be a useful
property for some problems.

3.1 Inversion framework summary

The inversion framework presented in this study consists of a ge-
ologically motivated parametrization of the Earth, coupled to an

efficient, highly parallelizable and derivative-free solver. Framing
geophysical inverse problems as a question of optimizing geologi-
cal models allows for direct interpretation of the resulting images,
and allows practitioners to compare structurally different models
against each other. The parametrization scheme described above
has the flexibility to describe models ranging from simple 1-D
descriptions to fully 3-D, heterogeneous models with structural
discontinuities in a consistent format. We have shown that by using
the implicit level-set method to define geological domains allows
the topology of a model to change to fit the data without changing
the parametrization, in contrast to explicit definitions of domains in
which the parameters must be added or removed to describe changes
in topology, significantly complexifying the inverse problem. Our
parametrization framework motivates using a derivative-free opti-
mizer because the resulting models are not necessarily efficiently
differentiable, and because a goal of this study is to modularize
the inverse problem so that the structure of the model is not tied
directly to the forward solver. We employ EKI as the optimizer,
as it scales well with computational resources, treats the forward
solver as a black box, and incorporates iterative regularization to
avoid overfitting the data. Utilizing the inherent low-rank structure
of the covariance matricies used by EKI allows even large data sets
to be handled efficiently. As an iteratively regularized algorithm,
EKI does not include explicit Tikhonov damping and will fit the
data to within an assumed noise level, without the biases introduced
by these terms. The tuning parameters in the EKI scheme instead
control the stability of the convergence and the convergence rate.

4 E X A M P L E S

To illustrate the combination of our model parametrization frame-
work and the EKI inversion scheme, we show two synthetic seismic
tomography examples and one example using real active source
seismic data collected at Carrizo Plains, CA. In all cases, the data
are first arrivals of P waves from known source locations, as is typ-
ical in an active source seismic experiment. We have chosen this
relatively simple forward model to concentrate on the details of the
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974 J.B. Muir and V.C. Tsai

model specification and the inversion method. We note, however,
that both the model specification framework and the EKI solver are
independent of the choice of foward model and are not limited to
seismic traveltime tomography; for instance joint inversions incor-
porating potential methods such as gravity could be used, or full
seismic waveforms could be used—noting that for full waveform
methods the model specification must be very close to the truth or
it is likely that the inverse problem will converge to an unrealistic
local minimum.

To calculate the arrival times through the model, we solve the
eikonal equation using the fast marching method (Osher & Sethian
1988; Rawlinson & Sambridge 2004). We employ the factored form
of the eikonal equation, accounting for the singularity at the source
analytically, resulting in significantly improved traveltime calcu-
lations along grid diagonals relative to the basic eikonal method
(Treister & Haber 2016). The first example illustrates the advan-
tages of the GRF level-set definition for describing geological do-
mains; the second example shows how our model specification can
compose geological objects and deformations; the third example
shows that our method is robust for real data and highlights the
useful iteratively regularizing properties of the EKI scheme. In the
examples that follow, we take GRFs with fixed length scales for
simplicity; solving for GRF length scales may be achieved during
the inversion by hierarchical EKI (Chada et al. 2018).

4.1 Shape recovery in first arrival crosswell tomography

Our first example is an application of the level set method with
GRF priors to invert first arrival data in a crosswell geometry using
the EKI algorithm—as such, this example uses only a subset of the
model description framework described in Section 2. The purpose
of this example is to illustrate the advantages of implicitly defining
boundaries via the level set method. This type of shape optimization
problem may be alternatively solved using the level-set evolution
equation (Li et al. 2014), however, the GRF based formulation used
in this study imposes additional a priori constraints on the inverse
problem—this example shows that shape recovery is still possible
under these constraints. We synthesize data from nine sources in a
vertical well with 16 m spacing. We record data in a vertical well
96 m away, with sensors spaced at 4 m, and assume a nominal data
picking error of 0.25 ms. We hypothesize a background model of
1000 m s−1 velocity, with fast inclusions of 1500 m s−1. The geom-
etry of the true input model is shown in Fig. 5(a).

