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Direct simulations of two-dimensional plane channel flow of a viscoelastic fluid at
Reynolds number Re = 3000 reveal the existence of a family of attractors whose
structure closely resembles the linear Tollmien-Schlichting (TS) mode, and in particular
exhibits strongly localized stress fluctuations at the critical layer position of the TS
mode. At the parameter values chosen, this solution branch is not connected to the
nonlinear TS solution branch found for Newtonian flow, and thus represents a new
solution family that is nonlinearly self-sustained by viscoelasticity. The ratio between
stress and velocity fluctuations is in quantitative agreement for the attractor and the
linear TS mode, and increases strongly with Weissenberg number, Wi. For the latter,
there is a transition in the scaling of this ratio as Wi increases, and the Wi at which
the nonlinear solution family comes into existence is just above this transition. Finally,
evidence indicates that this branch is connected through an unstable solution branch
to two-dimensional elastoinertial turbulence (EIT). These results suggest that, in the
parameter range considered here, the bypass transition leading to EIT is mediated by
nonlinear amplification and self-sustenance of perturbations that excite the Tollmien-
Schlichting mode.

1. Introduction

Adding minute quantities (parts per million) of long-chain polymer additives can dra-
matically change the turbulent flow of Newtonian fluids, the most significant consequence
being the considerable drop in friction factor, which is commonly referred to as the Toms
effect (Virk 1975; White & Mungal 2008; Graham 2014). Accompanying this macroscopic
change is a structural change to the flow. At high levels of viscoelasticity, Samanta et al.
(2013) and Dubief et al. (2013) have shown that trains of weak spanwise-oriented flow
structures with inclined sheets of polymer stretch dominate the flow, denoting this regime
as elastoinertial turbulence (EIT). In further contrast to the 3D structures that sustain
Newtonian turbulence, Sid et al. (2018) demonstrated that EIT is fundamentally 2D in
nature by showing that the structures sustaining 2D EIT in channel flow simulations are
similar to those in 3D.

Choueiri et al. (2018) experimentally studied the path to EIT in pipe flow by varying
polymer concentration at fixed Reynolds number, Re. For sufficiently low Re, they
observed an initial drop in friction factor (i.e. modification of Newtonian turbulence)
as concentration increased, followed by re-laminarization and eventually by a reentrant
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transition to EIT, where the flow had very different structure from Newtonian turbulence.
These observations point at two distinct types of turbulence in dilute polymer solutions –
one that is suppressed by viscoelasticity (Newtonian turbulence) and one that is promoted
(EIT).

Shekar et al. (2019) corroborated this observation of a reentrant transition to EIT in
simulations of channel flow with increasing Weissenberg number, Wi, the ratio between
the polymer relaxation time scale and the shear time scale. They further showed that close
to its inception, EIT exhibits localized polymer stress fluctuations that bear strong resem-
blance to critical layer structures predicted by linear analyses, i.e., sheetlike fluctuations
localized at wall-normal locations where the disturbance wavespeed equals the base flow
velocity. In particular, they demonstrated that the fluctuation structure corresponding
to the dominant spectral content strongly resembles the viscoelastic extension of the
linear Tollmien-Schlichting wave (TSW). This is perhaps a surprising result, as the flow
in the parameter regime considered is linearly stable, and in Newtonian turbulence, the
TS mode plays a very limited role. Some light is shed on this issue through resolvent
analysis, i.e., determination of the response of the linearized dynamics to harmonic-in-
time disturbances, which shows that the linear TS mode becomes highly amplified in
the presence of viscoelasticity. This strong amplification implies that even very weak
disturbances may be sufficient to trigger the nonlinear effects necessary to sustain EIT.

We note that similar structures have been observed by other researchers in different
contexts. Page & Zaki (2015) analyzed the evolution of vortical perturbations in 2D
viscoelastic simple shear flow. Their analysis reveals a viscoelastic analogue of the
Newtonian Orr mechanism. This “reverse-Orr” mechanism generates tilted sheets of
polymer stress fluctuations resembling those seen at EIT and thus may play some role
in this phenomenon.

