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ON THE FINITE TIME BLOWUP OF THE DE GREGORIO MODEL FOR

THE 3D EULER EQUATION

JIAJIE CHEN, THOMAS Y. HOU, AND DE HUANG

Abstract. We present a novel method of analysis and prove finite time self-similar blowup
of the original De Gregorio model [7, 8] for smooth initial data on the real line with compact
support. We also prove self-similar blowup results for the generalized De Gregorio model [23]
for the entire range of parameter on R or S1 for Hölder continuous initial data with compact
support. Our strategy is to reformulate the problem of proving finite time self-similar singu-
larity into the problem of establishing the nonlinear stability of an approximate self-similar
profile using the dynamic rescaling equation. We use the energy method with appropriate
singular weight functions and take into account cancellation among various nonlinear terms
to extract the inviscid damping effect from the linearized operator around the approximate
self-similar profile. We remark that our analysis does not rule out the possibility that the
original De Gregorio model is well posed for smooth initial data on a circle. The method of
analysis presented in this paper provides a promising new framework to analyze finite time
singularity of nonlinear nonlocal systems of partial differential equations.

1. Introduction

The three-dimensional Navier-Stokes equations govern the motion of incompressible fluid in
the absence of external forcing:

(1.1) ut + u · ∇u = −∇p+ ν∆u, ∇ · u = 0.

Here u(x, t) : R3×[0, T )→ R3 is the 3D velocity vector of the fluid, and p(x, t) : R3×[0, T )→ R
describes the scalar pressure. The viscous term ν∆u models the viscous forcing in the fluid. In
the case that ν = 0, equations (1.1) are referred to as the Euler equations. The divergence-free
condition∇·u = 0 guarantees the incompressibility of the fluid. The Navier-Stokes equations are
among the most fundamental nonlinear partial differential equations. The fundamental question
regarding the global regularity of the 3D Euler and Navier-Stokes equations with smooth initial
data with finite energy remains open, and it is generally viewed as one of the most important
open questions in mathematical fluid mechanics, see the surveys [4, 11, 12, 15].

Define vorticity ω = ∇× u, then ω is governed by

ωt + (u · ∇)ω = ∇u · ω + ν∆ω.(1.2)

The term ∇u · ω on the right hand side is referred to as the vortex stretching term, which
is absent in the two dimensional case. Note that ∇u is formally of the same order as ω. In
fact, one can easily show that ‖∇u‖Lp can be bounded from above and below by ‖ω‖Lp for
1 < p <∞. Thus the vortex stretching term scales quadratically as a function of vorticity, i.e.
∇u ·ω ≈ ω

2. The presence of the vortex stretching term in 3D Navier-Stokes or Euler equations
is the main source of difficulty in obtaining global regularity. So far, one can only prove that
the 3D Navier-Stokes equations have global smooth solutions for small data.

1.1. The De Gregorio model and its variant. In this paper, we study the finite time
singularity of the 1D De Gregorio model [7, 8] and its generalization. The De Gregorio model
is a simplified 1D model to study the potential finite time singularity of the 3D incompressible
Euler equations. Specifically, the inviscid De Gregorio model is given below

(1.3) ωt + auωx = uxω , ux = Hω ,

Date: May 5, 2019.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/286682151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1905.06387v1


2 JIAJIE CHEN, THOMAS Y. HOU, AND DE HUANG

where H is the Hilbert transform and a ∈ R is a parameter. In this 1D model, the vorticity
vector is modeled as a scalar quantity, ω. The main nonlinear terms, i.e. the advection term,
uωx, and the vortex stretching term, uxω, are kept in the model. The Biot-Savart law is modeled
by ux = Hω, which preserves the same scaling as that of the original Biot-Savart law. The case
of a = 0 is reduced to the well-known Constantin, Lax and Majda model [5], in which the
authors proved the finite time singularity formation for a class of initial data. The case a = 1
was proposed by De Gregorio in [7] and its generalization to a ∈ R was proposed by Okamoto
et .al. in [23]. Throughout this paper, we call (1.3) the De Gregorio (DG) model. There are
various 1D models proposed in the literature. We refer to [10, 20] for excellent surveys of other
1D models for the 3D Euler equations and the surface quasi-geostrophic equation.

One important feature of the De Gregorio model is that it characterizes the competition
between the advection term and the vortex stretching term. It is not hard to see that when a < 0,
the advection effect would work together with the stretching effect to produce a singularity.
Indeed, Castro and Córdoba [1] proved the finite time blow-up for a < 0 based on a Lyapunov
functional argument. For a > 0, there are competing nonlocal stabilizing effect due to the
advection and the destabilizing effect due to vortex stretching, which are of the same order in
terms of scaling. Even for arbitrarily small a > 0, in which case we expect that the advection
effect is much weaker than the vortex stretching, using the same Lyapunov functional argument
would fail to prove a finite time singularity since the control of the solution through the Lyapunov
functional is not strong enough. We remark that the stabilizing effect of the advection has also
been studied by Hou-Li in [17] for an exact 1D model of the 3D axisymmetric Navier-Stokes
equations along the symmetry axis and by Hou-Lei for a 3D model of the axisymmetric Navier-
Stokes equations in [16].

The question of whether the De Gregorio model would develop a finite time singularity for
a > 0 has remained unsolved for some time, especially the case of a = 1. In a recent paper
by Elgindi and Jeong [10], they constructed a smooth self-similar profile for small |a| and a Cα

self-similar profile for all a ∈ R. We note that the self-similar profiles constructed by Elgindi and
Jeong do not have fast decay and the corresponding velocity u has infinite energy, i.e. ||u||2 =∞.

1.2. A novel method of analysis. One of the main contributions of this paper is that we
introduce a novel method of analysis that enables us to prove finite time singularity for the De
Gregorio model with initial data that have finite energy for the entire range of parameter a both
on the real line and on a circle. For small |a|, and a = 1, we can prove finite time self-similar
blowup for the C∞

c initial data on the real line. The result for the case of a = 1 is especially
interesting, resolving the open question on the finite time blowup of the original De Gregorio
model on the real line. The blowup analysis for the case of a = 1 with C∞

c initial data is much
more challenging than the other blowup results for |a| small or any a with initial data ω0 ∈ Cα

c

with small Hölder exponent α since the advection term in the case of a = 1 is comparable to
the vortex stretching term and there is strong cancellation between these two competing terms.

Our method of analysis consists of several steps. The first one is to construct an approximate
self-similar profile for the De Gregorio model with a small residual in some properly chosen energy
norm. In general, it is very difficult to construct a self-similar profile analytically. If the steady
state exists and has some regularity, we can compute it numerically with high accuracy to obtain
an approximate self-similar profile. The approximation error can be estimated a posteriori. We
use this approach to obtain an accurate approximate self-similar profile ω̄ for (1.3) with a = 1.
The second step is to perform linear stability analysis around this approximate self-similar
profile by using the dynamic rescaling equation with some appropriately chosen normalization
conditions. By designing carefully chosen singular weight functions for both the L2 and the H1

norms, we are able to extract the crucial inviscid damping effect from the linearized operator
around the approximate self-similar profile. The third step is to establish nonlinear stability by
choosing an appropriate energy norm and using the bootstrap argument. We can then choose an
initial perturbation sufficiently small in the energy norm so that the initial condition of the De
Gregorio model has compact support and show that the solution develops a self-similar blowup
in finite time. Moreover, we prove that the solution of the dynamic rescaling equation converges
to the exact self-similar solution exponentially fast in time in the weighted L2 norm.
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By inviscid damping effect, we refer to the property that the eigenvalues of the symmetric
part of the linearized operator are all negative. The amount of inviscid damping is characterized
by the largest eigenvalue of the symmetric part of the linearized operator, which is negative, but
close to zero in absolute value. This relatively weak damping effect makes it extremely difficult
to establish linear stability of the linearized operator with a finite amount of damping in the
chosen energy norm. We have to develop very sharp estimates for various terms and make use
of the isometry property of the Hilbert transform and the cancellation property among various
nonlinear terms. This is the most delicate part of the analysis and as a result, our analysis
involves many detailed technical computations.

To illustrate the main idea of our analysis, we consider the linear stability of several approx-
imate profiles (ω̄, c̄l, c̄ω) in the dynamical rescaling equation

(1.4) ωt + (cl(t)x+ au)ωx = (cω(t) + ux)ω ,

where cl(t) and cω(t) are scaling parameters. The linearized equation around ω̄, ū, c̄l, c̄ω reads

(1.5) ωt + (c̄lx+ aū)ωx = (c̄ω + ūx)ω + (ux + cω)ω̄ − (au+ clx)ω̄x .

The inviscid damping effect of the system comes from two parts: the stretching term (c̄lx+aū)ωx

and the vortex stretch term (c̄ω+ūx)ω. To extract the inviscid damping effect from the linearized
operator, we choose a singular weight x−k, k ∈ N+ to take advantage of the stretching effect. We
use the weighted L2 estimate of ω to demonstrate some subtlety of the linear stability analysis:

1

2

d

dt
〈ω2, x−k〉 = 〈−(c̄lx+ ū)ωx + (c̄ω + ūx)ω, ωx

−k〉+ 〈(ux + cω)ω̄ − (au+ clx)ω̄x, ωx
−k〉.

Denote by I the first term on the right hand side. Since ū has a sublinear growth at infinity, we
may assume c̄lx+ ū = Cx for some C > 0. Using integration by parts, we obtain

I = 〈−Cx−(k−1)ωx, ω〉+ 〈(c̄ω + ūx), ω
2x−k〉

=
〈

− C(k − 1)

2
+ (c̄ω + ūx), ω

2x−k
〉

, 〈D,ω2x−k〉 .

Since C > 0, we will choose k so that the coefficient D is negative (we choose k = 4 for a = 1
and small |a|). The above weight x−k only reflects the scaling of the singular weight near x = 0.
The actual weight that we use in the analysis is more subtle and we need to take into account
the far field behavior of the solution and the approximate self-similar profile.

To estimate the vortex stretch term (ux + cω)ω̄ in (1.5), we take full advantage of the can-
cellation between ux and ω (see Lemma A.3). We remark that the ux term is harmless to the
stability analysis. For the last term −(au + clx)ω̄x in (1.5), we will show that it is small if
either |a| is small or the profile ω̄ ∈ Cα for small α > 0. In the case of a = 1, this term can be
controlled by the damping of ω.

The method of analysis that we present in this paper provides a promising new framework to
analyze potential finite time singularity of a nonlinear and nonlocal system of partial differential
equations. Recently, we have been able to generalize this method of analysis to establish finite
time self-similar blowup of the HL model proposed in [18, 21] (see also a recent paper in [3]).
The HL model is a 1D model for the 3D axisymmetric Euler equations along the boundary. It
shares many surprising properties with the original 3D Euler equations and seems to capture
very well the essential mechanism that leads to finite time blowup of the 3D axisymmetric Euler
equations reported by Luo-Hou in [21]. The analysis of the HL model is much more challenging
than that of the De Gregorio model since it is a nonlinear nonlocal system. We are currently
working to extend our method of analysis presented in this paper to prove the finite time blowup
of the 2D Boussinesq system.

1.3. Main results. We first state the results for (1.3) on R. Our first main result proves the
finite time singularity of the original De Gregorio model.

Theorem 1.1. There exist some C∞
c initial data on R such that the solution of (1.3) with a = 1

develops an expanding self-similar singularity with blowup scaling cl = −1 in finite time.

The second result is finite time blowup of (1.3) for small |a| with C∞
c initial data.
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Theorem 1.2. There exists a positive constant δ > 0 such that for |a| < δ the solution of (1.3)
develops a focusing self-similar singularity in finite time for some C∞

c initial data.

The third result is finite time blowup of (1.3) for all a with compact support initial data.

Theorem 1.3. There exists C1 > 0 such that for α < min(1/4, C1/|a|), the solution of (1.3)
with parameter a develops a focusing self-similar singularity in finite time for some Cα

c initial
data.

By expanding or focusing self-similar singularity in Theorems 1.1, 1.2 and 1.3, we mean that

ω(x, t) = (T − t)−1Ω

(
x

(T − t)cl

)

is a self-similar solution of (1.3) for some T > 0 with blowup scaling cl < 0 in the expanding case
and cl > 0 in the focusing case. The 1/4 upper bound on α in Theorem 1.3 is not a technical
assumption but useful for simplifying the presentation. It will be clear in the proof that the
results for α ∈ [1/4, 1) can be obtained using a similar argument.

The self-similar blowup in Theorem 1.2 and Theorem 1.3 is focusing and these results also
hold for the DG model on the circle.

Theorem 1.4. Consider (1.3) on the circle. (1) There exists C1 > 0 such that if |a| < C1, the
solution of (1.3) develops a self-similar singularity in finite time for some C∞

c initial data. (2)
If α < min(C1/|a|, 1/4), then the solution of (1.3) develops a finite time self-similar singularity
for some initial data ω0 ∈ Cα with compact support.

The initial data ω0 we constructed for the previous theorems all satisfy that ω0 is odd and
w0 ≤ 0 for x > 0. The following theorem implies that for a > 0, the Hölder regularity for ω0 in
this class is crucial for the focusing self-similar blow-up.

Theorem 1.5. Suppose that the initial value ω0 is odd and non-positive for x > 0. There exists a
universal positive constant a0 such that if ω0 ∈ Cα with compact support and 1 ≥ α > a0/a, then
it cannot develop a finite time self-similar singularity with blowup scaling cω = −1, cl > −α−1.

Theorem 1.3 and the above result show that the critical Hölder exponent for initial datum is
α ≈ 1

a for large positive a. In particular, for smooth initial data ω ∈ C1, it cannot develops a
focusing self-similar singularity for a > C1 on the circle. For (1.3) on the circle, we can prove
stronger results Theorem 4.11 and Proposition 4.14, which will be discussed in Section 4.3.2.

We remark that Theorem 1.1 and Theorem 1.4 do not rule out the possibility that the original
De Gregorio model (1.3) with a = 1 is globally well-posed for smooth initial data on the circle.
In fact, Theorem 4.11, Proposition 4.14 and Theorem 5.1 show that it is much harder to obtain
finite time blowup for large positive a on a circle than on the real line. In a recent paper by
Sverak et. al. [19], they proved the nonlinear stability of the equilibrium A sin(2(θ−θ0)) of (1.3)
with a = 1 and π periodic, which sheds useful light on the DG model on S1. For smooth ω0

with ω0,x(0) = 0, the a-priori L1 bound for ω in Proposition 4.14 may provide useful insight on
the possible global well-posedness in this class of ω.

Finally, we would like to point out that after we completed our work, we learned from Dr.
Elgindi that they have recently established results similar to Theorem 1.2, Theorem 1.3 and
Theorem 1.4 independently in [9].

Organization of the paper. In Section 2, we prove the finite time self-similar blowup of the
DG model with small |a|. We use this special case as an example to demonstrate the main ideas
of our method of analysis to prove finite time self-similar blowup. In Section 3, we construct an
accurate approximate profile numerically for the case of a = 1 and apply our method of analysis
to prove the finite time self-similar blowup for C∞

c initial data. In Section 4, we study the case
with any a ∈ R and prove finite time singularity for any a ∈ R on both R and S1. In addition,
we prove the criticality of the Hölder continuity on both R and S1. Finally, in Section 5, we use
a Lyapunov functional argument to prove finite time blowup for all a < 0. In the Appendix, we
prove several useful properties of the Hilbert transform, some functional inequalities, and prove
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several Lemmas related to the main results. In the supplementary material [2], we estimate
several constants related to the nonlinear stability of the approximate profile for a = 1.

Notations. Since the functions, e.g. ω, u, have odd-even symmetry, we just need to consider
R+. The inner product is defined on R+, i.e.

〈f, g〉 ,
∫ ∞

0

fgdx, ||f ||Lp ,

(∫ ∞

0

|f |pdx
)1/p

.

In Section 3, we further restrict the inner product and the norm on the interval [0, L], e.g

〈f, g〉 =
∫ L

0
fgdx, since the support of ω, ω̄ lies in [−L,L].

We use C,Ci to denote absolute constants and C(A,B, .., Z) to denote constant depending
on A,B, .., Z. These constants may vary from line to line, unless specified. We also use the
notation A . B if there is some absolute constant C with A ≤ CB, and denote A ≍ B if A . B
and B . A. We use → to denote strong convergence and ⇀ to denote weak convergence in
some norm. The upper bar notation is reserved for the approximate profile, e.g. ω̄. The letters
e, f, a1, a2, a3 are reserved for some parameters that we will choose in Section 3.

2. Finite Time Self-Similar Blowup for Small |a|
In this section, we will present the proof of Theorem 1.2. We use this example to illustrate

the main ideas in our method of analysis by carrying stability analysis around an accurate
approximate self-similar profile by using a dynamic rescaling formulation.