We assume that we have no knowledge of the number or ge-
ometry fast inclusions, while the velocities are known. This makes
explicit parametrization of their locations and shapes difficult, as
some heuristic must be used to determine the appropriate number
and topologies of boundaries. To overcome this issue, we generate
an initial ensemble of 200 candidate models using GRF defined
level sets, containing a wide range of inclusion topologies—four
examples of the starting ensemble are shown in Fig. 5(b), from
which we can confirm that the initial ensemble is not strongly tuned
to reflect the true input model. The ensemble was generated using a
zero-mean Matérn GRF with ρ = 50 m and ν = 1.5; the choice of a
Matérn GRF with ν < 2 is motivated by a desire to have solutions
with somewhat rough boundaries. Therefore, for this example, the
parameter vector u consists of the values of the latent field, initially
drawn from the Matérn distribution, and the model function F is the
level set operator assigning values of the latent field that are greater
than 0 to 1500 m s−1, and those below 0 to 1000 m s−1. The forward
operator H is the solution of the factored eikonal equation from the

sources to the receivers, and as usual the full forward map may be
written as G(u) = H(F(u)).

We evolve the initial ensemble using the EKI algorithm using
ρ = 0.75 and τ = 1.6 until the discrepancy principle termination
criterion is satisfied after 40 iterations. The output model and fits to
the data are shown in Figs 5(c) and (d). We see that the location and
approximate geometries of the three inclusions are recovered, and
that the data are well fit by the predicted model.

In this example, regularization is provided by the underlying
structure of the GRF used to generate the ensemble. In particular,
the wavelength parameter ρ of the Matérn covariance was chosen to
be comparable to the size of the inversion domain, which suppresses
short wavelength structure. The EKI algorithm, as presented in this
paper, produces model parameter outputs in the linear span of the
initial ensemble, which has the effect of maintaining the GRF struc-
ture throughout the iterations of the inversion. The level set function
acts as a nonlinear activation function, allowing the GRF function
to produce the shorter length scale features required by the data,
even though the GRF length scale is significantly longer. Setting
the GRF length scale to be large avoids the introduction of small
anomalous features in the final result. Additionally, the discrepancy
principle used to terminate EKI serves to avoid overfitting the data;
the inversion starts with smooth members of the starting model and
evolves greater complexity, stopping immediately once a fit to the
data is achieved.

4.2 Determining surface fill depth with a fault

In many geological settings, there may be stronger a priori knowl-
edge of potential structures that can be employed in an inversion.
A typical example of this would be the inferred presence of faults
derived from observed seismicity, surficial rupture or other geolog-
ical constraints. In this example, we simulate first-break seismic
refraction data for a smoothly varying interface between two layers
bisected by a vertical fault with some offset—for example, this could
be a profile perpendicular to a strike-slip fault with unconsolidated
alluvial surface cover. We assume sources spaced every 30 m and re-
ceivers spaced every 5 m along a profile 240 m in length. Data were
perturbed with 1 ms Gaussian noise to simulate picking error esti-
mated from a real data experiment with equivalent geometry (Exam-
ple 4.3). The true model is shown in Fig. 6(a). A simple stationary
GRF-based level set approach cannot easily represent this kind of
model since the smooth covariance structure will suppress the fault,
acting similarly to a Tikhonov smoothing regularization. Instead,
we explicitly add in the presence of a potential fault in our model
description. This has the additional advantage that the parameters
related to the fault (e.g. position, dip angle, offset) are immediately
physically interpretable. This type of inversion therefore represents
a combination of level set inversion and minimum-parameter mod-
elling in the style of Zelt & Smith (1992). The objective of the
inverse problem is then to calculate the optimal parameter vector u,
which is made up of the GRF latent field describing the interface,
the explicit geometrical parametrization of the fault, which consists
of the horizontal location of the fault plane, the amount of vertical
offset, and the velocities of the two layers. The forward map can
again be written G(u) = H(F(u)) where F transforms u into the phys-
ical model of interest evaluated on a Cartesian solver grid, and H
solves the factored eikonal equation. We use EKI with 256 ensemble
members to solve the resulting inverse problem, which converged
in 28 iterations. Once again, we show four examples of the initial
ensemble to illustrate the range of potentially allowable geometries
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Figure 5. Use of Gaussian random field (GRF) level sets for a crosswell tomography boundary identification problem. (a) The true input model, with source
and reciever geometry. The yellow regions are 1500 m s−1, black 1000 m s−1. (b) Four examples of the initial ensemble of models used for EKI. (c) The output
model. (d) The data and fit, with colours corresponding to the source colours in (a).

in Fig. 6(b). The final inverted model is shown in Fig. 6(c), together
with a comparison in Fig. 6(d) to a traditional ray tracing based
tomography performed using the commercial DWTomo Software,
which explicitly considers topography and creates a smoothed reg-
ularized solution (Geogiga Technology Corporation 2016).