Because prior work on elastoinertial turbulence reveals structures similar to those
seen in the linear Tollmien-Schliching mode, the present work focuses on Tollmien-
Schlichting waves, but in the fully nonlinear context of self-sustained solutions in the
channel flow geometry. (In the parameter regime here, the laminar flow is always linearly
stable.) After introducing the formulation and computational methods, we show how
the Newtonian nonlinear TS wave branch is modified by viscoelasticity, resulting in its
disappearance as Wi increases. At still higher Wi, however, we demonstrate the onset
of a new, viscoelasticity-driven, nonlinear solution branch that strongly resembles the
linear Tollmien-Schlichting mode, and illustrate how it is related to the TS mode of
linear theory and to elastoinertial turbulence.

2. Formulation

This study focuses on two-dimensional pressure-driven channel flow with constant mass
flux. The x and y axes are aligned with the streamwise and wall-normal directions,
respectively. Lengths are scaled by the half channel height l, so the dimensionless channel
height Ly = 2. The domain is periodic in x with length Lx. Velocity v is scaled with
the Newtonian laminar centerline velocity U ; time t with l/U , and pressure p with ρU2,
where ρ is the fluid density. The polymer stress tensor τ p is related to the polymer
conformation tensor α through the FENE-P constitutive relation, which models each
polymer molecule as a pair of beads connected by a nonlinear spring with maximum
extensibility b.

We solve the momentum, continuity and FENE-P equations:
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∂v

∂t
+ v ·∇v = −∇p+

β

Re
∇2v +

(1− β)

ReWi
(∇ · τ p) , (2.1)

∇ · v = 0, (2.2)

τ p =
α

1− tr(α)
b

− I, (2.3)

∂α

∂t
+ v ·∇α−α ·∇v − (α ·∇v)

T
=
−1

Wi
τ p. (2.4)

Here Re = ρUl/(ηs + ηp), where ηs and ηp are the solvent and polymer contributions to
the zero-shear rate viscosity. The viscosity ratio β = ηs/(ηs + ηp). We fix β = 0.97 and
b = 6400. Since 1 − β is proportional to polymer concentration and b to the number of
monomer units, this parameter set corresponds to a dilute solution of a high molecular
weight polymer. The Weissenberg number Wi = λU/l, where λ is the polymer relaxation
time.

For the nonlinear direct numerical simulations (DNS) described below, a finite dif-
ference scheme and a fractional time step method are adopted for integrating the
Navier-Stokes equation. Second-order Adams-Bashforth and Crank-Nicolson methods
are used for convection and diffusion terms, respectively. The FENE-P equation is
discretized using a high resolution central difference scheme (Kurganov & Tadmor 2000;
Vaithianathan et al. 2006; Dallas et al. 2010). No artificial diffusion is applied. Resolution
tests were performed to ensure convergence of statistics. A typical resolution for the
following results is (Nx, Ny) = (79, 402).

We also consider the linearized evolution of infinitesimal perturbations to the laminar
state with given streamwise wavenumber k. Two approaches are used. The first is classical
linear stability analysis, in which solutions of the form φ̂(y) exp [ik(x− ct)] are sought,
resulting in an eigenvalue problem for the complex wavespeed c at a given k. In the
present study, ˆ always indicates deviation from the laminar state. If all ci < 0, which
is the case for all conditions considered in the present study, the flow is linearly stable.
A linearized version of the DNS code was also developed using the numerical schemes
described above. Results were validated against linear stability analysis and agreement
to three significant digits was obtained for the value of c for the viscoelastic TS mode at
the parameters of interest.

The second linear approach used here determines the linear response of the laminar
flow to external forcing with given wavenumber k and frequency ω using the resolvent
operator of the linearized equations (Schmid 2007; McKeon & Sharma 2010). The norm
used in the resolvent calculations is

‖φ̂‖2A =

∫ 1

−1

[
v̂∗v̂ + tr

(
A−1α̂∗A−1α̂

)]
dy, (2.5)

where A is the conformation tensor in the laminar state. The second term provides a
measure of the conformation tensor perturbation magnitude that is motivated by the
non-Euclidean geometry of positive-definite tensors (Hameduddin et al. 2019). For both
the linear stability and resolvent analyses, the equations are discretized with a Chebyshev
pseudospectral method using 401 Chebyshev polynomials.