2.1. Dynamic rescaling formulation. We will prove Theorem 1.2 by using a dynamic rescal-
ing formulation. Let ω(x, t), u(x, t) be the solutions of the original equation (1.3), then it is easy
to show that

(2.1) ω̃(x, τ) = Cω(τ)ω(Cl(τ)x, t(τ)), ũ(x, τ) = Cω(τ)Cl(τ)
−1u(Cl(τ)x, t(τ))

are the solutions to the dynamic rescaling equations

(2.2) ω̃τ (x, τ) + (cl(τ)x + aũ)ω̃x(x, τ) = cω(τ)ω̃ + ũxω ũx = Hω̃,

where

Cω(τ) = exp

(∫ τ

0

cω(s)dτ

)

, Cl(τ) = exp

(∫ τ

0

−cl(s)ds
)

, t(τ) =

∫ τ

0

Cω(τ)dτ .

If there exists C > 0 such that for any τ > 0, cω(τ) ≤ −C < 0 and the solution ω̃ is nontrivial,
e.g. ||ω̃(τ, ·)||L∞ ≥ c > 0 for all τ > 0, we then have

Cω(τ) ≤ e−Cτ , t(∞) ≤
∫ ∞

0

e−Cτdτ = C−1 < +∞ ,

and that |ω(Cl(τ)x, t(τ))| = Cω(τ)
−1|ω̃(x, τ)| ≥ eCτ |ω̃(x, τ)| blows up at finite time T = t(∞).

If (ω̃τ , cl(τ), cω(τ)) converges to a steady state (ω∞, cl,∞, cω,∞) of (2.2) as τ → ∞, one can
verify that

ω(x, t) =
1

1− tω∞

(
x

(1− t)−cl,∞/cω,∞

)

is a self-similar solution of (1.3).
To simplify our presentation, we will still use t to denote the rescaled time in the rest of the

paper.

2.2. Nonlinear stability of the approximate self-similar profile. Consider the dynamical
rescaling equation

(2.3)
ωt + (clx+ au)ωx = (cω + ux)ω ,

ux = Hω .

For a = 0, we have an analytic steady state

ω =
−x

b2 + x2
, ux =

b

b2 + x2
, cl = 1, cω = −1 ,
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where b = 1/2.
Our strategy in proving the finite-time singularity of the De Gregorio model is the following.

We first construct the approximate self-similar profile. Then, we prove the linear stability
of the approximate self-similar profile, based on which we can further obtain the nonlinear
stability using the bootstrap argument. Finally, we will prove that in the dynamical rescaling
formation, the solution of the dynamic rescaling equation converges to the self-similar blowup
profile exponentially fast as τ →∞.

Theorem 1.2 is the consequence of the following two Propositions.

Proposition 2.1. There exist ω̄ ∈ H2, two singular weight functions ϕ and ψ and two positive
constants, µ and a0 such that if |a| < a0 and the initial data ω̄ + ω0 of (2.3) (ω0 is the initial
perturbation) satisfies ω0 ∈ H2, ω0,x(0) = 0 and E(0) < c|a|, where

E2(t) , 〈ω2(t), ϕ〉+ µ〈ω2
x(t), ψ〉,

then we have (a) In the dynamical rescaling equation (2.3), the perturbation remains small for
all time: E(t) < c|a| for all t > 0; (b) The physical equation (1.3) with initial data ω̄ + ω0

develops a singularity in finite time.

Proposition 2.2. Suppose that the initial perturbation ω0 ∈ H2 satisfies the assumption in
Proposition 2.1. There exists some universal constant δ with 0 < δ < a0 such that, if |a| < δ,
then the solution of the dynamic rescaling equation (2.3), (ω̄+ω, ū+u, c̄ω+cω, cl+ c̄l), converges
to some function, ω∞ ∈ L2(ϕ)∩H1(ψ), u∞, cl,∞ > 0, cω,∞ < 0, in the L2(ϕ) norm exponentially
fast. Moreover, ω∞, cl,∞, cω,∞ is the steady state of (2.3) in L2(ϕα).

In the Appendix, we describe some properties of the Hilbert transform. We will use these
properties to estimate the velocity.

Proof of Proposition 2.1. For any |a| ≤ a0, where a0 > 0 is to be determined. We consider the
following approximate self-similar profile:

(2.4)
ω̄ =

−x
b2 + x2

, ūx = Hω̄ =
b

b2 + x2
, ū = arctan

x

b
,

c̄l = 1− aūx(0) = 1− 2a, c̄ω = −1 ,
where b = 1/2. We consider the equation for any perturbation ω, u around the above approxi-
mate self-similar profile

(2.5) ωt + (c̄lx+ aū)ωx = (c̄ω + ūx)ω + (ux + cω)ω̄ − (au+ clx)ω̄x +N(ω) + F (ω̄) ,

where N and F are the nonlinear terms and the error, respectively defined below:

(2.6) N(ω) = (cω + ux)ω − (clx+ au)ωx, F (ω̄) = −a(ū− ūx(0)x)ω̄x .

We choose the following normalization condition for cl and cω

(2.7) cl(t) = −aux(t, 0), cω(t) = −ux(t, 0).
Note that ω̄ is smooth and the initial data ω0 + ω̄ ∈ H2. Standard local well-posedness results
imply that ω(t, ·)+ω̄ remains inH2 locally in time, so does ω(t, ·). Using the above normalization
condition, the original equation (2.3) and the fact that ω, u are odd, we can derive the evolution
equation for ωx(t, 0) as follows

d

dt
(ωx(t, 0) + ω̄x(0)) =[(cω + c̄ω + ux + ūx)(ω̄ + ω)]x − [(c̄lx+ aū+ clx+ au)(ωx + ω̄x)]x

∣
∣
∣
x=0

=[(cω + c̄ω + ux + ūx)− (c̄l + cl + aūx + aux)](ω̄x + ωx)
∣
∣
∣
x=0

=[(c̄ω + ūx)− (c̄l + aūx)](ω̄x + ωx)
∣
∣
∣
x=0

= 0,

where we have used (2.4) and ūx(0) = 2 to obtain the last equality. It follows

(2.8)
d

dt
ωx(t, 0) =

d

dt
(ωx(t, 0) + ω̄x(0)) = 0⇒ ωx(t, 0) ≡ ω0,x(0).
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In the following discussion, our goal is to construct an energy functional E2(ω) , 〈ω2, ϕ〉 +
µ〈ω2

x, ψ〉 for some universal constant µ and show that E satisfies an ODE inequality

1

2

d

dt
E2(ω) ≤ CE3 − (1/4− C|a|)E2 + C|a|E.

Using a bootstrap argument yields E(t) < c|a| for all time, where C, c are some universal
constants.
Linear Stability. Choosing an appropriate singular weight function plays a crucial role in
establishing the linear stability. Consider the following weight function

(2.9) ϕ = − 1

ω̄x3
− 1

b2ω̄x
=

(b2 + x2)2

b2x4
.

Note that ϕ is singular and is of order O(x−4) near x = 0. For an initial perturbation ω0 ∈ H2

that is odd and satisfies ω0,x(0) = 0, ω(t, ·) preserves these properties locally in time (see (2.8)).
We will choose ω0(x) that has O(|x|−1) decay as |x| → ∞ (same decay as ω̄). Hence, 〈ω2, ϕ〉 is
finite. We perform the weighted L2 estimate

(2.10)

1

2

d

dt
〈ω2, ϕ〉 = 〈−(c̄lx+ aū)ωx + (c̄ω + ūx)ω, ωϕ〉+ 〈(ux + cω)ω̄, ωϕ〉

− 〈(au+ clx)ω̄x, ωϕ〉+ 〈N(ω), ωϕ〉+ 〈F (ω̄), ωϕ〉 , I + II + III +N1 + F1.

For I, we use integration by parts to obtain

I =
〈 1

2ϕ
((c̄lx+ aū)ϕ)x + (c̄ω + ūx), ω

2ϕ
〉

Recall c̄l = 1 − 2a (2.4). Using the explicit formula of profile (2.4) and weight (2.9), we can
evaluate the terms in I that do not involve a as follows

(2.11)

1

2ϕ
(xϕ)x + (c̄ω + ūx) =

b2x4

2(b2 + x2)2

(
(b2 + x2)2

b2x3

)

x

+
b

b2 + x2
− 1

=
b2x4

2(b2 + x2)2

(

4
x(b2 + x2)

b2x3
− 3

(b2 + x2)2

b2x4

)

+
b

b2 + x2
− 1 =

2x2 + b

x2 + b2
− 5

2
= −1

2
,

where we have used b = 1/2. From (2.4) and (2.9), we have

(2.12)

∣
∣
∣

∣
∣
∣
1

2ϕ
[(c̄lx− x+ aū)ϕ]x

∣
∣
∣

∣
∣
∣
L∞

= |a|
∣
∣
∣

∣
∣
∣
1

2ϕ
((−2x+ ū)ϕ)x

∣
∣
∣

∣
∣
∣
L∞

≤|a|
∣
∣
∣

∣
∣
∣
−2 + ūx

2
+
−2x+ ū

x

xϕx

2ϕ

∣
∣
∣

∣
∣
∣
L∞

≤ |a|(1 + ||ūx||∞)

(

1 +
∣
∣
∣

∣
∣
∣
xϕx

ϕ

∣
∣
∣

∣
∣
∣
∞

)

. |a|.

Hence, we can estimate I as follows

(2.13) I =
〈 1

2ϕ
((c̄lx+ aū)ϕ)x + (c̄ω + ūx), ω

2ϕ
〉

≤ −
(
1

2
− C|a|

)

〈ω2, ϕ〉 ,

for some absolute constant C. Denote ũ , u(x)− ux(0)x. (2.7) implies that

clx+ au = aũ, ũx = ux + cω.

Using the definition of II in (2.10),(A.6) and (A.7), we obtain

(2.14) II = −
〈

(ux − ux(0))ω,
1

x3
+

1

b2x

〉

= − π

2b2
u2x(0) ≤ 0.

For III, we use the Cauchy-Schwartz inequality to get

(2.15) III = −a〈ũω, ω̄xϕ〉 ≤ |a|
∣
∣
∣

∣
∣
∣ũ
√

x−6 + x−4
∣
∣
∣

∣
∣
∣
2

∣
∣
∣

∣
∣
∣ω̄x

(
x−6 + x−4

)−1/2
ϕω
∣
∣
∣

∣
∣
∣
2
.

For ũ, we use the Hardy inequality (A.9) to obtain

(2.16) 〈ũ2, x−6 + x−4〉 . 〈ũ2x, x−4 + x−2〉 . 〈ω2, x−4 + x−2〉 . 〈ω2, ϕ〉 .
Note that (2.4) and (2.9) implies

∣
∣
∣ω̄x

(
x−6 + x−4

)−1/2
ϕ
∣
∣
∣ =

∣
∣
∣
−b2 + x2

(b2 + x2)2
· x3

(x2 + 1)1/2
· b

2 + x2

bx2
ϕ1/2

∣
∣
∣ . ϕ1/2.
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We get

(2.17) III ≤ C|a|〈ω2, ϕ〉.
Combining the estimates (2.13), (2.14) and (2.17), we obtain

(2.18)
1

2

d

dt
〈ω2, ϕ〉 ≤ −(1/2− C|a|)〈ω2, ϕ〉+N1 + F1 .

Weighted H1 estimate. The weighted H1 estimate is similar to the L2 estimate. We choose
the singular weight ψ as follows

(2.19) ψ = x2ϕ = − 1

ω̄x
− x

b2ω̄
=

(b2 + x2)2

b2x2
,

and perform the weighted H1 estimate

(2.20)

1

2

d

dt
〈ω2

x, ψ〉 = 〈−((c̄lx+ aū)ωx)x + ((c̄ω + ūx)ω)x, ωxψ〉+ 〈((ux + cω)ω̄)x, ωxψ〉
− 〈((au + clx)ω̄x)x, ωxψ〉+ 〈N(ω)x, ωxψ〉+ 〈F (ω)x, ωxψ〉
, I + II + III +N2 + F2 .

For I, we obtain by using integration by parts that

I = 〈−(c̄lx+ aū)ωxx + (−c̄l − aūx + c̄ω + ūx)ωx + ūxxω, ωxψ〉

=
〈 1

2ψ
((c̄lx+ aū)ψ)x + (c̄ω − c̄l + (1 − a)ūx), ω2

xψ
〉

−
〈1

2
(ūxxψ)x, ω

2
〉

.

Similar to (2.11), we use formula (2.4), (2.19) to evaluate the terms that do not involve a.

1

2ψ
(xψ)x + (c̄ω − 1 + ūx) =

b2x2

2(b2 + x2)2

(
(b2 + x2)2

b2x

)

x

− 2 +
b

b2 + x2
= −1

2
,

(ūxxψ)x =

(

− 2bx

(b2 + x2)2
· (b

2 + x2)2

b2x2

)

x

=
2

bx2
> 0 .

Similar to (2.12), we use (2.4) and (2.19) to show that the remaining terms in I are small. We
get
∣
∣
∣

∣
∣
∣
1

2ψ
((c̄lx− x+ aū)ψ)x − (c̄l − 1)− aūx

∣
∣
∣

∣
∣
∣
L∞

= |a|
∣
∣
∣

∣
∣
∣
1

2ψ
((−2x+ ū)ψ)x + 2− ūx

∣
∣
∣

∣
∣
∣
l∞

. |a|,

where we have used c̄l − 1 = −2a. Therefore, we can estimate I as follows

(2.21) I ≤ −(1
2
− C|a|)〈ω2

x, ψ〉,

where C is some absolute constant. For II, we have

(2.22)

II = 〈((ux + cω)ω̄)x, ωxψ〉 = 〈uxxω̄, ωxψ〉+ 〈(ux + cω)ω̄x, ωxψ〉

= −
〈

uxxωx,
1

x
+
x

b2

〉

− 〈ũx, ωxω̄xψ〉 , II1 + II2 ,

where ũ = u− ux(0)x, ũx = ux − ux(0). Note that

uxx = Hωx, ωx(0) = uxx(0) = 0.

Applying (A.6) with (ux, ω) replaced by (uxx, ωx) and (A.8), we obtain

(2.23)
〈

uxxωx,
1

x

〉

= 0, 〈uxxωx, x〉 = 0.

It follows that

(2.24) II1 = −
〈

uxxωx,
1

x

〉

− 1

b2
〈uxxωx, x〉 = 0.

For II2 in (2.22), we use an argument similar to (2.15) to obtain

|II2| . 〈ũ2x, x−4 + x−2〉1/2 · 〈(x−4 + x−2)−1(ω̄xψ)
2, ω2

x〉1/2.
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(2.16) shows that this first term in the RHS is bounded by 〈ω2, ϕ〉1/2. For the second term, we
use the definition (2.4) and (2.19) to obtain

∣
∣
∣(x−4 + x−2)−1(ω̄xψ)

2
∣
∣
∣ =

∣
∣
∣

x4

x2 + 1

( −b2 + x2

(b2 + x2)2

)2
(b2 + x2)2

b2x2

∣
∣
∣ψ . ψ.

Hence, we have

(2.25) II2 . 〈ω2, ϕ〉1/2〈ω2
x, ψ〉1/2.

For III in (2.27), we note that clx+ au = a(u − ux(0)x). Similarly, we have

(2.26) |III| . |a|〈ω2, ϕ〉1/2〈ω2
x, ψ〉1/2.

In summary, combining (2.21),(2.22), (2.24), (2.25) and (2.26), we prove that

(2.27)
1

2

d

dt
〈ω2

x, ψ〉 ≤ C〈ω2, ϕ〉1/2〈ω2
x, ψ〉1/2 − (

1

2
− C|a|)〈ω2

x, ψ〉+N2 + F2,

where C is some absolute constant.
Estimate of nonlinear and error terms. We use the following estimate to control ‖ux‖∞

||ux||∞ ≤ C||ux||1/22 ||uxx||
1/2
2 = C||w||1/22 ||wx||1/22 ≤ C〈ω2, ϕ〉1/4〈ω2

x, ψ〉1/4.
Recall the definition of N(ω), F (ω̄) in (2.6). For the nonlinear part N1, N2, we have

(2.28)
N1 = 〈N(ω), ωϕ〉 . (|a|+ 1)||ux||∞〈ω2, ϕ〉 . ||ux||∞〈ω2, ϕ〉 ,
N2 = 〈N(ω)x, ωxψ〉 . (|a|+ 1)||ux||∞〈ω2

x, ψ〉 . ||ux||∞〈ω2
x, ψ〉,

where we use that |a| < 1 since we only consider small |a| in Theorem 1.2. We note that F (ω̄)
(2.6) satisfies F (ω̄) = O(x3) near 0 and F (ω̄) = O(x−1) for large x. From (2.9) and (2.19),
we have F (ω̄) ∈ L2(ϕ) and (F (ω̄))x ∈ L2(ψ). Then for the error terms F1, F2, we can use the
Cauchy Schwartz inequality to obtain

(2.29)
|F1| = |〈F (ω̄), ωϕ〉| ≤ 〈F 2(ω̄), ϕ〉1/2〈ω2, ϕ〉1/2 . |a|〈ω2, ϕ〉1/2 ,
|F2| = |〈(F (ω̄))x, ωxψ〉| ≤ 〈(F (ω̄))2x, ψ〉1/2〈ω2

x, ψ〉1/2 . |a|〈ω2
x, ψ〉1/2.