Without a priori knowledge of the expected structures, the tra-
ditional refraction tomography smooths the vertical interface and
has approximate vertical and horizontal resolution of ∼10 m, con-
trolled by the regularization and data quality, as can be seen in
Fig. 6(d). Additionally, the L2 regularization used in the traditional
tomography promotes a smooth transition from low to high velocity.
Assuming we have appropriate knowledge, our level set/geometric
parametrization can much better recover the true model. In this case,
appropria te knowledge could be prior mapping of a surface rupture
of the fault. The question of whether an explicitly layered model
such as this is more appropriate than a smooth model requires as-
sessment of the data, as well as any appropriate geologic knowledge
at hand.

4.3 Near-surface refraction tomography of the San
Andreas Fault at Carrizo Plains

For a final example, we apply our inversion scheme to real seis-
mic refraction data collected on 2017 March 20 at Carrizo Plains,
California, USA. Reconstruction of paleoseismicity of the San An-
dreas Fault (SAF) at Carrizo Plains suggests regular slip of up to

∼5 m (Ludwig et al. 2010; Zielke et al. 2010), with trenching im-
plying a potentially >10 m wide band of multiple near-surface fault
strands that are likely to be seen as a low velocity damage zone
in tomographic images (Akciz et al. 2009). Data were collected
along a profile of length 240 m, oriented SW to NE, with signif-
icant topography, using a 48 channel geophone array. The profile
is roughly bisected by the SAF, which can be prominently seen
in Fig. 7(a), especially noting the significant stream channel offset
near the centre of the image. Remington Industrial 8-gauge charges
buried approximately 0.25 m deep generated the active sources at
0, 60, 120, 180 and 235 m along the profile. First arrival times were
then handpicked. We consider the data noise to include picking
and triggering errors, imprecision in the source and receiver loca-
tions, and errors in the recorded surface topography. The true noise
distribution is consequently unknown; for this application we will
assume data are independent, identically Gaussian distributed with
equal variance.

The purpose of this example is primarily to show that the com-
bination of the level set formulation and EKI is practical and stable
when applied to real data and to compare it against a traditional
tomographic image. Inspection of the data suggests a three layered
model. Consequently, we choose to invert for a model vector u that
consists of two 1-D GRFs describing layer interfaces and the con-
stant velocities of the three layers. The model function F computes
level sets from the GRFs and assigns velocities to the resulting re-
gions in physical space. The explicit topography derived from the
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Figure 6. Illustration of using a combination of level sets and explicit geometric parametrizations to recover a subsurface interface offset by a vertical fault.
(a) The true input model with source / receiver geometry. (b) Four examples of the initial ensemble of models used for EKI. (c) The output of the inversion.
(d) The traditional inversion using DWTomo; the opaque grey mask shows the boundary of the rays calculated by DWTomo.

known locations of the receivers is included in F by linear spline
interpolation. In this case, we chose to employ 1-D GRFs to initial-
ize the ensemble for a 2-D model inversion, to avoid overlapping
folds in the boundaries between regions. Similarly, in a 3-D set-
ting, 2-D GRFs may be used to introduce a layered structure with
no folds. This type of problem could potentially be solved using
a multiple-level-set evolution equation method such as that in Li
et al. (2017), however, as shown in Section A1 the combinatorial
complexity of these methods greatly increases with the number of
layers, and our GRF formulation provides intrinsic regularity to the
solutions which motivates the use of our model specification frame-
work. As previous trenching evidence suggested that the fault was
likely to be observed as a distributed damage zone at the length
scale of this study, we did not employ any deformation layers in
our model description. We chose Matérn GRFs with ρ = 100 m,
ν = 1.5, and σ = 5 m. The a priori mean depth of the first layer
used to generate the EKI ensemble was set to be uniform across
the depth range of the model, with the mean depth of the second
layer set to be uniformly generated between 0 and 20 m below the
first layer. To test the stable convergence properties of EKI, we in-
verted the data assuming nominal noise standard deviations σ of
6, 4, and 3 ms, with the resulting models shown in Figs 7(d), (f),
(h), respectively. Note that we estimated a picking error of approx-
imately 1 ms from the data, but expect to see significant modelling
error from source/receiver geometry errors and modelling errors.