4

Figure 1: (a) Structure of NNTSA at Re = 3000,Wi = 3. White dots indicate the
locations of hyperbolic stagnation points in the frame moving with the wave speed.
(b) Snapshot from 2D EIT at Re = 3000, Wi = 15. Shown are color contours of α̂xx

whereˆdenotes deviations from the laminar state.

3. Results and discussion

3.1. Origin of Newtonian and viscoelastic nonlinear Tollmien-Schlichting attractors

In Newtonian flow, a family of nonlinear Tollmien-Schlichting waves bifurcates subcrit-
ically from the laminar branch at Re ≈ 5772 with Lx ≈ 2π/1.02 ≈ 6.15. The lower limit
of the parameter regime for which this solution family exists is Re ≈ 2800, Lx ≈ 2π/1.3 ≈
4.83 (Jiménez 1990). Furthermore, in prior work on elastoinertial turbulence (Shekar et al.
2019), as well more recent simulations in long two-dimensional domains, a strong peak
in the spatial spectrum is found at Lx ≈ 5. Based on these observations, all of the results
presented in this study will be at Re = 3000, Lx = 5. In the Newtonian limit at these
parameters, there are upper and lower branch solutions (which merge in a saddle-node
bifurcation as Re is lowered); the upper branch traveling wave solution is linearly stable
with respect to two-dimensional perturbations and is thus easily computed via DNS. We
call this solution branch, including its viscoelastic extension, the Newtonian Nonlinear
Tollmien-Schlichting attractor (NNTSA). (The word “attractor” is chosen rather than
“wave” because, depending on parameters one can observe a pure traveling wave state
or one with periodic or nonperiodic modulations.)

On increasing Wi, the self-sustained nonlinear viscoelastic TS wave at Re = 3000
develops sheets of high polymer stretch resembling near wall structures seen at EIT.
This structure originates in the nonlinear Kelvin cat’s eye kinematics of TS waves at
finite amplitude, as detailed in Shekar et al. (2019). Some of the observations made in
that paper are included here, as they form the background for the new main results of the
present study. Figure 1(a) illustrates this point with a snapshot of α̂xx on the NNTSA
branch at Wi = 3.

At the parameters chosen, the solution branch originating in the self-sustained New-
tonian TS wave bifurcates to a periodic orbit at Wi ≈ 3.5 (cf. Lee & Zaki (2017)) before
turning back into a traveling wave and losing existence beyond Wi = 3.875, evidently
in a saddle-node bifurcation yielding a lower branch TS wave solution that becomes the
Newtonian solution as Wi→ 0. Consistent with a saddle-node bifurcation, if the solution
at Wi = 3.875 is used as an initial condition for a simulation at slightly higher Wi,
the flow laminarizes. This bifurcation scenario is shown on Fig. 2 in terms of average
wall shear rate vs. Wi. Because we have not directly computed the lower branch, it is
indicated as a dashed curve.

As shown in Shekar et al. (2019), if Wi is large, sufficiently energetic initial conditions
lead to 2D EIT. For comparison with the structure on the NNTSA branch, Figure 1(b)
shows a snapshot of α̂xx on the EIT branch at Wi = 15. Fig. 2(a) also shows the mean
wall shear rate for the EIT solution branch, which loses existence at finite amplitude when
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Figure 2: (a) Bifurcation diagram showing the evolution of the space and time-averaged
wall shear rate with Wi for the 2D nonlinear NNTSA and EIT branches at Re =
3000, Lx = 5. Black arrows point to the symbols corresponding to the structures shown in
Figure 1. Labels ‘L’ and ‘VNTSA’ indicate that initial conditions starting at the arrows
evolve to laminar or VNTSA states, respectively. (b) Bifurcation diagram of the L2-norm
of α̂xx with Wi for the VNTSA. The label ‘EIT’ indicates that initial conditions evolve
to EIT. Dashed curves are hypothesized unstable solution branches. The asterisks on the
plots indicate the continuation of the branch from one plot to the other.

Wi . 13. The bifurcation underlying this transition is presumably also of saddle-node
form.

The central observation of the present paper arises from considering what happens
just below the onset of the EIT regime at Wi ≈ 13. We do this by using a velocity
and stress field from EIT at Wi = 13 as an initial condition for a run at Wi = 12.
This initial condition persists as a slowly decaying form of EIT for hundreds of time
units, consistent with behavior just beyond a saddle-node bifurcation. As time increases
further, the structure continues to decay, but does not ultimately reach the laminar state.
Instead, it evolves to a nontrivial attractor state that is very nearly a traveling wave, and
in particular strongly resembles the linear TS mode at these parameters. We call this
new state the viscoelastic nonlinear Tollmien-Schlichting attractor (VNTSA).