Nonlinear Stability. Let µ < 1 be some positive parameter to be determined. We consider
the following energy norm

E2(t) , 〈ω2, ϕ〉+ µ〈ω2
x, ψ〉.

Using the previous estimates on ux and the Cauchy Schwartz inequality, we have

〈ω2, ϕ〉1/2〈ω2
x, ψ〉1/2 ≤ µ−1/2E2, ||ux||∞ ≤ C〈ω2, ϕ〉1/4〈ω2

x, ψ〉1/4 ≤ Cµ−1/4E.

Combining (2.18), (2.27), (2.28), (2.29) and the above estimate, we derive

1

2

d

dt
E2(t) ≤ −

(
1

2
− C|a|

)

E2 + Cµ〈ω2, ϕ〉1/2〈ω2
x, ψ〉1/2 + C|a|E + C||ux||∞E2

≤ −
(
1

2
− C|a| − C√µ

)

E2 + C|a|E + Cµ−1/4E3 ,

where C is some absolute constant. Now we choose µ such that C
√
µ < 1/4. Note that µ is also

a universal constant. It follows that

(2.30)
1

2

d

dt
E2(t) ≤ −

(
1

4
− C1|a|

)

E2 + C1|a|E + C1E
3 ,

where C1 is a universal constant. For cω(t) and cl(t), they satisfy the following estimate

|cω(t)| = |ux(t, 0)| ≤ C2E, |cl(t)| = |aux(0)| ≤ C2E ,

for some absolute constant. Hence for some small a0 > 0 with C1a0 < 1/8 and any |a| < a0, we
prove by using a bootstrap argument that

E(0) < c|a| ⇒ E(t) < c|a| ⇒ |cω(t)|, |cl(t)| < C2E(t) < C2c|a|,
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for all t > 0 and some universal constant c. We can further require

a0 < min

(
1

8C1
,

1

2C2c

)

,

so that we get

(2.31) |cω(t)|, |cl(t)| < C2c|a| < 1/2 ⇒ c̄ω + cω(t) < −1/2, cl(t) + c̄l > 1/2.

As a result, we can choose small initial perturbation ω0 which modifies ω̄ at the far field so
that we have an initial data ω̄+ω0 with compact support. We can also require that ω0,x(0) = 0
and E(0) < c|a|. Then the bootstrap result and c̄ω + cω(τ) < −1/2 < 0 imply the finite time
blowup. �

Based on the a-priori estimate, we can further obtain the convergence result.

2.3. Convergence to the self-similar solution.

Proof of Proposition 2.2. An important observation is that the approximate self-similar profile
is time-independent. Therefore, we take the time derivative in (2.5) to obtain

(2.32) ωtt + (c̄lx+ aū)ωtx = (c̄ω + ūx)ωt + (ux,t + cω,t)ω̄ − (aut + cl,tx)ω̄x +N(ω)t,

where the error term F (ω̄) vanishes since it depends on the approximate self-similar profile only.
Note that the normalization condition also implies

d

dt
wx(t, 0) = 0.

Exponential convergence. Note that the linearized operator in (2.32) is exactly the same as
that in the weighted L2 estimate (2.5). Therefore, we obtain

(2.33)
1

2

d

dt
〈ω2

t , ϕ〉 ≤ −(1/2− C|a|)〈ω2
t , ϕ〉+ 〈N(ω)t, ωtϕ〉.

The nonlinear part reads

N(ω)t = (cω,t + ux,t)ω + (cω + ux)ωt − (cl,tx+ aut)ωx − (clx+ au)ωx,t , I + II + III + IV .

We are going to show that

(2.34) |〈N(ω)t, ωtϕ〉| . E(t)〈ω2
t , ϕ〉.

Note that

||ω||∞, ||ux||∞, ||(ux − ux(0))(x−4 + x−2)1/2||2 . E(t),

∣
∣
∣
ut(x)

x

∣
∣
∣ =

1

π

∣
∣
∣

∫

y>0

log
∣
∣
∣
x+ y

x− y
∣
∣
∣
1

x
ωt(y)dy

∣
∣
∣ . 〈ω2

t , ϕ〉1/2
〈(

log
∣
∣
∣
x+ y

x− y
∣
∣
∣
1

x

)2

, ϕ−1
〉1/2

. 〈ω2
t , ϕ〉1/2,

||(ux,t − ux,t(0))(x−4 + x−2)1/2)||2, |ux,t(0)| . ||ωtϕ
1/2||2,

where we have used (A.9) with p = 2, 4 to obtain the weighted estimate of ux − ux(0) and
ux,t − ux,t(0). The tail behavior of ϕ (2.9) satisfies

ϕ =
b2

x4
+

2

x2
+

1

b2
= O(x−2) + b−2, ϕ− b−2 =

b2

x4
+

2

x2
< ϕ.

Recall ũ = u− ux(0)x and (2.7). We can estimate different parts of N(ω)t as follows

|〈I, ωtϕ〉| ≤ |〈(cω,t + ux,t)ω, ωt(ϕ− b−2)〉|+ b−2|〈(cω,t + ux,t)ω, ωt〉|
. 〈ũ2x,t, (x−4 + x−2〉1/2||ω||∞〈ω2

t , ϕ〉1/2 + b−2|cω,t|||ω||2||ωtϕ
1/2||2

+ b−2||ux,t||2||ω||∞||ωt||2 . E(t)〈ω2
t , ϕ〉 ,

〈II + IV, ωtϕ〉 =
〈

cω + ux +
((clx+ au)ϕ)x

2ϕ
, ω2

tϕ〉
〉

. ||ux||∞〈ω2
t , ϕ〉 . E(t)〈ω2

t , ϕ〉 ,

〈III, ωtϕ〉 =
〈

cl,t + a
ut
x
, ωxxϕ

1/2ωtϕ
1/2〉 .

∣
∣
∣

∣
∣
∣cl,t + a

ut
x

∣
∣
∣

∣
∣
∣
∞
||ωxϕ

1/2x||2||ωtϕ
1/2||2

. E(t)〈ω2
t , ϕ〉,
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where we have used |xϕx/ϕ| . 1 to estimate II + IV and ||ωxϕ
1/2x||2 = ||ωxψ

1/2||2 . E(t) to
obtain the last inequality. In summary, we have proved (2.34). Consequently, we can rewrite
(2.33) as follows

1

2

d

dt
〈ω2

t , ϕ〉 ≤ −(1/2− C|a|)〈ω2
t , ϕ〉+ C3E(t)〈ω2

t , ϕ〉

≤ −(1/2− C|a|)〈ω2
t , ϕ〉+ C3c|a|〈ω2

t , ϕ〉 = −(1/2− C|a| − C3c|a|)〈ω2
t , ϕ〉

for some universal constant C3. Thus, there exists 0 < δ < a0 such that

Cδ + C3cδ <
1

4
.

Hence, if |a| < δ, we obtain

(2.35)
d

dt
〈ω2

t , ϕ〉 ≤ −(1/2− C|a| − C3c|a|)〈ω2
t , ϕ〉 ≤ −

1

4
〈ω2

t , ϕ〉.

It follows that 〈ω2
t , ϕ〉 converges to 0 exponentially fast as t → ∞ and that 〈ω(t)2, ϕ〉 as a

sequence of t is Cauchy as t→∞. It admits a limit ω∞ and we have

||(ω(t)− ω∞)ϕ1/2||2 ≤ e−t/4.

According to the a-priori estimate 〈ωx(t, ·)2, ψ〉 < E2(t) < (ca)2, there is a subsequence of ω(t),
which converges to ω∞ weakly in H1(ψ). Therefore, ω∞ ∈ L2(ϕ) ∩H1(ψ).
Convergence to self-similar solution. Finally, we verify that ω∞ + ω̄ with some cl,∞, cω,∞

is a steady state of (2.3).
We use Ω, U, Cl, Cω to denote the original solution of (2.3)

Ω = ω + ω̄, U = u+ ū, Cl = cl + c̄l, Cω = cω + ω̄.

In particular, we define (Ω∞, U∞) by

Ω∞ = ω∞ + ω̄, U∞,x = H(Ω∞).

Notice that
ωt = Ωt = (Cω + Ux)Ω− (Clx+ aU)Ωx , K(t).

Due to the exponential convergence (2.35), we have

(2.36) 〈K(t)2, ϕ〉 → 0 as t→ +∞.
Suppose that {ω(tn, ·)}n≥1 is a subsequence of {ω(t, ·)}t≥0 such that as n → ∞, tn → ∞ and
ω(tn, ·) converges to ω∞ weakly in H1(ψ). The strong convergence in L2(ϕ) and the weak
convergence in H1(ψ) imply

(2.37)

Ω(tn, ·) = ω(tn, ·) + ω̄ → ω∞ + ω̄ = Ω∞ in L2(ϕ) ,

Ω(tn, ·)x = ω(tn, ·)x + ω̄x ⇀ ω∞,x + ω̄x = Ω∞,x in L2(ψ) ,

⇒ xΩ(tn, ·)x ⇀ xΩ∞,x in L2(ϕ) ,

where we have used ψ = x2ϕ in the last line. Using the interpolation between L2(ϕ) and H1(ψ),
we get the pointwise convergence

(2.38) Ux(tn)→ H(Ω∞),
U(tn)

x
→ U∞

x
in L∞. Recall the normalization condition

cω(t) = −ux(t, 0), cl(t) = −aux(t, 0).
We get the following convergence

(2.39)
Cl(tn) = c̄l + cl(tn) = c̄l − aux(tn, 0)→ c̄l − a(Ux,∞(0)− ūx(0)) , Cl,∞ ,

Cω(tn) = c̄ω + cω(t) = c̄ω − ux(t, 0)→ c̄ω − (Ux,∞(0)− ūx(0)) , Cω,∞ .

Combining the convergence result (2.37), (2.38) and (2.39), we get as n→∞

K(tn) = (Cω + Ux)Ω−
(

Cl + a
U

x

)

xΩx
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converges weakly in L2(ϕ) to

(Cω,∞ + U∞,x)Ω∞ −
(

Cl,∞ + a
U∞

x

)

xΩ∞,x = (Cω,∞ + U∞,x)Ω∞ − (Cl,∞x+ aU∞)Ω∞,x

Note that (2.36) shows that K(tn)→ 0 in L2(ϕ). We get

(Cω,∞ + U∞,x)Ω∞ − (Cl,∞x+ aU∞)Ω∞,x = 0

in L2(ϕ). Hence Ω∞, Cl,∞, Cω,∞ is a steady state of (2.3). The a-priori estimate (2.31) and the
convergence result imply that Cl,∞ > 1/2 > 0, Cω,∞ < −1/2 < 0, which further implies that
the self-similar singularity is focusing since Cl,∞ > 0. We can rescale the self-similar solution

(2.40) (Ω∞, Cl,∞, Cω,∞)→ (λΩ∞, λCl,∞, λCω,∞)

for some λ > 0 so that Cω = −1. �

3. Finite Time Blowup for a = 1 with C∞
c Initial Data

In this section, we will prove Theorem 1.1 regarding the finite time self-similar blowup of the
original De Gregorio model with a = 1. Due to the cancellation between the advection term uωx

and the vortex stretching term, uxω, finite time singularity of the original De Gregorio model has
not been reported in the literature. In this section, we prove a somewhat surprising result, i.e.
the original De Gregorio model develops a finite time self-similar blowup solution with compact
support. We will use the same method of analysis presented in the previous section except that
we do not have an analytic expression of the approximate self-similar profile. We need to rely
on numerical computation to obtain an accurate approximate self-similar profile.

To begin with, we consider (1.3) with a = 1. The associated dynamical rescaling equation
reads

(3.1) ωt + (clx+ u)ωx = (cω + ux)ω , ux = Hω .

For initial datum ω0 that is odd and has support in [−L,L], we use the following normalization
conditions

(3.2) cl = −
u(L)

L
, cω = cl.

We fix L = 10. With the above conditions, we have (clx+ u)
∣
∣
∣
x=±L

= 0 and

(3.3)
∂tωx(t, 0) = ∂x((ux + cω)ω − (clx+ u)ωx)

∣
∣
∣
x=0

= (cω + ux(t, 0)− cl − ux(t, 0))ωx(t, 0) = 0.

Thus ωx(t, 0) remains constant and x = ±L is a stationary point of (3.1) and the support of
ω will remain in [−L,L], as long as the solution of the dynamical rescaling equation remains
smooth.

The reader who is not interested in the numerical computation can skip the following discus-
sion on the numerical computation and go directly to Section 3.1.1 and later subsections for the
description of the approximate profile and the analysis of linear stability.

3.1. Construction of the approximate self-similar profile. Unlike the case in the previous
section where we have an analytic expression of the approximate self-similar profile, we need to
approximate the steady state of (3.1) numerically in the case of a = 1 by using the normalization
conditions (3.2). Since ω is supported on [−L,L] and remains odd for all time, we restrict the
computation in the finite domain [0, L] and adopt a uniform discretization with grid points
xi = ih, i = 0, 1, .., n = 8000, h = L/8000. In what follows, the subscript i of ωk

i stands for space
discretization, and the superscript k stands for time discretization. We solve (3.1) numerically
using the following discretization scheme:

(1) Initial guess is chosen as ω0
i = −L−xi

π sin(πxi

L ), i = 0, 1, .., n.
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Figure 1. Approximate self-similar profile

(2) The whole function ωk is obtained from grid point values wk
i using a standard cubic

spline interpolation on [−L,L], with odd extension of wk on [−L, 0]. We approximate
wk

x,i at the boundary using a second order extrapolation:

wk
x(−L) = wk

x(L) = wk
x,n =

3ωk
n − 4ωk

n−1 + ωk
n−2

2h
.

The resulting ωk is a piecewise cubic polynomial and ωk ∈ C2,1. The derivative point
values wk

x,i are evaluated to be wk
x(xi).

(3) Value of uk and ukx at grid points are obtained using the kernel integrals:

uki =
1

π

∫ L

0

ωk(y) log

∣
∣
∣
∣

xi − y
xi + y

∣
∣
∣
∣
dy, ukx,i =

1

π

∫ L

0

2y

x2i − y2
ωk(y)dy.

In particular, for each xi, the contributions to the above integrals from the neighboring
intervals [xi−m, xi+m] are integrated explicitly using the piecewise cubic polynomial
expressions of ω; the contributions from the intervals [0, L]/[xi−m, xi+m] are approximate
by using a piecewise 8-point Legendre-Gauss quadrature, in order to avoid large round-
off error. We choose m = 8. We have also computed ukxx similarly and will use it
later.

(4) The integration in time is performed by the 4th order Runge-Kutta shceme with adaptive
time stepping. The discrete time step size ∆tk = tk+1 − tk is given by ∆t = 1

2
h

maxi |ui|
,

respecting the CFL stability condition |u| h∆t ≤ 1.

(5) After each time step, we apply a local smoothing on wk
i to prevent oscillation:

wk
i ←−

1

4
wk

i−1 +
1

2
wk

i +
1

4
wk

i+1, i = 1, . . . , n− 1.

Our computation stops when the pointwise residual

F k
ω,i = (ckω + ukx,i)ω

k
i − (ckl xi + uki )ω

k
x,i

satisfies maxi |F k
ω,i| ≤ 10−5. Then we use ω̄ = ωk as our approximate self-similar profile. The

corresponding scaling is

c̄l = c̄ω = −0.6991
by rounding up to 4 significant digits. One can rescale the profile as in (2.40) to obtain an
approximate profile with c̄l = c̄ω = −1.