Solution of the inverse problem employed 128 ensemble members,
and required seven iterations to reach the 3 ms noise level. Data and
fits are shown in Figs 7(c), (e), (g). Together, these show that as the
assumed noise level is lowered, the data are progressively better fit
and the model becomes progressively more featured, without devel-
oping obvious artefacts related to lack of sufficient regularization.
A traditional tomographic reconstruction (again using DWTomo)
is shown in Fig. 7(b) and exhibits similar qualitative behaviour to
the 3 ms level set/EKI result, with a slow surface layer with similar
undulations and a steep step up across the SAF of a faster third
layer.

These results show that our parametrization and optimization
scheme is sufficiently robust to apply to real inverse problems. At
the 3 ms noise level, all significant features of the data are captured
even by the relatively simple three layered model proposed here.
Lowering the assumed noise level does not significantly qualita-
tively change the models, but instead sharpens features, especially
the primary feature of the step in the fastest velocity across the
fault. The initial ensemble of models for all noise levels have on
average flat interfaces across the layer boundaries—the progression
in Figs 7(d), (f), (h) illustrates a key property of the iteratively EKI
algorithm, in that it evolves the ensemble away from the typically
smooth ‘prior’ towards a more featured final model. At higher noise
levels, this progression is terminated earlier, and so the ensemble
will look more like the smooth prior; hence Fig. 7(d) has smoother
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Figure 7. Three layer inversion of near surface velocity adjacent to the San Andreas Fault at Carrizo Plains, illustrating the consistent convergence properties
of the iteratively regularized EKI scheme. The black regions of the tomographic images are not inverted, and correspond to air. (a) The study area and
source/receiver geometry. (b) The traditional inversion using DWTomo; the opaque grey mask shows the boundary of the rays calculated by DWTomo. (c),
(e), and g) The data and fits for assumed data noise σ = 6, 4, 3 ms, respectively, and (d), (f), and (h) the corresponding three layer inversion models using our
scheme.
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and flatter interfaces than Figs 7(f) and (h), in which the evolution
of the ensemble progresses further away from the prior. As in any
iterative tomographic method, the starting model, or in this case
starting ensemble, has an important impact on the final result when
the data are noisy, but becomes progressively less important as the
inversion is constrained to closely fit the data; a substantial dif-
ference to traditional tomographic methods is that the final model
produced by EKI lies in the linear span of the starting ensemble,
so that for implicit GRF parametrizations the covariance structure
is maintained throughout the inversion. This may or may not be a
desired property of the inversion; if the initial ensemble encodes a
model appropriate for the data then the linear span property ensures
that the final model reflects the initial ensemble. Alternatively, if
greater flexibility is required due to less strong a priori constraints
on the model, then a hierarchical generalization of EKI may be em-
ployed in which hyperparameters are optimized for the fundamental
properties of the parametrization, such as the length scales ρ used
for GRFs (Chada et al. 2018). As our focus in this study is setting up
a general modelling framework, we have chosen not to investigate
these generalizations in this paper, however, they offer an intriguing
extension for situations in which a priori information is relatively
lacking.

5 D I S C U S S I O N A N D C O N C LU S I O N S

The objective of this study has been to develop a framework for
encoding geological information into geophysical inverse problems
in an intuitive way. Using the EKI algorithm, the computational dif-
ficulties of taking derivatives of our models are avoided, enabling
our definitions to be used to solve large-scale inverse problems de-
fined by nonlinear, possibly black-box forward models. Using our
inversion framework we solved three example inverse problems us-
ing the P wave first arrival traveltime problem as a test case. In
these examples, the level-set model specification enabled complex
boundaries to be inverted using only the a priori knowledge of the
expected number of domains. Furthermore, we showed how we can
incorporate useful a priori information, such as the presence of
faults, to deliver a yet more parsimonious model that has signif-
icantly better resolution than traditional tomographic approaches.
We have illustrated how using our inversion framework appropri-
ately may result in tomographic images that are easier to interpret
than traditional images produced by standard methods; the practi-
tioner should be empowered to formulate descriptive models that
enable targeted exploration of the data. For concenceptual clarity,
this study has used examples for which heterogeneity within model
regions is sufficiently weak that it is reasonable to assume constant
velocity models. However, the model framework permits arbitrary
structure within each model layer, which could be modelled with a
GRF with no level set function applied. For regions in which there
is substantial in-layer heterogeneity, explicit modelling of material
interfaces may still be useful when there is a mixture of sharp tran-
sitions and smooth variations in mechanical properties which are
both relevant to the inverted data–for example, when jointly invert-
ing high-frequency receiver functions with surface wave dispersion
for sedimentary basin geometry and internal velocity structure.