3.2. Viscoelastic nonlinear Tollmien-Schlichting attractor

To elaborate on the relationship between the VNTSA and the linear TS mode, we
now describe 2D simulation results at Re = 3000,Wi = 13, Lx = 5, i.e. close to the
point where the 2D EIT branch first comes into existence as shown in the bifurcation
diagram (Figure 2a). EIT and the VNTSA are coexisting attractors at these parameter
values. Figure 3 shows the evolution of the L2 norm of α̂xx starting from an initial
condition consisting of the laminar state plus some amplitude ε of the linear TS mode
for this parameter set. This mode, with ε = 1, is shown in Figure 4a. The structure
of the velocity field is virtually unchanged from the Newtonian case and the polymer
conformations are strongly localized to the critical layer positions y = ±0.82. Sufficiently
small perturbations, e.g. ε = 1, decay to the laminar state, as they must since that state
is linearly stable. However, larger perturbations ε = 10 and ε = 100, where nonlinear
mechanisms play a role, α̂xx settle to a finite value corresponding to the VNTSA.

For comparison, the dashed lines on Figure 3 show the linearized evolution starting
from the same initial conditions; these all decay to laminar, illustrating the role of
nonlinearity in the transition to the VNTSA. This state is robust: initial perturbation
amplitudes over a wide range will evolve to it. However, initial conditions with very large
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Figure 3: Time evolution of the L2-norm of α̂xx for Re = 3000,Wi = 13, Lx = 5, starting
from an initial condition of laminar state + ε×TS-mode. Dashed lines correspond to
linearized runs starting from the same initial conditions for ε = 10 and 100.

magnitudes (e.g. ε = 6000) evolve to EIT: as noted above, both EIT and VNTSA are
attractors at the chosen parameters (as is the laminar state).

Figure 4b is a snapshot showing the typical fluctuation structure of the VNTSA at
Wi = 13. The streamwise conformation α̂xx has tilted sheets highly localized near y =
±0.82 and contours of wall normal velocity v̂ span the entire channel. This structure
bears strong resemblance to the TS mode shown in Figure 4a. The VNTSA is thus a
weakly nonlinear self-sustaining state whose primary structure is the viscoelastic TS
mode. We elaborate in the following section on the linear TS mode and its connections
to the VNTSA.

In the VNTSA state, the velocity fluctuations are very weak, and the mean wall shear
rate displays a very small change from laminar. This can be understood on the grounds
that changes of the mean wall shear rate correspond to fluctuations with kx = 0, which
arise only due to nonlinear interactions. Since the primary velocity structure is very weak,
the nonlinear effects will be even weaker. To illustrate nonlinear effects, Figures 4c and
4d, respectively, show the kLx/2π = 1, 2, spatial Fourier components of the snapshot
shown in 4b. Figure 4c closely resembles the TS mode, with a slight symmetry-breaking
across the centerline y = 0. The structure at kLx/2π = 2 also displays polymer stress
fluctuations localized around the critical layer position, an observation that also holds
for higher wavenumbers.

Having established the structure of the flow on the VNTSA branch, we now illustrate
the bifurcation scenario of this solution branch by continuing in Wi. The VNTSA branch
loses existence at finite amplitude (i.e. in a saddle-node bifurcation) for Wi . 6, as we
have confirmed both by using the Wi = 6 solution as an initial condition for simulations
at lower Wi and by running simulations starting from the laminar state perturbed by
the TS mode with small ε. For Wi < 6 all these initial conditions decay to laminar. On
increasing Wi, the VNTSA branch loses existence beyond Wi ≈ 49, and initial conditions
that land on the VNTSA for Wi = 49 evolve to EIT at Wi = 50. These observations
suggest that the VNTSA turns around and forms an unstable branch that joins up with
the unstable lower branch of EIT. Due to the small amplitude of the VNTSA branch,
the bifurcation scenario associated with it is shown separately in Figure 2b, using the L2

norm of α̂xx as the amplitude measure. The hypothesized unstable branch connecting
VNTSA and EIT is shown schematically with dashed lines on the bifurcation diagrams
and the asterisks indicate how they are presumably connected in moving from Figure 2a
to Figure 2b.