We also perform a convergence test on our numerical scheme. Numerical residuals F
(n)
w with

different choices of n = 500, 1000, 2000 are computed at a fixed physical time T = 5 when the
true residual Fw (estimated by a much denser mesh) has become negligibly small compared

with the discretization error. For each choice of n, the L2 norm of F
(n)
w is approximated by the

composite trapezoidal rule on a denser mesh of size N = 5n. Our numerical experiments show
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that we indeed obtain second order convergence in L2 norm of F
(n)
w , which confirms that our

numerical scheme is second order accurate.
We will use a computer-assisted proof to establish the finite time self-similar blowup of

the original De Gregorio model with a = 1 by by constructing an accurate approximate self-
similar profile ω̄. All the numerical computations and quantitative verifications are performed
by MATLAB (version 2019a) in the double-precision floating-point operation. To make sure
that our computer-assisted proof is rigorous, we adopt the standard method of interval arith-
metics (see [22, 24]). In particular, we use the MATLAB toolbox INTLAB (version 11 [25]) for
the interval computations. Every single real number p in Matlab is represented by an inter-
val [pl, pr] that contains p, where pl, pr are precise floating-point numbers of 16 digits. Every
computation of real number summation, multiplication or division is performed using the in-
terval arithmetics, and the theoretical outcome P is hence represented by the resulting interval
[Pl, Pr] that strictly contains P . We then obtain a rigorous upper bound on |P | by rounding up
max{|Pl|, |Pr|} to 2 significant digits (or 4 when necessary). We remark that, when encountering
a non-essential ill-conditioned computation, especially a division, we will replace it by an alterna-
tive well-conditioned one. For example, for some function f(x) such that f(0) = 0, fx(0) < +∞,
the evaluation of f(x)/x at x = 0 will be replaced by the evaluation of fx(0).

3.1.1. Compact support of the approximate profile. The approximate profile ω̄ we obtain actually
has compact support. Below we explain how we obtain a compactly supported approximate self-
similar profile. First let us consider the steady state self-similar equation, i.e. taking ωt = 0 in
(3.1),

(clx+ u)ωx = (cω + ux)ω, ux = Hω.

Differentiating both sides and then taking x = 0, we obtain

(cl + ux)ωx

∣
∣
∣
x=0

= (cω + ux)ωx

∣
∣
∣
x=0
⇒ cl = cω ,

provided that ωx(0) 6= 0. Suppose that we have a finite time self-similar blowup. Then cω must
be negative. It follows cl = cω < 0. Since u > 0 for x > 0 and grows sublinearly at infinity,
there exists x0 > 0 such that

clx0 + u(x0) = 0, clx+ u(x) > 0 for x < x0, clx+ u(x) < 0 for x > x0.

This implies that we expect that the solution of (3.1) will form a shock at x = x0. When we
solve ω̄ numerically, we fix x0 = L by imposing (3.2). Moreover, in (3.1), cω + ux(x) is negative
for x > x0 (see also Figure 1), which leads to damping of ω. For x > x0, the transport effect
clx + u(x) < 0 and the damping effect cω + ux(x) < 0 lead to the compact support of ω of the
steady state solution. For this reason, we choose the initial data with compact support in our
computation and the resulting approximate profile also has compact support.

3.1.2. Regularity of the approximate profile. On [−L,L], since ω̄ is obtained from the cubic spline
interpolation, it has the regularity C2,1. On R, we have ω̄(±L) = 0. Therefore, ω is a Lipschitz
function on R. We remark that ω̄ is in H1(R) but not in H2(R) since ω̄x is discontinuous
at x = ±L, i.e. ωx(±L) 6= 0 (see Figure 1). Multiplying (x2 − L2), we get a compactly
supported and global Lipschitz function (x2−L2)ω̄x. Hence we can define the Hilbert transform
of ((x2 − L2)ω̄x)x which is in Lp for any 1 ≤ p < +∞.

Applying (A.5) in Lemma A.2, we have

ūxx = Hω̄x, ūxxx(x
2 − L2) = H(ω̄xx(x

2 − L2)).

Using the regularity of ω̄, we have that ū is at least C3 in (−L,L) and ūxx grows logarithmically
near x = ±L since ω̄x is discontinuous at x = ±L.

3.1.3. Regularity of the perturbation. We will choose initial perturbation ω0 such that ω0 + ω̄ ∈
C∞

c and ω0,x(0) = 0. Standard local well-posedness result shows that ω + ω̄ remains smooth
locally in time. Hence, the regularity of ω0 and ω̄ are the same. Since ω is odd and ωx(0) = 0
(see (3.3)), it is of order O(x3) near x = 0. On the other hand, we have ω(±L) = 0 since
its support lies in [−L,L]. In the following derivation, the boundary terms when we perform
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integration by parts on ω terms will vanish, which can be justified by these vanishing conditions.
We will use this property without explicitly mentioning it.

3.2. Linear stability of the approximate self-similar profile. Linear stability analysis
plays a crucial role in establishing the existence and stability of the self-similar profile. We will
establish the linear stability of the approximate self-similar profile in this subsection.

Linearizing (3.1) around ω̄, ū, c̄l, c̄ω yields

(3.4) ωt + (c̄lx+ ū)ωx = (c̄ω + ūx)ω + (ux + cω)ω̄ − (u+ clx)ω̄x +N(ω) + F (ω̄) ,

where ω, u, cl, cω are the perturbations of the approximate self-similar profile, N and F are the
nonlinear terms and the error, respectively

(3.5) N(ω) = (cω + ux)ω − (clx+ u)ωx, F (ω̄) = (c̄ω + ūx)ω̄ − (c̄lx+ ū)ω̄x.

Main ideas in our linear stability analysis. There are three key observations in our linear
stability estimates. First of all, we observe that the ux term (vortex stretch) is harmless to
the linear stability analysis as we have shown in Section 2. We construct the weight function
carefully to fully exploit the cancellation between ux and ω (see Lemma A.3). Secondly, note
that there is competition between the convection term uωx and the vortex stretch term uxω.
We expect some cancellation between their perturbation uω̄x and uxω̄. This enables us to get a
smaller constant than that if we apply the Hardy inequality (A.9) to control u/x by ω. Roughly
speaking, for x close to 0, u/x is of order ω/5 ; for x close to L, (u(x) − u(L))/(x − L) is of
order ω/3. The small constants, 1/5 and 1/3, are crucial for us to obtain the inviscid damping
in our linear stability analysis. If we had used a rough estimate by replacing 1/5 by 1/2, we
would have failed to obtain the damping effect in the linear stability analysis. Using the first
two observations, most interactions can be reduced to some boundary terms. In order to obtain
a sharp stability constant, we express these boundary terms as the projection of ω onto some
functions and exploit the cancellation between different projections to obtain the desired linear
stability estimate.

For the sake of simplicity, we drop the error term and the nonlinear term in the following
derivations. Define a singular weight function on [−L,L]

(3.6) ϕ ,

(

− 1

x3
− e

x
− f · 2x
L2 − x2

)

·
(

χ1

(

ω̄ − xω̄x

5

)

+ χ2

(

ω̄ − (x − L)ω̄x

3

))−1

,

where χ1, χ2 ≥ 0 are cutoff functions such that χ1 + χ2 = 1 and

χ1(x) =

{

1 x ∈ [0, 4]

0 x ∈ [6, 10]
, χ1(x) =

exp
(

1
x−4 + 1

x−6

)

1 + exp
(

1
x−4 + 1

x−6

) ∀x ∈ [4, 6].

Note that the denominator in (3.6) is positive in (−L,L)\{0} and that ϕ > 0 is a singular weight
and is of order O(x−4) near x = 0, O((x − L)−2) near x = L. Denote

〈f, g〉 ,
∫ L

0

fgdx, ||f ||2 ,
√

〈f, f〉.

For most integrals we consider, it is the same as the integral from 0 to +∞ since the support
of ω lies in [−L,L]. Due to the odd-even symmetry, we just need to focus on [0, L]. Performing
the weighted L2 estimate on (3.4) yields
(3.7)

1

2

d

dt
〈ω2ϕ〉 =

〈

− (c̄lx+ ū)ωx + (c̄w + ūx)ω, ωϕ
〉

+
〈

(ux + cω), ω̄ωϕ〉 − 〈(clx+ u), ω̄xωϕ
〉

+ 〈N(ω), ωϕ〉+ 〈F (ω̄), ωϕ〉 , D + I +N1 + F1.

Note that the support of the perturbation lies in [−L,L], the above integral is effectively from
0 to L. For D, we use integration by parts to obtain

(3.8) D =
〈 1

2ϕ
((c̄lx+ ū)ϕ)x + (c̄w + ūx), ω

2ϕ
〉

, 〈D(ω̄), ω2ϕ〉.
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From (3.6), we know that ϕ(x) = O(x−4) near x = 0 and ϕ(x) = O((x − L)−2) near x = L.
Using these asymptotic properties of ϕ, one can obtain that

D(ω̄)(0) = −(c̄l + ūx(0))/2 < 0, D(ω̄)(L) = (c̄l + ūx(L))/2 < 0.

We can verify rigorously thatD(ω̄)(x) is negative pointwisely. In particular, we treat 〈D(ω̄), ω2ϕ〉
as a damping term.

We estimate the interaction near x = 0 and x = L differently. First we split the I term into
two terms as follows:

(3.9) I = 〈(ux + cω)ω̄ − (clx+ u)ω̄x, ωϕχ1〉+ 〈(ux + cω)ω̄ − (clx+ u)ω̄x, ωϕχ2〉 , I1 + I2.

We use different decompositions of (ux + cω)ω̄ − (clx + u)ω̄x for x close to 0 and to L. For x
close to 0 (the χ1 part), we use

(ux + cω)ω̄ − (clx+ u)ω̄x = (ux + cω)

(

ω̄ − 1

5
ω̄xx

)

+ xω̄x

(
1

5
(ux + cω)−

u+ clx

x

)

=(ux + cω)

(

ω̄ − 1

5
ω̄xx

)

+ xω̄x

(
1

5
(ux − ux(0))−

u− ux(0)x
x

− 4

5
(cω + ux(0))

)

.

For x close to L (the χ2 part), using

cω = cl = −u(L)/L ⇒ u+ clx = u− u(L) + cl(x− L),

we have

(ux + cω)ω̄ − (clx+ u)ω̄x = (ux + cω)ω̄ − (x− L)ω̄x ·
u− u(L) + cl(x− L)

x− L

=(ux + cω)

(

ω̄ − 1

3
ω̄x(x− L)

)

+ (x − L)ω̄x

(
1

3
(ux + cω)−

u− u(L) + cl(x − L)
x− L

)

=(ux + cω)

(

ω̄ − 1

3
ω̄x(x− L)

)

+ (x − L)ω̄x

(
1

3
(ux − ux(L))−

u− u(L)− ux(L)(x− L)
x− L

)

− 2

3
(x − L)ω̄x(cω + ux(L)).

Using (3.9) and the above decompositions near x = 0, we get

(3.10)
I1 =

〈(1

5

ux − ux(0)
x2

− u− ux(0)x
x3

)

, x3ω̄xωϕχ1

〉

+
〈

(cω + ux),

(

ω̄ − 1

5
ω̄xx

)

ωχ1ϕ
〉

− 4

5
(cω + ux(0))〈xω̄x, ωχ1ϕ〉 , I11 + I12 + I13.

Similarly, near x = L, we have

(3.11)

I2 =
〈(1

3

ux − ux(L)
x− L − u− u(L)− ux(L)(x− L)

(x− L)2
)

(x− L)2ω̄xωϕχ2

〉

+
〈

(cω + ux),

(

ω̄ − 1

3
ω̄x(x− L)

)

ωϕχ2

〉

− 2

3
(cω + ux(L))〈(x − L)ω̄x, ωϕχ2〉

, I21 + I22 + I23.

3.2.1. The first part: the interior interaction. To handle the first term on the right hand side
of (3.10) and (3.11), i.e. I11, I21, we use the Cauchy-Schwartz inequality to obtain

(3.12)

I11 ≤
∣
∣
∣

∣
∣
∣

(
1

5

ux − ux(0)
x2

− u− ux(0)x
x3

) ∣
∣
∣

∣
∣
∣
2
||x3ω̄xωϕχ1||2,

I21 ≤
∣
∣
∣

∣
∣
∣
1

3

ux − ux(L)
x− L − u− u(L)− ux(L)(x− L)

(x− L)2
∣
∣
∣

∣
∣
∣
2
||(x− L)2ω̄xωϕχ2||2.
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Integration by parts gives
(3.13)

∣
∣
∣

∣
∣
∣

(
1

5

ux − ux(0)
x2

− u− ux(0)x
x3

) ∣
∣
∣

∣
∣
∣

2

2

=
1

25

∣
∣
∣

∣
∣
∣
ux − ux(0)

x2

∣
∣
∣

∣
∣
∣

2

2
− 2

5

∫ L

0

(ux − ux(0)) · (u− ux(0)x)
x5

dx+
∣
∣
∣

∣
∣
∣
u− ux(0)x

x3

∣
∣
∣

∣
∣
∣

2

2

=
1

25

∣
∣
∣

∣
∣
∣
ux − ux(0)

x2

∣
∣
∣

∣
∣
∣

2

2
− 1

5

(u− ux(0)x)2
x5

∣
∣
∣

L

0
− 1

5
· 5
∫ L

0

(u − ux(0)x)2
x6

dx+
∣
∣
∣

∣
∣
∣
u− ux(0)x

x3

∣
∣
∣

∣
∣
∣

2

2

=
1

25

∣
∣
∣

∣
∣
∣
ux − ux(0)

x2

∣
∣
∣

∣
∣
∣

2

2
− 1

5L5
(u(L)− ux(0)L)2 =

1

25

∣
∣
∣

∣
∣
∣
ux − ux(0)

x2

∣
∣
∣

∣
∣
∣

2

2
− 1

5L3
(cω + ux(0))

2

=
1

25

∣
∣
∣

∣
∣
∣
ω

x2

∣
∣
∣

∣
∣
∣

2

2
− 1

5L3
(cω + ux(0))

2,

where we have used cω = cl = −u(L)/L in the second to the last line and (A.9) with p = 4 to

obtain the last equality. Denote v , u− u(L)− ux(L)(x− L). Obviously, we have

v(L) = vx(L) = 0, v(0) = −u(L) + ux(L)L = L(cω + ux(L)).

Using the above formula and integration by parts, we obtain

(3.14)

∣
∣
∣

∣
∣
∣
1

3

ux − ux(L)
x− L − u− u(L)− ux(L)(x − L)

(x− L)2
∣
∣
∣

∣
∣
∣

2

2
=
∣
∣
∣

∣
∣
∣
1

3

vx
x− L −

v

(x− L)2
∣
∣
∣

∣
∣
∣

2

2

=
1

9

∣
∣
∣

∣
∣
∣
vx

x− L
∣
∣
∣

∣
∣
∣

2

2
− 2

3

∫ L

0

vvx
(x− L)3 dx+

∣
∣
∣

∣
∣
∣

v

(x− L)2
∣
∣
∣

∣
∣
∣

2

2

=
1

9

∣
∣
∣

∣
∣
∣
vx

x− L
∣
∣
∣

∣
∣
∣

2

2
− 1

3

v2

(x− L)3
∣
∣
∣

L

0
− 1

3
· 3
∫ L

0

v2

(x − L)4 dx+
∣
∣
∣

∣
∣
∣

v

(x− L)2
∣
∣
∣

∣
∣
∣

2

2

=
1

9

∣
∣
∣

∣
∣
∣
vx

x− L
∣
∣
∣

∣
∣
∣

2

2
+

1

3

v(0)2

(0− L)3 =
1

9

∣
∣
∣

∣
∣
∣
ux − ux(L)
x− L

∣
∣
∣

∣
∣
∣

2

2
− 1

3L
(cω + ux(L))

2.

Using a formula similar to (A.2) yields

(ux − ux(L))(x − L)−1 = H
(
ω(x− L)−1

)
.

We further obtain the following by using the L2 isometry of the Hilbert transform

(3.15)

∫ L

0

(ux − ux(L))2
(x− L)2 dx =

∫

x∈R

ω2

(x− L)2 dx−
∫

x/∈[0,L]

(ux − ux(L))2
(x− L)2 dx.

Note that the Cauchy-Schwartz inequality implies
∫

x/∈[0,L]

(ux − ux(L))2
(x− L)2 dx ≥

∫ 0

−L

(ux − ux(L))2
(x− L)2 dx

≥
(∫ 0

−L

(ux − ux(L))dx
)2(∫ 0

−L

(x− L)2dx
)−1

=(u(0)− u(−L)− ux(L)L)2
(
7

3
L3

)−1

=
3

7

(cω + ux(L))
2L2

L3
=

3

7

(cω + ux(L))
2

L
.