One important outcome of the framework not presented in this
study is the possibility of formal model selection performed on ge-
ologically parameterized models. In the context of model selection,
a practitioner would propose several distinct geological models and
then use some criterion to rank the models in a preferred order by
balancing their complexity against their ability to predict the data.
For the deterministic inverse problems solved in this study, which

produce a single optimum model that best fits the model given ob-
served data and prior constraints, various information criterion (IC)
such as the Akaike or Bayesian IC may be used (Claeskens 2016).
If computational resources permit, cross-validation techniques are
possible and act as a guard against outlier data (Claeskens 2016).
If a Bayesian approach is taken, more robust approaches include
predictive performance checks using draws from the posterior pre-
dictive distribution of the data—methods such as PSIS-LOO using
these draws can emulate leave-one-out crossvalidation without ex-
plicitly resampling the posterior conditioned on subsets of the data
(Vehtari et al. 2017). Finally, explicit Bayes factor estimation may
be tractable for lower dimensionality models where the practitioner
is confident in the priors assigned to the model (Weinberg 2012).
As our experimental evidence shows, even relatively simple mod-
els of the Earth can match complex data to within a realistic noise
level. It is therefore up to the domain expertise of the inversion
practitioner to design candidate models such that any model se-
lection is meaningful. Once appropriate geophysical models are
identified from a priori knowledge, our study provides a framework
by which the models can be defined and optimized to fit the data.
The inversion philosophy promoted by this work is more inves-
tigative than exploratory when compared to traditional geophysical
inversion procedures that typically emphasize removing a priori
information as much as possible from the inverse problem. As our
understanding of the Earth and its structures grows, we believe
that methodologies, such as the one presented here, that are driven
by our a priori knowledge will become increasingly important to
ameliorate the fundamental issue of non-uniqueness in geophysical
inverse problems.
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A P P E N D I X

A1 Combinatorial definition of multiple level sets

For N regional parameter fields of interest, set n such that N = 2n.
If N is not a power of 2, we can arbitrarily split regions until we
can meet this condition; this will generate a ‘boundary’ without a
discontinuity across it. We define the Heaviside step operator to be

H (φ)(x) =
{

1, φ(x) > 0
0, φ(x) ≤ 0

. (A1)

Then let ι(i, j) be the ith digit of the binary representation of
j − 1. Then

F(x) =
N∑

j=1

n∏
i=1

A j (x)(ι(i, j)(1 − H (φi )(x))

+ (1 − ι(i, j))H (φi )(x)). (A2)

This definition is differentiable and potentially requires fewer
auxiliary fields than the procedural definition. However, due to the
combinatoric nature of the formula differentiation becomes difficult
in practice for n > 2, and regularization of the inverse problem may
result in cross-talk between different regions which share some

of the same auxiliary fields—auxiliary fields are not individually
associated with regional parameter fields.

A2 Derivation of explicit Levenberg–Marquardt update in
finite dimensions

In finite dimensions, � and C are symmetric positive-definite ma-
trices. For compactness, let the prediction error at un be y − G(un)
= δyn . We start with the LM update rule in finite dimensions

un+1 = u + v∗, (A3)

v∗ = arg min
v∈RM

(||�−1/2(δyn − J (un)v)||2
RM + αn||C−1/2v||2

RN

)
,

(A4)

v∗ = arg min
v∈RM

(
(δyn − J (un)v)T �−1(δyn − J (un)v) + αnv

T C−1v
)
.

(A5)

The condition for v∗ is that the derivative of the right-hand side
equals 0, which gives

∂
(
(δyn − J (un)v)T �−1(δyn − J (un)v) + αnv

T C−1v
)

∂v
(A6)

= ∂(δyn − J (un)v)T �−1(δyn − J (un)v)

∂(δyn − J (un)v)

∂(δyn − J (un)v)

∂v

+ ∂αnv
T C−1v

∂v
(A7)

= −(δyn − J (un)v)T �−1 J (un) + αnv
T C−1 (A8)

= vT (J (un)T �−1 J (un) + αnC−1) − δyT
n �−1 J (un) (A9)

= 0, (A10)

or on taking transposes while noting �−1 and C−1 are both
symmetric

(J (un)T �−1 J (un) + αnC−1)v = J (un)T �−1δyn, (A11)

which gives the usual explicit LM update

v∗ = (J (un)T �−1 J (un) + αnC−1)−1 J (un)T �−1(y − G(un)). (A12)
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