Figure 5a shows the fluctuation structure of the VNTSA at Wi = 8, close to the point
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Figure 4: (a) Structure of the linear TS mode at Re = 3000,Wi = 13, Lx = 5. Magnitude
of the eigenmode is arbitrary and values shown here correspond to ε = 1. (b) Snapshot
of the fluctuation structure of the VNTSA at Re = 3000,Wi = 13. (c) and (d) are the
kLx/2π = 1, 2 components respectively, of the snapshot shown in (b). Shown are contour
lines of v̂ superimposed on color contours of α̂xx. For v̂, dashed = negative and solid =
positive.

where it first comes into existence. The structure closely resembles the TS mode and does
not change appreciably with time. The flow is almost a pure nonlinear traveling wave
with some weak non-periodicity, as indicated in the power density plot of the wall normal
velocity at position (0, 0.825) shown in figure 5b. The spectrum is mainly composed of
the dominant TS mode frequency and its higher harmonics. The dynamics and structures
get more complicated as Wi increases. Figure 5c shows a typical snapshot at Wi = 20,
which clearly is more complex than a TS mode. However, at this Wi, the VNTSA still
intermittently displays clear TS-like structures such as the snapshot in Figure 5d.

3.3. Linear analyses

In this section we elaborate on the linearized problem and its connection to the
attractors described above using linear stability and resolvent analyses. The spectrum
corresponding to disturbances with wavelengths equal to the DNS box size, i.e. k = 2π/5,
has a least-stable eigenvalue at c ≈ 0.32 − 0.010i, and the associated eigenfunction
is the viscoelastic extension of the TS mode. For low values of Wi, the mode is less
stable than its Newtonian counterpart, while for Wi & 2, it becomes more stable with
increasing elasticity; this non-monotonic behavior has been reported by Zhang et al.
(2013), who attribute it to viscoelastic modification of the phase difference between u
and v. However, over the range of Wi considered here, the eigenvalue varies by less
than 1% of the Newtonian value. Importantly, the mode never becomes unstable in the
range of parameters considered here, confirming the observations in Section 3.2 that
finite amplitude disturbances are required to trigger transition to EIT or the VNTSA.
However, linear instabilities not related to the TS mode have been found in other regions
of parameter space (Garg et al. 2018), implying the possibility of different attractor
families in those regions.

A measure of the relative importance of the conformation tensor and velocity dis-
turbances is the ratio of the peak amplitudes of α̂xx, (the largest component of the
conformation tensor), and v̂. This ratio is shown in Figure 6a. Two distinct regimes are
apparent, with the transition between the two occurring at Wi ≈ 3.1. The low Wi regime
scales as Wi2, which is the same scaling as in linear shear flow. The amplitude ratio
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Figure 5: (a): Fluctuation structure of the VNTSA (a) and (b) power spectral density
(PSD) of v at position (0, 0.825) at Re = 3000, Wi = 8. Frequencies corresponding to the
TS mode (red-dashed) and its higher harmonics (black-dashed) are also shown. (c) and
(d): snapshots of the VNTSA structure for Re = 3000, Wi = 20. Contour plots follow
the same format as in figure 4.

above the change in slope does not exhibit power law scaling. The change in slope at
Wi ≈ 3.1, can be understood by examining the αxx mode shapes, the magnitudes of
which are plotted in Figure 6b for several values of Wi in the range shown in Figure 6a.
For small Wi, the disturbance is largest at the wall and decays rapidly away from it.
Therefore, the Wi2 scaling in this regime can be explained by the fact that the leading-
order approximation of the base flow very near the wall is simple shear. As Wi increases,
this value decreases, while a new local maximum emerges and grows, becoming the global
maximum just above Wi = 3; the arrow in the figure indicates the profile where this
occurs. Upon further increase in Wi, the maximum gradually shifts away from the wall,
and the modes become increasingly localized around the location of the critical layer yc,
at which the real part of the wavespeed equals the base flow velocity. The critical layer
for Wi = 13 is indicated by the vertical dashed line. This suggests that a critical layer
mechanism is responsible for the change in scaling at large Wi, though at present we
do not understand the specific origin of this result. Interestingly, the Wi at which the
VNTSA comes into existence is only slightly larger than that at which the transition to
critical layer scaling occurs.