Combining (3.14), (3.15) and the above inequality, we get

(3.16)

∣
∣
∣

∣
∣
∣
1

3

ux − ux(L)
x− L − u− u(L)− ux(L)(x− L)

(x− L)2
∣
∣
∣

∣
∣
∣

2

2

=
1

9

∫

x∈R

ω2

(x − L)2 dx−
1

9

∫

x/∈[0,L]

(ux − ux(L))2
(x− L)2 dx− 1

3L
(cω + ux(L))

2

≤1

9

∫

x∈R

ω2

(x − L)2 dx−
(

1

3L
+

1

21L

)

(cω + ux(L))
2.
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Combining (3.12) , (3.13) and (3.16) and using the elementary inequality xy ≤ λx2 + 1
4λy

2, we
obtain the estimate for I11, I21,
(3.17)

I11 + I21 ≤ 25a1

∣
∣
∣

∣
∣
∣

(
1

5

ux − ux(0)
x2

− u− ux(0)x
x3

) ∣
∣
∣

∣
∣
∣

2

2
+

1

100a1
||x3ω̄xωϕχ1||22

+ 9a2

∣
∣
∣

∣
∣
∣
1

3

ux − ux(L)
x− L − u− u(L)− ux(L)(x− L)

(x − L)2
∣
∣
∣

∣
∣
∣

2

2
+

1

36a2
||(x− L)2ω̄xωϕχ2||22

≤ a1
∣
∣
∣

∣
∣
∣
ω

x2

∣
∣
∣

∣
∣
∣

2

2
+

1

100a1
||x3ω̄xωϕχ1||22 + a2

∫

x∈R

ω2

(x− L)2 dx

+
1

36a2
||(x − L)2ω̄xωϕχ2||22 − a2

(
3

L
+

3

7L

)

(cω + ux(L))
2,

where a1, a2 > 0 are some parameters to be chosen later.

3.2.2. The second part. Combining I12, I22 in (3.10), (3.11) respectively, and using the definition
of ϕ (3.6), we obtain
(3.18)

I12 + I22 =
〈

(cω + ux),

{(

ω̄ − 1

5
ω̄xx

)

χ1 +

(

ω̄ − 1

3
ω̄x(x− L)

)

χ2

}

ωϕ
〉

=
〈

(cω + ux)ω,

(

− 1

x3
− e

x
− f · 2x
L2 − x2

)〉

=(cω + ux(0))
〈

ω,− 1

x3
− e

x

〉

+
〈

(ux − ux(0))ω,−
1

x3
− e

x

〉

+
〈

(cω + ux)ω,−
f · 2x
L2 − x2

〉

,

where e and f are constants in the definition of ϕ (3.6). Since ω ∈ C2,1 and ω(0) = ωx(0) =
ωxx(0) = 0, we have ω · x−3 ∈ L1 and the above integrals are well-defined. Using (A.6) and
(A.7), we obtain

(3.19)

〈 (ux − ux(0))w
x3

〉

=
1

2

∫

R

(ux − ux(0))w
x3

dx = 0,

〈 (ux − ux(0))ω
x

〉

=
1

2

∫

R

(ux − ux(0))w
x

dx =
π

4
u2x(0).

Note that (cω + ux)ω is odd. The Tricomi identity Lemma A.1 implies

(3.20)

〈

(cω + ux)ω,−
2x

L2 − x2
〉

= −
∫

R+

(cω + ux)ω

(
1

L− x −
1

L+ x

)

dx

=−
∫

R

(cω + ux)ω

L− x dx = −πH((cω + ux)ω)(L) = −πcωHω(L)− πH(uxω)(L)

=− πcωux(L)−
π

2
(u2x(L)− ω2(L)) = −πcωux(L)−

π

2
u2x(L).

Combining (3.18), (3.19) and (3.20), we obtain

(3.21) I12 + I22 = (cω + ux(0))
〈

ω,

(

− 1

x3
− e

x

)〉

− πe

4
u2x(0)− fπcωux(L)−

fπ

2
u2x(L).

3.2.3. The remaining part: the boundary interaction. Let a3 , a2(
3
L + 3

7L ). The negative term
that appears in the last term of (3.17) can be written as

(3.22) − a2(
3

L
+

3

7L
)(cω + ux(L))

2 = −a3(cω + ux(L))
2.
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Combining (3.22), (3.21), I13, I23 in (3.10) and (3.11), we obtain

(3.23)

I12 + I22 + I13 + I23 − a3(cω + ux(L))
2

=(cω + ux(0))
〈

ω,

(

− 1

x3
− e

x

)〉

− eπ

4
u2x(0)− fπcωux(L)−

fπ

2
u2x(L)

− 4

5
(cω + ux(0))〈ω, xω̄xχ1ϕ〉 −

2

3
(cω + ux(L))〈ω, (x − L)ω̄xχ2ϕ〉 − a3(cω + ux(L))

2

=ux(0)

(〈

ω,

(

− 1

x3
− e

x

)

− 4

5
xω̄xχ1ϕ

〉

− eπ

4
ux(0)

)

+ cω

(〈

ω,

(

− 1

x3
− e

x

)

− 4

5
xω̄xχ1ϕ−

2

3
(x− L)ω̄xχ2ϕ

〉

− fπux(L)− a3cω
)

+ ux(L)

(〈

w,−2

3
(x− L)ω̄xχ2ϕ

〉

− fπ

2
ux(L)− 2a3cω − a3ux(L)

)

.

Note that

ux(0) = −
2

π

∫ L

0

ω

x
dx, ux(L) =

1

π

∫ L

0

2x

L2 − x2ωdx,

cω = −u(L)
L

=
1

Lπ

∫ L

0

log

(
L+ x

L− x

)

ω(x)dx.

All the integrals in (3.23) and cω, ux(0), ux(L) are the projection of ω onto some explicit func-
tions. We use the cancellation of these functions to obtain a sharp estimate of the right hand
side of (3.23). Denote

(3.24)

gcω ,
1

Lπ
log

(
L+ x

L− x

)

, gux(0) , −
2

πx
, gux(L) ,

2x

π(L2 − x2) ,

g1 ,

(

− 1

x3
− e

x

)

− 4

5
xω̄xχ1ϕ−

eπ

4
gux(0),

g2 ,

(

− 1

x3
− e

x

)

− 4

5
xω̄xχ1ϕ−

2

3
(x− L)ω̄xχ2ϕ− fπgux(L) − a3gcω ,

g3 , −2

3
(x− L)ω̄xχ2ϕ−

(
fπ

2
+ a3

)

gux(L) − 2a3gcω .

With these notations, we can rewrite (3.23) as follows

(3.25)
ux(0)〈ω, g1〉+ cω〈ω, g2〉+ ux(L)〈ω, g3〉

=〈ω, gux(0)〉〈ω, g1〉+ 〈ω, gcω〉〈ω, g2〉+ 〈ω, gux(L)〉〈ω, g3〉.
For some function R ∈ C([0, L]), R > 0 to be chosen, we introduce

(3.26)
y , (Rϕ)1/2ω, f1 , (Rϕ)−1/2gux(0), f2 , (Rϕ)−1/2g1, f3 , (Rϕ)−1/2gcω ,

f4 , (Rϕ)−1/2g2, f5 , (Rϕ)−1/2gux(L), f6 , (Rϕ)−1/2g3.

Our goal is to find the best constant of the following inequality for any ω ∈ L2(ϕ)

(3.27) 〈f1, y〉〈f2, y〉+ 〈f3, y〉〈f4, y〉+ 〈f5, y〉〈f6, y〉 ≤ Copt||y||22,
which is equivalent to

〈ω, gux(0)〉〈ω, g1〉+ 〈ω, gcω〉〈ω, g2〉+ 〈ω, gux(L)〉〈ω, g3〉 ≤ Copt〈R,ω2ϕ〉,
so that we can bound (3.25) by 〈R,ω2ϕ〉 as sharp as possible. From the definition of functions
g, f , we have that

g3 ∈ span(gcω , gux(0), gux(L), g1, g2)⇒ f6 ∈ span(f1, f2, .., f5) , V, dimV = 5.

Without loss of generality, we assume y ∈ V since ||Py||2 ≤ ||y||2 and 〈y, fi〉 = 〈Py, fi〉,
where P is the orthogonal projector onto V . Suppose that {ei}5i=1 is an orthonormal basis
(ONB) in V with respect to the L2 inner product on [0, L]. It can be obtained via the Gram-

Schmidt procedure. Then we have z =
∑5

i=1〈z, ei〉ei for any z ∈ V . We consider the linear
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map T : V → R5 defined by (Tz)i = 〈z, ei〉, ∀z ∈ V . It is obvious that T is a linear
isometry from (V, 〈·, ·〉L2) to R5 with the Euclidean inner product, i.e. ||Tz||l2 = ||z||L2 . Denote
v = Ty, vi = Tfi ∈ R5 . Using the linear isometry, i.e. 〈fi, y〉 = vT vi and ||y||22 = vT v, we can
reduce (3.27) to

(3.28)

∑

1≤i≤3

(vT v2i−1)(v
T
2iv) ≤ Coptv

T v ⇐⇒ vT (
∑

1≤i≤3

v2i−1v
T
2i)v ≤ Coptv

T v.

DenoteM ,
∑

1≤i≤3 v2i−1v
T
2i ∈ R5×5. Using the fact that vTMv = vTMT v, we can symmetrize

(3.28) to obtain

vTMv ≤ Coptv
T v ⇐⇒ vT

M +MT

2
v ≤ Coptv

T v.

Since (MT +M)/2 is symmetric, the optimal constant Copt is the maximal eigenvalue of (M +
MT )/2, i.e.

(3.29) Copt = λmax

(
M +MT

2

)

= λmax(
1

2

∑

1≤i≤3

(v2i−1v
T
2i + v2iv

T
2i−1)).

We remark that maximal eigenvalue λmax is independent of the choice of the ONB of V . For
other ONB, the resulting λmax will be λmax(Q(M +MT )QT /2) for some orthonormal matrix
Q ∈ R5×5, which is the same as (3.29). Using (3.23), (3.25), (3.27) and (3.29), we have proved

(3.30) I12 + I22 + I13 + I23 − a3(cω + ux(L))
2 ≤ λmax(

1

2

∑

1≤i≤3

(v2i−1v
T
2i + v2iv

T
2i−1))〈R,ω2ϕ〉,

where vi ∈ R5 is the coefficient of fi (see (3.26)) expanded under an ONB {ei}5i=1 of V =
span(f1, f2, .., f5), i.e. the j-th component of vi satisfies vij = 〈fi, ej〉. We will choose R so that
λmax < 1 and then the left hand side can be controlled by 〈R,ω2ϕ〉.

3.2.4. Summary of the estimates. In summary, we collect all the estimates of Iij , i = 1, 2, j =
1, 2, 3, (3.10), (3.11), (3.17) and (3.30) to conclude

(3.31)

〈(ux + cω)ω̄ − (clx+ u), ω̄x, ωϕ〉 = I = I1 + I2 =
∑

i=1,2,j=1,2,3

Iij

≤a1
∣
∣
∣

∣
∣
∣
ω

x2

∣
∣
∣

∣
∣
∣

2

2
+

1

100a1
||x3ω̄xωϕχ1||22 + a2

∫

x∈R

ω2

(x− L)2 dx

+
1

36a2
||(x− L)2ω̄xωϕχ2||22 + λmax(

1

2

∑

1≤i≤3

(v2i−1v
T
2i + v2iv

T
2i−1))〈R,ω2ϕ〉

,〈A(ω̄), ω2ϕ〉+ λmax(
1

2

∑

1≤i≤3

(v2i−1v
T
2i + v2iv

T
2i−1))〈R,ω2ϕ〉,

where A(ω̄) is the sum of the four terms in the first inequality and is given by

A(ω̄) =

(
a1
x4

+
a2

(x− L)2 +
a2

(x+ L)2

)

ϕ−1 +
(x3ω̄xχ1)

2ϕ

100a1
+

((x − L)2ω̄xχ2)
2ϕ

36a2
.

Optimizing the parameters. To optimize the estimate, we choose

e = 0.005, f = 0.004, a1 =
1

6
, a2 = 1.4f = 0.0056, a3 = a2(3 +

3

7
)/L = 0.00192.

After specifying these parameters, the damping term D(ω̄) (see (3.7)) and the estimate of
the interior interaction A(ω̄) are completely determined. Then we choose

(3.32) R(ω̄) = −D(ω̄)−A(ω̄)− 0.3

in (3.26). The numerical values of D(ω̄), A(ω̄) and R(ω̄) on the grid points are plotted in the
first subfigure in Figure 2. We can verify rigorously (see the discussion below) that R(ω̄) =
−D(ω̄)−A(ω̄)− 0.3 > 0. In particular, the damping term satisfies D(ω̄) < −0.3−A(ω̄) and is
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Figure 2. Left: Total damping D(ω̄) in the L2 estimate, the estimate of the
interior interaction A(ω̄) and the remaining terms R(ω̄). Right: Total damping
in the H1 estimate. Here, the mesh size is h = 2.5 · 10−5.

negative pointwisely. The corresponding fi in (3.27) are determined. The optimal constant in
(3.30) can be computed :

(3.33) Copt = λmax(
1

2

∑

1≤i≤3

(v2i−1v
T
2i + v2iv

T
2i−1)) < 1.

Combining 〈D(ω̄), ω2ϕ〉 in (3.7), (3.31) and (3.33), we obtain the linear estimate

(3.34)

1

2

d

dt
〈ω2, ϕ〉 = 〈D(ω̄), ω2ϕ〉+ I +N1 + F1

≤〈D(ω̄), ω2ϕ〉+ 〈A(ω̄), ω2ϕ〉+ 〈R(ω̄), ω2ϕ〉+N1 + F1 = −0.3〈ω2, ϕ〉+N1 + F1.

For those who are not interested in the rigorous verification of the numerical values, they can
skip the following discussion and jump to Section 3.3 for the weighted H1 estimate.
Rigorous verification of the numerical values. We remark that all the estimates, except
for R(ω̄) > 0, Copt < 1 (3.33) and D2(ω̄) < −0.95 (3.38) to be discussed later, are valid
independent of the profile. We will use the following strategy to prove that R(ω̄) > 0, Copt < 1,
and D2(ω̄) < −0.95.

(a) Obtaining an explicit approximate self-similar profile. As described in section 3.1,
our approximate self-similar profile ω̄ is expressed in terms of a piece-wise cubic polynomial over
the grid points xi =

iL
n , i = 0, · · · , n. The coefficients of the corresponding cubic Hermite basis

functions, ω̄(xi), ω̄x(xi), are computed accurately up to double-precision, and will be represented
in the computations using the interval arithmetics with exact floating-point bounding intervals.
All the following computer-assisted estimates are based on the rigorous interval arithmetics.

(b) Accurate point values of ū, ūx, ūxx. With the explicit expression of ω̄, the value
of ūx(x) (or ū(x), ūxx(x)) at any point x can be obtained accurately from certain integrals
involving w̄ on [−L,L], using a high order numerical quadrature with rigorously controllable
error. In particular, our numerical approximation of these integrals is a mixture of analytic
integration and the composite 8-point Legendre-Gauss quadrature. For any x ∈ [0, L], the
integral contribution to ux(x) from mesh intervals within m = 8 mesh points is computed
explicitly and accurately up to double-precision, i.e. 10−15; the piecewise integral error from the
Legendre-Gauss quadrature on the intermediate domains, which are 8h to O(1) distance away
from x, can be bounded by ch8−2×8 = ch8−16 for some uniform constant c < 1, due to the
singular factor 1

x−y in the integrand; the piecewise integral error from the domains farther away

(O(1) distance to x) can be bounded by ch∗h16 by a standard Legendre-Gauss quadrature error
estimate. Therefore, the overall error of each point value ūx(x) can be rigorously bounded by
ǫ = max{10−15, Lc8−16, Lch16}, which will be taken into account in its interval representations.
That is, each ū(x) will be represented by [⌊ūx(x)− ǫ⌋f , ⌈ūx(x) + ǫ⌉f ] in any computation using
the interval arithmetics, where ⌊·⌋f and ⌈·⌉f stand for the rounding down and rounding up to
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the nearest floating-point value, respectively. We remark that we will need the values of ūx(x)
at finitely many points only. The same arguments apply to u(x) and uxx(x) as well.

(c) Estimates of some (weighted) norms of ω̄, ū. Since the profile ω̄ is a piecewise cubic
polynomial with accurate coefficients, we can estimate some norms of ω̄, e.g. ||ω̄x||L∞ , ||ω̄xx||L∞ ,
accurately. From the discussion of the regularity of ū, ω̄ in Section (3.1.2), the regularity of ū,
e.g. ||ūx||∞, ||ūxx||L2 , can be bounded by some norm of ω̄. Therefore, we can approximate
functions involving ū, ω̄, such that the weight ϕ, A(ω̄) and D(ω̄), by their values on the grid
points up to an error that can be controlled using the smoothness of these functions.

(d) Rigorous and accurate estimates of certain integrals. To obtain the integral of
some function P , we use the composite Trapezoidal rule

∫ bh

ah

P (x)dx =
∑

a≤i<b

(P (xi) + P (xi+1))h/2 + error(P ).

The composite Trapezoidal rule uses the values of P on the grid points only, which can be
obtained up to the round off error. The integral error, error(P ), can be bounded by the L1

norm of its first or second order derivative, i.e. C||P ′′||L1h2 or C||P ′||L1h for some absolute
constant C. We use this approach to obtain the coefficients vi in (3.30) that involve the inner
product of fi (3.26).

(e) Rigorous estimates of the eigenvalues. The optimal constant Copt (3.33) is the
maximal eigenvalue of a symmetric matrix S ∈ R5×5. Suppose that S is the exact matrix
and Ŝ is the matrix that we compute numerically. Note that Ŝ differs from S only due to the
approximation of the inner product by the composite Trapezoidal rule to obtain the entries vi
in (3.33). In particular, we have ||S − Ŝ||L1 = O(h2), where || · ||L1 is the matrix L1 norm.

We perform the eigendecomposition of Ŝ numerically and obtain QΛQT , where Λ is a diagonal
matrix containing the eigenvalues. The numerical result shows that maxi Λii < 0.92. Finally,
we use the perturbation theorem of eigenvalues of a symmetric matrix (see e.g. [13]) to obtain

|λmax(S)− λmax(Ŝ)| ≤ ||S − Ŝ||L1 ≤ C(fi)(h2), |λmax(Ŝ)−max
i

Λii| ≤ ||QΛQT − Ŝ||L1

to verify that

Copt = λmax(S) ≤ max
i

Λii+ ||S−Ŝ||L1+ ||QΛQT −Ŝ||L1 < 0.92+C(fi)h
2+ ||QΛQT −Ŝ||L1 < 1,

where the constant C(fi) can be bounded by some norm of ω̄ and the smallness of ||QΛQT−Ŝ||L1

can be verified a posteriori, which is at the order of double-precision, i.e. 10−15.

3.3. Weighted H1 estimate. We choose

(3.35) ψ = − 1

ω̄

(
1

x
− x

L2

)

, x ∈ [0, L],

as the weight for the weightedH1 estimate. Note that the weight ψ is nonnegative for 0 ≤ x ≤ L.
Then we can perform the weighted H1 estimate as follows

(3.36)

1

2

d

dt
〈ω2

x, ψ〉 = 〈−((c̄lx+ ū)ωx)x + ((c̄ω + ūx)ω)x, ωxψ〉+ 〈((ux + cω)ω̄)x, ωxψ〉
− 〈((u + clx)ω̄x)x, ωxψ〉+ 〈N(ω)x, ωxψ〉+ 〈F (ω̄)x, ωxψ〉
, I + II + III +N2 + F2.

For I, we use c̄l = c̄ω and integration by parts to get

(3.37)

I =
〈

− (c̄lx+ ū)ωxx + ūxxω, ωxψ
〉

=
〈 1

2ψ
((c̄lx+ ū)ψ)x, ω

2
xψ
〉

+ 〈ūxxω, ωxψ〉 , 〈D2(ω̄), ω
2
xψ〉+ 〈ūxxω, ωxψ〉.

The first term in I is a damping term. We plot the numerical values of D2(ω̄) on the grid points
in Figure 2. We can verify rigorously that it is bounded from above by −0.95. Thus we have

(3.38) I = 〈D2(ω̄), ω
2
xψ〉+ 〈ūxxω, ωxψ〉 ≤ −0.95〈ω2

x, ψ〉+ 〈ūxxω, ωxψ〉 , −0.95〈ω2
x, ψ〉+ I2,
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where I2 = 〈ūxxω, ωxψ〉. For II, III, we note that

II + III = 〈uxxω̄ + (ux + cω)ω̄x − (ux + cl)ω̄x − (clx+ u)ω̄xx, ωxψ〉
= 〈uxxω̄, ωxψ〉 − 〈(clx+ u)ω̄xx, ωxψ〉 , II1 + II2.

Using the definition of ψ, we get

II1 = 〈uxxω̄, ωxψ〉 =
〈

uxxωx,−
1

x
+

x

L2

〉

.

Since ωx(0) = 0 by the normalization condition and uxx(0) = 0 by the odd-even symmetry, we
can use the same cancellation as we did in (2.23) to get

〈

uxxωx,−
1

x

〉

= 0, 〈uxxωx, x〉 = 0.

Therefore II1 vanishes and we get

(3.39) II + III = II2 = −〈(clx+ u)ω̄xx, ωxψ〉,

which is a cross term (in fact, it is a lower order term after integration by parts). The remaining
linear terms in the weighted H1 estimate are I2 = 〈ūxxω, ωxψ〉 in (3.38) and II2 in (3.39), which
can be bounded by the interpolation between 〈ω2, ϕ〉 and 〈ω2

x, ψ〉. One can obtain a rough bound
for these terms using the Cauchy-Schwartz inequality and the Hardy inequality

|I2| = |〈ūxxω, ωxψ〉| ≤ 〈ū2xx, ω2ψ〉1/2〈ω2
x, ψ〉1/2 ≤ ||ūxxψ1/2ϕ−1/2||L∞[0,L]〈ω2, ϕ〉1/2〈ω2

x, ψ〉1/2,
|II2| = |〈(clx+ u)ω̄xx, ωxψ|〉 ≤ 〈(clx+ u)2, x−2 + (x− L)−2〉1/2〈(x−2 + (x− L)−2)−1ω̄2

xxψ, ωxxψ〉1/2

≤
{
8(〈g2cω , ϕ−1〉+ ||ϕ−1||L∞[0,L]) · ||(x−2 + (x− L)−2)−1ω̄2

xxψ||L∞[0,L]

}1/2 〈ω2, ϕ〉1/2〈ω2
x, ψ〉1/2,

where gcω is defined in (3.24). It follows

(3.40) |I2|+ |II2| ≤ C1(ω̄)〈ω2, ϕ〉1/2〈ω2
x, ψ〉1/2,

where

(3.41)
C1(ω̄) , ||ūxxψ1/2ϕ−1/2||L∞[0,L]

+
{
8(〈g2cω , ϕ−1〉+ ||ϕ−1||L∞[0,L]) · ||(x−2 + (x− L)−2)−1ω̄2

xxψ||L∞[0,L]

}1/2
.

From the definition of ϕ, ψ (3.6), (3.35), the quantities appeared in C1(ω̄) satisfy that

ϕ−1 = O((x−4 + (x− L)−2)−1), |ūxxψ1/2ϕ−1/2| = O(ūxx(x
−1 + (L − x)−1)−1),

(x−2 + (x− L)−2)−1ω̄2
xxψ = O((1 + (x− L)−2)−1ω̄2

xx).

In particular, these quantities are bounded for any x ∈ [0, L] and thus C1(ω̄) is finite.
Therefore, combining (3.36), (3.38), (3.39) and (3.40), we prove for any ε > 0,

(3.42)
1

2

d

dt
〈ω2

x, ψ〉 ≤ −0.95〈ω2
x, ψ〉+ ε〈ω2

x, ψ〉+ (4ε)−1C1(ω̄)
2〈ω2, ϕ〉+N2 + F2,

From (3.34) and (3.42), we can choose ε, µ > 0 and construct the energy E(t)2 = 〈ω2, ϕ〉 +
µ〈ω2

x, ψ〉 to close the weighted L2 and weighted H1 estimate at the linear level

(3.43)
d

dt
E(t)2 ≤ −C(µ, ε)E(t)2 +N1 + F1 + µ(N2 + F2),

where C(µ, ε) > 0 depends on µ, ε. For example, one can choose ε = 0.65, µ = 0.4εC1(ω̄)
−2 to

obtain C(µ, ε) = 0.2.



24 JIAJIE CHEN, THOMAS Y. HOU, AND DE HUANG

3.3.1. Nonlinear stability. Recall that N,F are defined in (3.5), N1, F1 in (3.7), and N2, F2 in
(3.36).

Using integration by parts similar to that in (3.8) and (3.37), we obtain

(3.44)

N1 + µN2 =
〈 1

2ϕ
((clx+ u)ϕ)x + (cω + ux), ω

2ϕ〉+ µ
〈 1

2ψ
((clx+ u)ψ)x, ω

2
xψ
〉

.

=
〈 1

2ϕ
(clx+ u)ϕx +

3

2
(cω + ux), ω

2ϕ〉+ µ
〈 1

2ψ
(clx+ u)ψx +

1

2
(cω + ux), ω

2
xψ
〉

.

Note that |ux| can be bounded by E(t) as follows

||ux||∞ ≤ 2||ux||1/2L2(R+)||uxx||
1/2
L2(R+) ≤ 2||ω||1/22 ||ωx||1/22 ≤ 2||ϕ−1/2||1/2∞ ||ψ−1/2||1/2∞ 〈ω2, ϕ〉1/4〈ω2

x, ψ〉1/4

≤ 2µ−1/4||ϕ−1/2||1/2∞ ||ψ−1/2||1/2∞ E(t) , C2(ω̄, µ)E(t).

Recall cl = cω (3.2). We have clx+ u|x=0,L = 0 and

|clx+ u| ≤ min(|x|, |L− x|) · ||cω + ux||L∞[0,L] ≤ 2min(|x|, |L − x|)||ux||∞.
Therefore, using the estimate of ux, clx+ u and (3.44), we obtain
(3.45)

N1 + µN2 ≤ 2

{

2 +
∣
∣
∣

∣
∣
∣(|x| ∧ |L− x|)

(∣
∣
∣
ϕx

2ϕ

∣
∣
∣+
∣
∣
∣
ψx

2ψ

∣
∣
∣

) ∣
∣
∣

∣
∣
∣
∞

}

||ux||∞
(
〈ω2, ϕ〉+ µ〈ω2

x, ψ〉
)

≤2
{

2 +
∣
∣
∣

∣
∣
∣(|x| ∧ |L− x|)

(∣
∣
∣
ϕx

2ϕ

∣
∣
∣+
∣
∣
∣
ψx

2ψ

∣
∣
∣

) ∣
∣
∣

∣
∣
∣
∞

}

C2(ω̄, µ)E(t)3 , C3(ω̄, µ)E(t)3.

To estimate the error term, we use the Cauchy-Schwartz inequality

(3.46)
F1 + µF2 = 〈F (ω̄), ωϕ〉+ µ〈F (ω̄)x, ωxψ〉

≤ (〈F (ω̄)2, ϕ〉+ µ〈F (ω̄)2x, ψ〉)1/2E(t) , error(ω̄)E(t),

Note that the above estimates except error(ω̄) are uniform for all approximate profiles suf-
ficiently close to the self-similar solution. For example, for sufficiently small mesh size h, the
difference between ω̄h and its limiting value as h→ 0 is of order h, so are the constants C1(ω̄h)
in (3.41) and C3(ω̄h, µ) in (3.45). Moreover, the approximate error error(ω̄) can be made ar-
bitrarily small by choosing a very fine mesh size. In principle, by taking the numerical mesh
size h sufficiently small and combining (3.43), (3.45) and (3.46), we can complete the bootstrap
argument. Then the remaining steps are the same as those in the proof of Theorem 1.2. Note
that C∞

c [−L,L] is dense in L2(ϕ)∩H1(ψ) with fixed ωx(0). In fact, the weights near the corner
x = ±L is of order O((x − L)−2) in the L2 norm and O(1) in the H1 norm. Hence, we can
choose an initial perturbation ω such that ω + ω̄ is C∞ with compact support. The bootstrap
and the convergence arguments similar to that in the proof of Theorem 1.2 imply that ω(t)+ ω̄,
cl + c̄l = cω(t) + c̄ω remain close to ω̄, c̄ω < −0.69 for all time t > 0, respectively, and even-
tually converge to the self-similar profile ω∞ with scaling cl,∞ = cω,∞ < 0. After rescaling
the self-similar profile using the argument similar to (2.40), we can obtain a self-similar profile
with scaling cl,∞ = cω,∞ = −1. Thus we obtain a stable and expanding finite time self-similar
blowup of the original De Gregorio model with blowup scaling cl = −1.

In the supplementary material [2], we will provide much sharper estimates of the cross term
(3.40), (3.42), the nonlinear term (3.45) and the error term (3.46). These sharper stability
estimates and error estimate enable us to choose a modest mesh size to close the bootstrap
argument. In particular, we choose h = 2.5 ·10−5 and the computational cost of ω̄h is affordable
even for a personal laptop computer. More specifically, we can prove the following refined
estimate, which improves the estimate given by (3.42) significantly.

Lemma 3.1. The weighted H1 estimate satisfies

(3.47)
1

2

d

dt
〈ω2

x, ψ〉 = I + II2 +N2 + F2 ≤ −0.25〈ω2
x, ψ〉+ 7.5〈ω2, ϕ〉+N2 + F2,

where I, II2 combine the damping and the cross terms and are defined in (3.38), (3.39), respec-
tively.
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With this refined estimate and the refined estimate of nonlinear and error terms, we choose
µ = 0.02 and bootstrap assumption E(t) = 〈ω2, ϕ〉 + µ〈ω2

x, ψ〉 < 5 · 10−4 to complete the final
bootstrap argument.

4. Finite Time Blowup for Cα Initial Data

In [10], Elgindi and Jeong obtained the Cα self-similar solution ωα of the Constantine-Lax-
Majda equation

(4.1) clxωx = (cω + ux)w

for all α ∈ (0, 1], which reads

(4.2)
wα = − 2 sin

(
απ
2

)
sgn(x)|x|α

1 + 2 cos
(
απ
2

)
|x|α + |x|2α , uα,x =

2(1 + cos
(
απ
2

)
|x|α)

1 + 2 cos
(
απ
2

)
|x|α + |x|2α ,

cl =
1

α
, cω = −1,

where cl, cω are the scaling parameters. Based on these self-similar solutions, they further
constructed the Cα self similar solution of the DG model for any a. However, such self-similar
solution does not have finite energy in the sense that ||u||2 = +∞. In this section, we will show
that the Cα self-similar solution of the CLM equation is stable under perturbation so that we
can construct compactly supported initial data that develop self-similar blowup in finite time.

4.1. Stability of the Cα CLM Self-Similar Solution. In this Section, we prove the following
result, which implies Theorem 1.3 directly.

Theorem 4.1. There exists some absolute constants C1, C2, µ with C1C2 < 1/4 and some
weight functions ϕα, ψα, such that for any α ∈ (0, 1/4] and |aα| < C1, if the initial data ω0 of
the dynamical rescaling equation (2.3) satisfies

(4.3) E(ω0, ωα) < C2|aα|,

where E(ω, ωα) is given by

E(w,wα)
2 , 〈(ω − ωα)

2, ϕα〉+ µ〈(ωx − ωα,x)
2, ψα〉 ,

then we have (a) the solution of (2.3) satisfies E(ω(t), ωα) < C2|aα| for all t ≥ 0; (b) the physical
solution of the De Gregorio equation (1.3) with initial data ω0 develops a self-similar singularity
in finite time.

Remark 4.2. (i) In the proof to be presented, we choose weights

(4.4) ϕα = − 1

sgn(x)ωα

1 + 2 cos
(
απ
2

)
|x|α + |x|2α

|x|1+2α
, ψα =

1

α2
ϕαx

2.

The reason we choose the above weight ψ is that ωx is about αω/x. We choose these weights
so that 〈ω2, ϕ〉 and 〈ω2

x, ψ〉 are comparable.
(ii) The 1/4 upper bound on α is not a technical assumption but useful for simplifying the

presentation. It will be clear in the proof that the results for α ∈ [1/4, 1) can be obtained using
a similar argument.

(iii) Throughout the proof, we impose |aα| < 1.

The proof of Theorem 4.1 is based on several uniform estimates on the self-similar solution
and a bootstrap argument in the dynamical rescaling equation that is similar to the proof of
small |a| that we presented in Section 2.
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4.1.1. Normalization Conditions and Approximate Steady State. The self-similar equation of DG
model with parameter a reads

(4.5) (clx+ au)ωx = (cω + ux)ω .

For any a > 0, α ∈ (0, 1), we construct Cα approximate self-similar profile of (4.5) below

(4.6) ωα, uα, c̄l,α =
1

α
− auα,x(0) =

1

α
− 2a, c̄ω = −1.

The only difference between the above solution and the Cα self similar solutions of CLM (4.2)
is the cl term. The above solution satisfies (4.5) up to an error

(4.7) Fα(ωα) = −(c̄lx−
1

α
x+ auα)ωα,x = −a(uα − uα,x(0)x)ωα,x.

Denote ω, ux = Hω as the perturbation around the approximate self-similar profile (ωα, uα).
Also we make a change of variables cl → c̄l,α + cl, cω → cω,α + cω in (4.5) so that cl, cw now
denote the perturbations. Similar to the proof of Proposition 2.1, we consider the equation for
ω and u

(4.8) ωt + (c̄l,αx+ auα)ωx = (c̄ω + uα,x)ω + (ux + cω)ωα − (au + clx)ωα,x +N(ω) + Fα(ωα) ,

where the error term Fα(ωα) is given in (4.7) and the nonlinear part is given by

N(ω) = (cω + ux)ω − (clx+ au)ωx.