Also shown in Figure 6a is the amplitude ratio computed from the VNTSA for several
values of Wi. Excellent agreement between the linear and nonlinear results quantitatively
reinforces the TS-mode-like nature of the VNTSA. Additionally, the profile of |α̂xx|,
averaged in the streamwise direction and over many snapshots, for the VNTSA at Wi =
13 is shown by the thick red line in Figure 6b, and the blue line highlights the linear mode
for the same Wi. The VNTSA profile exhibits the same localization, and the location of
the peak value is in close agreement with the critical layer location.

Figure 6c shows the first two singular values of the resolvent operator for k and c
corresponding to the linear TS mode. Shekar et al. (2019) showed that such modes are the
most-amplified 2D disturbances in this parameter regime and that the leading response
mode is nearly identical to the TS eigenmode; for this reason the resolvent modes are
not plotted separately. The substantial increase in the leading singular value with Wi
indicates that this amplification becomes much stronger with increasing elasticity, and
consequently that considerably smaller disturbances may be sufficient to trigger self-
sustaining nonlinear mechanisms. Further, the symmetry of the flow geometry about
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(a) (b) (c)

Figure 6: (a) Solid blue line: ratio of peak amplitudes of α̂xx and v̂ for the linear TS mode
as a function of Wi; circles: amplitude ratio for the VNTSA. (b) Magnitude of α̂xx for the
linear TS mode for several values of Wi in the range [1, 20]. Darker lines indicate higher
values of Wi. The thick red line shows the averaged magnitude of α̂xx from the VNTSA
for Wi = 13. For comparison, the linear TS mode profile for the same Wi is shown in
blue, and the vertical dashed line marks the critical layer location yc = 0.825. The arrow
indicates the value of Wi corresponding to the arrow in (a). (c) First two singular values
of the resolvent operator for k and c corresponding to the linear TS mode.

y = 0 means that resolvent modes typically come in pairs having similar amplification,
with one mode having a symmetric v̂ response and the other having an antisymmetric v̂
response. However, the growing separation between the first and second singular values
with increasing Wi indicates that this pairing is broken by elasticity, and that the
symmetry exhibited by the TS mode is preferred in terms of linear amplification.

4. Conclusion

This study focuses on two-dimensional plane channel flow of a very dilute polymer
solution at Re = 3000. At sufficiently high Wi, elastoinertial turbulence is observed in
this parameter regime, and the focus of the present work is to make progress toward
understanding the structures and mechanisms underlying the dynamics in this regime.
We report here the existence of a new attractor that is based on the viscoelastic linear
Tollmien-Schlichting mode and is nonlinearly sustained by viscoelastic stresses. We
denote this as the viscoelastic nonlinear Tollmien-Schlichting attractor (VNTSA). At
the parameters considered here, this solution branch is not connected to the Newtonian
branch of nonlinear self-sustained Tollmien-Schlichting waves; it would be interesting to
learn whether they become connected at higher Re. In a domain of dimensionless length
5, this solution comes into existence at finite but very small amplitude when Wi & 6,
increasing in amplitude until Wi ≈ 49 where it loses existence again. At higher Wi, initial
conditions corresponding to this solution branch at lower Wi evolve into elastoinertial
turbulence. In general, we find not pure nonlinear traveling waves, but, until Wi is large,
the nonperiodic fluctuations are very small. The connection of the VNTSA to the linear
TS mode is established via their strong structural similarities, including a quantitive
agreement between the relative magnitudes of the velocity and stress fluctuations. The
value of Wi at which the VNTSA comes into existence is close to where the relative
amplitude of the stress and velocity fluctuations for the linear TS mode undergoes a
change in scaling. Above this transition the stress fluctuations become highly localized
at the position of the critical layer.
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Taken together, these results suggest that, at least in the parameter range considered
here, the bypass transition leading to EIT is mediated by nonlinear amplification and
self-sustenance of perturbations that excite the Tollmien-Schlichting mode. Gaining an
understanding of the mechanism underlying this phenomenon will shed light on the origin
of elastoinertial turbulence.
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