We choose the following normalization conditions for cl(t), cω(t)

(4.9)

cl(t) = −aux(t, 0), cω(t) = −ux(t, 0)

⇐⇒ cl(t) + c̄l =
1

α
− a(ux(t, 0) + uα,x(0)), cω + c̄ω = 1− (ux(t, 0) + uα,x(0)),

where we use uα,x(0) = 2.

4.1.2. Estimate of the velocity, the self-similar solution and the error. We introduce the notation

ũ , u− ux(0)x, ũx = ux − ux(0) ,

and use the weighs defined in (4.4) to perform the L2, H1 estimates.
We first state some useful properties of the Cα approximate self-similar solution that we will

use in our stability analysis.

Lemma 4.3. For α ∈ (0, 1], we have the following estimates for the self-similar solutions defined
in (4.2). (a) Uniform estimates on the damping effect

(4.10)

1

2ϕα

(
1

α
xϕα

)

x

+ (c̄ω + uα,x) = −1/2 ,

1

2ψα

(
1

α
xψα

)

x

+ (c̄ω + uα,x)−
1

α
= −1/2 ,

(uα,xxψα)x
2ψα

x2 =
4α2|x|α(|x|α + cos

(
απ
2

)
)

(1 + 2 cos
(
απ
2

)
|x|α + |x|2α)2 ≥ 0 .

(b) Vorticity and velocity estimates:

∣
∣
∣

∣
∣
∣
xwα,x

wα

∣
∣
∣

∣
∣
∣
∞

. α,
∣
∣
∣

∣
∣
∣
x2wα,xx

wα

∣
∣
∣

∣
∣
∣
∞

. α,
∣
∣
∣

∣
∣
∣
x2ωα,xx + xωα,x

ωα

∣
∣
∣

∣
∣
∣
∞

. α2 ,(4.11)
∣
∣
∣
uα
x
− uα,x(0)

∣
∣
∣ . |x|α ∧ 1,

∣
∣
∣
uα
x
− uα,x

∣
∣
∣ . α(|x|α ∧ 1) .(4.12)
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(c) Asymptotic estimates of ϕα, ψα:

(4.13)

ϕα ≍
1

α
(|x|−1−3α + |x|−1+α) ,

ψα =
1

α2
x2ϕα ≍

1

α3
(|x|1−3α + |x|1+α) ,

∣
∣
∣

∣
∣
∣
xψα,x

ψα
− 1
∣
∣
∣

∣
∣
∣
∞

. α,
∣
∣
∣

∣
∣
∣
xϕα,x

ϕα
+ 1
∣
∣
∣

∣
∣
∣
∞

. α ,

where A ≍ B means that A ≤ CB and B ≤ CA for some universal constant C.
(d) The smallness of the weighted L2 and H1 errors:

〈Fα(ωα)
2, ϕα〉 . a2α2, 〈(Fα(ωα))

2
x, ψα〉 . a2α2,(4.14)

〈(|x|α ∧ 1)2ω2
α,x, ψα〉 . 1.(4.15)

These estimates are elementary and we defer the proof to the Appendix.

Remark 4.4. We will use (4.10) to show that the damping effect in the weighted L2 and H1

estimates is uniform for any α ∈ (0, 1). (4.11) shows that we can gain a small factor α from
ωα,x. This enables us to show that the perturbation term uωα,x is small. (4.13) shows that
xψα,x/ψα, xϕα,x/ϕα are close to 1 and −1, respectively.

Lemma 4.5 (L∞ estimate).

||ux||∞ . 〈ω2, ϕα〉1/4〈ω2
x, ψα〉1/4,(4.16)

∣
∣
∣ũx −

ũ

x

∣
∣
∣ . α〈ω2

x, ψα〉1/2|xα| ∧ 1 . α〈ω2
x, ψα〉1/2,(4.17)

|ω(x)| . α〈ω2
x, ψα〉1/2|xα| ∧ 1,(4.18)

where ũ = u− ux(0)x.

We also defer the proof to the Appendix. (4.17) shows that we can gain a small factor α from
ũx − ũ

x = ux − u/x.
We use a strategy similar to that in the proof of Theorem 1.2 to prove Theorem 4.1. The key

step is establishing linear stability by taking advantage of the following:
(a) the stretching effect c̄l,αxωx and the damping term (c̄ω + ux,α)ω ;
(b) the cancellation (A.12), (A.6) involving the vortex stretching term uxωα;
(c) the smallness of the convection term auωα,x (see (4.11)) by choosing |aα| to be sufficiently

small .
To control the velocity u, we need to use Lemma A.4 in the Appendix, which states some

nice properties of the Hilbert transform for a Hölder continuous function.

4.1.3. Linear Estimate. We first perform the weighted L2 estimate with respect to (4.8). We
proceed as follows

(4.19)

1

2

d

dt
〈ω2, ϕα〉 = 〈−(c̄l,αx+ auα)ωx + (c̄ω + uα,x)ω, ωϕα〉+ 〈(ux + cω)ωα, ωϕα〉

− 〈(au+ clx)ωα,x, ωϕα〉+ 〈N(ω), ωϕα〉+ 〈Fα(ωα), ωϕα〉
, I + II + III +N + F.

For I, we use integration by parts, (4.10) and c̄l,α = 1
α − auα,x(0) to get

(4.20)

I =
〈 1

2ϕα
((c̄l,αx+ auα)ϕα)x + (c̄ω + uα,x), ω

2ϕα

〉

= −1

2
〈ω2, ϕα〉+ a

〈 1

2ϕα
((uα − uα,x(0)x)ϕα)x, ω

2ϕα

〉

.
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For the second term, we use (4.12) and (4.13) to yield
∣
∣
∣

1

2ϕα
((uα − uα,x(0)x)ϕα)x

∣
∣
∣ =

∣
∣
∣
1

2
(uα,x − uα,x(0)) +

uα − uα,x(0)x
x

xϕα,x

2ϕα

∣
∣
∣

=
∣
∣
∣
1

2
(uα,x −

uα
x
) +

uα − uα,x(0)x
x

(
xϕα,x

2ϕα
+

1

2

) ∣
∣
∣ . α+ 1 · α . α .

Combining (4.20) with the above estimate, we derive

(4.21) I ≤ −1

2
〈ω2, ϕα〉+ C|a|α〈ω2, ϕα〉 = −

(
1

2
− C|a|α

)

〈ω2, ϕα〉,

where C > 0 is some universal constant.
Recall the definition of ϕα in (4.4). For II, we use the cancellation (A.12) and (A.6) to get

(4.22)
II = 〈ũxωα, ωϕα〉 = −

〈

ũxω · sgn(x), |x|−1−2α + 2 cos
(απ

2

)

||x|−1−α + |x|−1
〉

≤ −
〈

ũxω · sgn(x), |x|−1〉 = −π
2
u2x(0) ≤ 0.

For III, we have

|III| = |〈(au+ clx)ωα,x, ωϕα〉| =
∣
∣
∣a
〈 ũ

x

ωα,xx

ωα
, ω

1 + 2 cos
(
απ
2

)
|x|α + |x|2α

|x|1+2α

〉∣
∣
∣

. |a|
〈∣
∣
∣
ũ

x

∣
∣
∣

∣
∣
∣
ωα,xx

ωα

∣
∣
∣, |ω|(|x|−1−2α + |x|−1)

〉

.

Using the estimate for ωα (4.11) and the Hardy inequality (A.13), we obtain
(4.23)

|III| . |a|α
〈∣
∣
∣
ũ

x

∣
∣
∣, |ω|(|x|−1−2α + |x|−1)〉

. |a|α〈ũ2, |x|−3−3α〉1/2〈ω2, |x|−1−α〉1/2 + |a|α〈ũ2, |x|−3−α〉1/2〈ω2, |x|−1+α〉1/2

. |a|αα−1〈ω2, |x|−1−3α〉1/2〈ω2, |x|−1−α〉1/2 + |a|αα−1〈ω2, |x|−1−α〉1/2〈ω2, |x|−1+α〉1/2

. |a|α〈ω2, ϕα〉,
where we have used (4.13) to obtain the last inequality.

Plugging (4.21), (4.22) and (4.23) in (4.19), we arrive at

(4.24)
1

2

d

dt
〈ω2, ϕα〉 ≤ −

(
1

2
− C|a|α

)

〈ω2, ϕα〉+ 〈N(ω), ωϕα〉+ 〈Fα(ωα), ωϕα〉.

4.1.4. Weighted H1 Estimate. Recall the definition of the weight ψα in (4.4). We now perform
the weighted H1 estimate with respect to (4.8)
(4.25)

1

2

d

dt
〈ω2

x, ψα〉 = 〈−((c̄l,αx+ auα)ωx)x + ((c̄ω + uα,x)ω)x, ωxψα〉+ 〈((ux + cω)ωα)x, ωxψα〉
− 〈((au+ clx)ωα,x)x, ωxψα〉+ 〈N(ω)x.ωxψα〉+ 〈Fα(ωα)x, ωxψα〉
, I + II + III +N2 + F2.

For I, we again use integration by parts to obtain

I = 〈−(c̄l,αx+ auα)ωxx − (c̄l,α + auα,x)ωx + (c̄ω + uα,x)ωx, ωxψα〉+ 〈uα,xxω, ωxψ〉

=
〈((c̄l,αx+ auα)ψα)x

2ψα
− (c̄l,α + auα,x) + (c̄ω + uα,x), ω

2
xψα

〉

−
〈 (uα,xxψα)x

2ψα
, ω2ψ

〉

, I1 + I2.

From (4.10), we get

I2 ≤ 0.

Recall that c̄l,α = 1
α − auα,x and

c̄l,αx+ auα,x =
1

α
+ a(uα − uα,xx) =

1

α
+ aũα, c̄l,α + auα;x =

1

α
+ ũα,x.
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We can use (4.10) to obtain

I1 = −1

2
〈ω2

x, ψα〉+ a
〈 (ũαψα)x

2ψα
− ũα,x, ω2

xψα

〉

= −1

2
〈ω2

x, ψα〉+ a
〈 ũα
x

xψα,x

2ψα
− ũα,x

2
, , ω2

xψα

〉

.

Using (4.12) and (4.13), we get

∣
∣
∣
ũα
x

xψα,x

2ψα
− ũα,x

2

∣
∣
∣ ≤

∣
∣
∣
ũα
x

∣
∣
∣ ·
∣
∣
∣
xψα,x

2ψα
− 1

2

∣
∣
∣+

1

2

∣
∣
∣
ũα
x
− ũα,x

∣
∣
∣ . ||uα,x||∞α+ α . α.

It follows that

I1 ≤ −
1

2
〈ω2

x, ψα〉+ C|a|α〈ω2
x, ψα〉 = −

(
1

2
− C|a|α

)

〈ω2
x, ψα〉,

⇒ I = I1 + I2 ≤ I1 ≤ −
(
1

2
− C|a|α

)

〈ω2
x, ψα〉.(4.26)

For II, we have

(4.27) II = −〈uxxωα, ωxψα〉+ 〈ũxωα,x, ωxψα〉 , II1 + II2.

Note that

H(ωx) = uxx, H(ωxx)(0) = 0⇒ H(ωxx) = uxxx.

Moreover, we have that ωxx is odd, (xuxx)(0) = (xωx)(0) = 0. Applying the cancellation (A.12),
(A.6) with (ux, ω) replaced by (xuxx, xωx), we can estimate II1 as follows

(4.28)

II1 = −
〈

(xuxx)(xωx),
1

α2

(1 + 2 cos
(
απ
2

)
|x|α + |x|2α)

sgn(x)|x|1+2α

〉

≤ −
〈

(xuxx)(xωx),
1

sgn(x)α2|x|
〉

= − π

2α2
(xuxx)(0)

2 = 0.

The remaining terms in the weighted H1 estimate are II2 in (4.27) and III in (4.25), which
can be decomposed as follows

III = −〈((au+ clx)ωα,x)x, ωxψα〉 = −a〈ũxωα,x + ũωα,xx, ωxψα〉

= −a
〈

(ũx −
ũ

x
)ωα,x, ωxψα

〉

− a
〈 ũ

x
(ωα,x + xωα,xx), ωxψα

〉

, III1 + III2.

We perform the estimate of III1, III2 and the estimate of II2 can be done similarly. Using
the pointwise estimate (4.17) and the Cauchy Schwartz inequality, we can estimate III1 as
follows

(4.29)
III1 ≤ |a|α〈ω2

x, ψα〉1/2 · 〈(|x|α ∧ 1)|ωα,x|, |ωx|ψα〉
. |a|α〈ω2

x, ψα〉 · 〈(|x|α ∧ 1)2ω2
α,x, ψα〉1/2 . |a|α〈ω2

x, ψα〉,

where we have used (4.15) to obtain the last inequality.
For III2, we first use (4.11) to obtain

|III2| = |a|
∣
∣
∣

〈 ũ

x
(ωα,x + xωα,xx), ωx|x|1−2α (1 + 2 cos

(
απ
2

)
|x|α + |x|2α)

α2sgn(x)ωα

〉∣
∣
∣

= |a|
∣
∣
∣

〈 ũ

x2
x(ωα,x + xωα,xx)

sgn(x)ωα
, ωx|x|1−2α (1 + 2 cos

(
απ
2

)
|x|α + |x|2α)

α2

〉∣
∣
∣

. |a|
〈∣
∣
∣
ũ

x2

∣
∣
∣α2, |ωx| |x|1−2α (1 + 2 cos

(
απ
2

)
|x|α + |x|2α)

α2

〉

= |a|
〈∣
∣
∣
ũ

x

∣
∣
∣, |ωx|

(

1 + 2 cos
(απ

2

)

|x|−α + |x|−2α
)〉

. |a|
〈∣
∣
∣
ũ

x

∣
∣
∣, |ωx|(1 + |x|−2α)

〉

.
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Then we use the Hardy inequality (A.13) to estimate ũ

|III2| . |a|
〈∣
∣
∣
ũ

x

∣
∣
∣, |ωx|(1 + |x|−2α)

〉

. |a|〈ũ2, |x|−3−3α〉1/2〈ω2
x, |x|1−α〉1/2 + |a|〈ũ2, |x|−3−α〉1/2〈ω2

x, |x|1+α〉1/2

. |a|α−1〈ω2, |x|−1−3α〉1/2〈ω2
x, |x|1−α〉1/2 + |a|α−1〈ω2, |x|−1−α〉1/2〈ω2

x, |x|1+α〉1/2.
Using (4.13), we derive

(4.30) |III2| . |a|α−1α1/2〈ω2, ϕα〉1/2α3/2〈ω2
x, ψα〉1/2 = |a|α〈ω2, ϕα〉1/2〈ω2

x, ψα〉1/2.

Similarly, for II2, using the smallness
∣
∣
∣

∣
∣
∣
xwα,x

wα

∣
∣
∣

∣
∣
∣
∞

. α in (4.11), the weighted estimate (A.10)

and estimate of ψα, ϕα (4.13), one can obtain

(4.31) |II2| . 〈ω2, ϕα〉1/2〈ω2
x, ψα〉1/2.

Plugging (4.26), (4.27), (4.28), (4.29), (4.30) and (4.31) in (4.25), we obtain

(4.32)

1

2

d

dt
〈ω2

x, ψα〉 ≤ −
(
1

2
− C|a|α

)

〈ω2
x, ψα〉+ C〈ω2, ϕα〉1/2〈ω2

x, ψα〉1/2

+ 〈N(ω)x, ωxψα〉+ 〈Fα(ωα)x, ωxψα〉,
for some universal constant C, where we have used |aα| < 1.

In the following two subsections, we aim to control the nonlinear and error terms

〈N(ω), ωϕα〉, 〈Fα(ωα), ωϕα〉, 〈N(ω)x, ωxψα〉, 〈Fα(ωα)x, ωxψα〉
in (4.24) and (4.32).

4.1.5. Estimates of nonlinear terms. Recall that

clx+ au = a(u− ux(0)x) = aũ, cω + ux = ux − ux(0) = ũx.

For the nonlinear terms in (4.24) and (4.32), we use integration by parts to obtain

〈N(ω), ωϕα〉 = 〈(cω + ux)ω − (clx+ au)ωx, ωϕα〉 =
〈

ũx +
(aũϕα)x
2ϕα

, ω2ϕα

〉

= 〈ũx, ω2ϕα〉+
a

2

〈(

ũx +
ũ

x

xϕα,x

ϕα

)

, ω2ϕα

〉

, I1 + I2,

〈N(ω)x, ωxψα〉 = 〈((cω + ux)ω − (clx+ au)ωx)x, ωxψα〉

= 〈uxxω + ũxωx, ωxψα〉 − a
〈

ũxωx + ũωxx, ωxψα

〉

= 〈ũxωx, ωxψα〉+ 〈uxxω, ωxψα〉+ a
〈

− ũx +
(ũψα)x
2ψα

, ω2
xψα

〉

, II1 + II2 + II3.

For each term Ii, IIj , we use L∞ + L2 + L2 type of estimates. We use Lemma 4.5 to control
the L∞ norm of ω, ũ/x, ũx or ũx − ũ/x, and use 〈ω2, ϕα〉, 〈ω2

x, ψα〉 to control other terms. We
present the estimate of II3 that has a large coefficient a and is more complicated and other
terms can be done similarly. For II3, we notice that

−ũx +
(ũψα)x
2ψα

= −1

2
ũx +

1

2

ũ

x

ψα,xx

ψα
= −1

2

(

ũx −
ũ

x

)

+
1

2

ũ

x

(
ψα,xx

ψα
− 1

)

.

Then we use the L∞ estimate (4.17) to control ũx− ũ/x, (4.16) to control ũ/x = u/x−ux(0)
and (4.13) to estimate the terms involving ψα. This gives

(4.33)

II3 =
a

2

〈

−
(

ũx −
ũ

x

)

+
ũ

x

(
ψα,xx

ψα
− 1

)

, ω2
xψα

〉

. |a|
(∣
∣
∣

∣
∣
∣ũx −

ũ

x

∣
∣
∣

∣
∣
∣
L∞

+ ||ux||∞
∣
∣
∣

∣
∣
∣
ψα,xx

ψα
− 1
∣
∣
∣

∣
∣
∣
L∞

)

〈ω2
x, ψα〉

. (|a|α〈ω2
x, ψα〉1/2 + |a|α〈ω2, ϕα〉1/4〈ω2

x, ψα〉1/4)〈ω2
x, ψα〉 . (〈ω2, ϕα〉+ 〈ω2

x, ψα〉)3/2,
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where we have used |aα| < 1. Similarly, we have

(4.34) I1, I2, II1, II2 . (〈ω2, ϕα〉+ 〈ω2
x, ψα〉)3/2.

Combining (4.33) and (4.34), we obtain the following estimates for the nonlinear terms

(4.35)
〈N(ω), ωϕα〉 = I1 + I2 . (〈ω2, ϕα〉+ 〈ω2

x, ψα〉)3/2,
〈N(ω)x, ωxψα〉 = II1 + II2 + II3 . (〈ω2, ϕα〉+ 〈ω2

x, ψα〉)3/2.

4.1.6. Estimates of the error terms. Recall the error terms in the weighted L2, H1 estimates in
(4.24) and (4.32) are given by

〈Fα(ωα), ωϕα〉, 〈(Fα(ωα))x, ωxψα〉.
Using the Cauchy-Schwartz inequality and the error estimate (4.14), we obtain

(4.36)
〈Fα(ωα), ωϕα〉 ≤ 〈Fα(ωα)

2, ϕα〉1/2〈ω2, ϕα〉1/2 . |a|α〈ω2, ϕα〉1/2,
〈(Fα(ωα))x, ωxψα〉 ≤ 〈(Fα(ωα))

2
x, ψα〉1/2〈ω2

x, ψα〉1/2 . |a|α〈ω2
x, ψα〉1/2.

4.1.7. Nonlinear stability. Let 0 < µ < 1 be some parameter to be determined and we introduce
the following energy

E2(t) , 〈ω2, ϕα〉+ µ〈ω2
x, ψα〉.

Using the weighted L2, H1 estimates (4.24), (4.32), the estimates of nonlinear term (4.35) and
the estimates of error term (4.36), we obtain ( (4.24) + µ (4.32) )

(4.37)

1

2

d

dt
(〈ω2, ϕα〉+ µ〈ω2

x, ψα〉)

≤−
(
1

2
− C|a|α

)
(
〈ω2, ϕα〉+ µ〈ω2

x, ψα〉
)
+ µC〈ω2, ϕα〉1/2〈ω2

x, ψα〉1/2
︸ ︷︷ ︸

Q

+ C|a|α
(

〈ω2, ϕα〉1/2 + µ〈ω2
x, ψα〉1/2

)

︸ ︷︷ ︸

error term

+C(µ)
(
〈ω2, ϕα〉+ µ〈ω2

x, ψα〉
)3/2

︸ ︷︷ ︸

nonlinear

,

where C is some universal constant, C(µ) depends on µ and we have used

(1 + µ)(〈ω2, ϕα〉+ 〈ω2
x, ψα〉)3/2 ≤ C(µ)(〈ω2, ϕα〉+ µ〈ω2

x, ψα〉)3/2 ,
for the nonlinear term in (4.35). Next, we argue that if |aα| < 1 and µ is small, the quadratic
part Q is negative, i.e. we obtain inviscid damping in the energy norm, E. First, we choose an
absolute constant µ ∈ (0, 1) such that

C
√
µ <

1

4
.

We fix µ from now on. Applying the inequality
√
µab ≤ (a2 + µb2)/2, we obtain

µC〈ω2, ϕα〉1/2〈ω2
x, ψα〉1/2 ≤

1

2
C
√
µ(〈ω2, ϕα〉+ µ〈ω2

x, ψα〉) <
1

8
(〈ω2, ϕα〉+ µ〈ω2

x, ψα〉).

Using the above inequality, we can bound the quadratic term in (4.37) as follows:

Q ≤− (
1

2
− C|a|α)(〈ω2, ϕα〉+ µ〈ω2

x, ψα〉) +
1

8
(〈ω2, ϕα〉+ µ〈ω2

x, ψα〉)

=− (
3

8
− C|a|α)(〈ω2, ϕα〉+ µ〈ω2

x, ψα〉) = −(
3

8
− C|a|α)E2(t).

Since µ is an absolute constant, so is the constant C(µ) in (4.37). We can further simplify the
error term and nonlinear term in (4.37) to obtain

(4.38)
1

2

d

dt
E2(t) ≤ −

(
3

8
− C|a|α

)

E2(t) + C|a|αE(t) + CE3(t),

where the constant C > 1 is an absolute constant.
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From (4.13), we have

|ux(0)| .
∫

|ωx(y)|| log(y)|dy . (

∫

ω2
xψα)

1/2(

∫

ψ−1
α | log y|2)1/2

.E(t)

(

α3

∫

| log y|2(|y|1+α + |y|1−3α)−1dy

)1/2

. E(t)(α3α−1)1/2 . αE(t).

The normalization condition (4.9) implies

(4.39) |cω(t)| = |ux(t, 0)| ≤ C3αE(t), |cl(t)| = |aux(0)| ≤ C3|a|αE(t),

for some absolute constant C3 > 0.
Finally, we perform the bootstrap argument. We first choose C2 = 16C, where C is defined

in (4.38), and then choose C1 small such that

(4.40) C2 = 16C, CC1 + CC2C1 + C3C2C1 + C1 < 1/16.

Using the bootstrap argument and an argument similar to that in (2.30), we obtain that if

|a|α < C1, E(0) < C2|a|α,
then we must have E(t) < C2|a|α < C2C1. This is because if the right hand side of (4.38) at
E(t) = C2|a|α is given by
(4.41)

E(t)2
(

−3

8
+ C|a|α+

C|a|α
E(t)

+ CE(t)

)

= E(t)2
(

−3

8
+ (C + CC2)|a|α+

C

C2

)

< −1

4
E2(t) < 0.

Finally, we will show that cω + c̄ω < 0. The bootstrap results, (4.39) and (4.40), imply that

(4.42)
|cω(t)|, |cl(t)| < C3E(t) < C3C2C1 <

1

16
,

⇒ c̄ω + cω(t) = −1 + cω(t) < −
1

2
, c̄l + cl(t) =

1

α
− 2a+ cl(t) >

1

2α
− 1

16
≥ 1

4α
,

As a result, we can choose small initial perturbation ω0 with E(0) < C2|a|α. Moreover, we
choose ω0 in such a way that it modifies ωα at the far field to make the initial data ω̄+ω0 have
compact support. The bootstrap result and c̄ω + cω(τ) < −1/2 < 0 imply that the physical
solution blows up in finite time.

4.1.8. Convergence to the steady state. Using the same argument as we did for small |a| and the
a-priori estimate (4.42), we can prove that there exists

cl,∞ ≥ (4α)−1, cω,∞ < −1/2, ω∞ ∈ H1(ψα) ∩ L2(ϕα), u∞,x = Hω∞,

which satisfy the self-similar equation (4.5) in L2(ϕα) and in the dynamical rescaling space,
ω(t)+ωα converges to ω∞ exponentially fast in L2(ϕα). Therefore, the physical solution develops
a focusing (cl,∞ > 0) self-similar blowup in finite time.

4.2. Finite Time Blowup on Circle. In this subsection, we consider the De Gregorio model
on S1

(4.43)
ωt + auωx = uxω x ∈ [−π/2, π/2] ,

ux = Hcω ,

where ω, u are π-periodic and Hc is the Hilbert transform on the circle

(4.44) ux = Hcω =
1

π

∫ π/2

−π/2

ω(y) cot(x− y)dy.

Our goal is to prove Theorem 1.4. The proof is based on the comparison of the Hilbert
transform on the real line and on S1, and on the control of the support of the vorticity. Since
the blow-up is focusing, i.e. cl > 0, if the initial data has finite support, we can show that the
support of the solution at blow-up time remains finite. Moreover, we show that the difference
between the velocities generated by different Hilbert transforms can be arbitrarily small by
choosing initial data with small support. Therefore, the blowup mechanism on the real line can
directly lead to the blowup on the circle.
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4.2.1. Dynamical Rescaling. We consider the following dynamical rescaling of (4.43)

Ω(x, τ) = Cω(τ)ω(Cl(τ)x, t(τ)), Ux(x, τ) = Cω(τ)ux(Cl(τ)x, t(τ)).

Denote by S(τ) the size of support of Ω(·, t(τ)), i.e. supp(Ω) = [−S(τ), S(τ)]. Or equivalently,
Cl(τ)S(τ) is the size of supp(ω). We will choose Cl(0)S(0) to be small and show that Cl(τ)S(τ)
remains small up to the blowup time. We have

(4.45)

Ux(x, τ) = Cω(τ)ux(Clx, t(τ)) =
1

π
Cω(τ)

∫ π/2

−π/2

ω(y, t(τ)) cot(Cl(τ)x − y)dy

=
1

π
Cω(τ)

∫ Cl(τ)S(τ)

−Cl(τ)S(τ)

ω(y, t(τ)) cot(Cl(τ)x − y)dy

=
Cω(τ)

π

∫ S(τ)

−S(τ)

ω(Cly, t(τ)) cot(Cl(τ)x − Cl(τ)y)Cl(τ)dy

=
1

π

∫ S(τ)

−S(τ)

Ω(y, τ) cot(Cl(τ)x − Cl(τ)y)Cl(τ)dy , HτΩ(x).

We introduce the time-dependent Hilbert transform Hτ . The corresponding U is given by

(4.46)

U(x, τ) =

∫ x

0

Ux(y, τ)dy =
1

π

∫ S(τ)

−S(τ)

Ω(y) log | sin(Cl(τ)x − Cl(τ)y)|dy

=
1

π

∫ S(τ)

0

Ω(y) log
∣
∣
∣
sin(Cl(τ)x − Cl(τ)y)

sin(Cl(τ)x + Cl(τ)y)

∣
∣
∣dy.

With this notation, we can formulate the dynamical rescaling equation below

(4.47)
Ωτ + (clx+ aU)Ωx = (cω + Ux)Ω,

Ux = HτΩ.

To simplify our notations, we still denote Ω, U, τ in the dynamical rescaling space by ω, u, t
i.e.

(Ω, U, τ)→ (ω, u, t).

4.2.2. The bootstrap assumption. We make the following bootstrap assumption.
(a) Support of ω in the physical space : For all t > 0 we have

(4.48) Cl(t)S(t) <
π

4
.

(b) Bounded perturbation : Let ϕα, ψα be the weights in (4.4) and C2 be the constant in
(4.40). We assume

(4.49)
E2(t) = 〈(ω − ωα)

2, ϕα〉+ µ〈(ωx − ωα,x)
2, ψα〉 < (C2aα)

2 < 1,

|cω(t) + 1| < 1

2
, |cl(t)−

1

α
| < 1

2α
,

where cl, cω, ω is the solution of (4.47) at time t and ω − ωα, cω(t) + 1 and cl(t) − 1
α can be

regarded as perturbation. From (4.13) and the definition of ωα in (4.2), we know

|x|−1−α + |x|−1+α . αϕα, |ωα(x)| . α|x|α ∧ |x|−α.

As a result of (4.49), the solution ω satisfies

(4.50) 〈ω2, |y|−1−α + |y|−1+α〉 . α〈(ω − ωα)
2, ϕα〉+ 〈ω2

α, |y|−1−α + |y|−1+α〉 .α 1 .

Similarly, from (4.13), the definition of ωα in (4.2) and (4.49), we have

(4.51) 〈ω2
x, |y|1−α + |y|1+α〉 . 〈(ωx − ωα,x)

2 + ω2
α,x, |y|1−α + |y|1+α〉 .α,µ 1.

We remark that the constants in the upper bound of (4.50) and (4.51) are bounded by Cα, Cα3(µ−1+
1) for some absolute constant C, respectively, but we do not need this smallness.
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4.2.3. Control of the support. We choose the same weights ϕα, ψα as in (4.4) for later energy
estimate. The evolution of the support of Ω in (4.47), i.e. S(t), is given by

(4.52)
d

dt
S(t) = cl(t)S(t) + aU(S(t), t).

Firstly, we show that U has a sublinear growth if 〈ω2, ϕα〉 is bounded. Using (4.46) and the
Cauchy-Schwartz inequality, we get

(4.53) |U(S(t)| . 〈ω2, |y|−1+α〉1/2
(
∫ S(t)

0

|y|1−α

(

log
∣
∣
∣
sin(Cl(t)S(t)− Cl(t)y)

sin(Cl(t)S(t) + Cl(t)y)

∣
∣
∣

)2

dy

)1/2

.

Since 0 < y < S(t) and (|y|+ S(t))Cl(t) < π/2 (4.48), we can use

2

π
x ≤ sin(x) ≤ x, x ∈ [0, π/2]

to obtain for any y ∈ [0, S(t)]
(

log
∣
∣
∣
sin(Cl(t)S(t)− Cl(t)y)

sin(Cl(t)S(t) + Cl(t)y)

∣
∣
∣

)2

. 1 +

(

log
∣
∣
∣
Cl(t)(S(t) − y)
Cl(t)(S(t) + y)

∣
∣
∣

)2

= 1 +

(

log
∣
∣
∣
S(t)− y
S(t) + y

∣
∣
∣

)2

.

Substituting the above estimate in the integral in (4.53), we obtain

|U(S(t)| . 〈ω2, |y|−1+α〉1/2
(
∫ S(t)

0

|y|1−α

(

1 +

(

log
∣
∣
∣
S(t)− y
S(t) + y

∣
∣
∣

)2
)

dy

)1/2

. 〈ω2, |y|−1+α〉1/2
(

|S(t)|2−α

∫ 1

0

|z|1−α

(

1 +

(

log
∣
∣
∣
1− z
1 + z

∣
∣
∣

)2
)

dz

)1/2

,

where we have used the change of variable y = S(t)z to get the second inequality. Using the
above estimate and (4.50), we obtain

|U(S(t)| . 〈ω2, |y|−1+α〉1/2S(t)1−α/2 .α S(t)
1−α/2.

Substituting the above estimate in (4.52), we yield

(4.54)
d

dt
S(t) ≤ cl(t)S(t) + C(a, α)S(t)1−α/2,

where the constant C(a, α) only depends on a, α. Recall

Cl(t) = Cl(0) exp

(

−
∫ t

0

cl(s)ds

)

.

Denote P (t) , Cl(t)S(t). (4.54) implies the following differential inequality
(4.55)

d

dt
P (t) =

d

dt
(Cl(t)S(t)) ≤ C(a, α)Cl(t)

α/2(Cl(t)S(t))
1−α/2 = C(a, α)Cl(t)

α/2P (t)1−α/2.

Using the bootstrap assumption cl(t) >
1
2α (4.49), we have

Cl(t) ≤ Cl(0) exp

(

− t

2α

)

.

From the above estimate and (4.55), we further obtain

d

dt
P (t)α/2 ≤ C(a, α)Cl(t)

α/2 ≤ C(a, α)Cl(0)
α/2 exp

(

− t
4

)

,

⇒ P (t)α/2 ≤ P (0)α/2 + C(a, α)Cl(0)
α/2

∫ t

0

exp
(

−s
4

)

ds < P (0)α/2 + C(a, α)Cl(0)
α/2,

where the C(a, α) only depends on a, α and may vary from line to line. Recall P (0) = Cl(0)S(0).
As a result of the above estimate, we obtain

(4.56) P (t)α/2 ≤ (1 + C(a, α)S(0)−α/2)P (0)α/2 ⇒ P (t) ≤ C(a, α, S(0))P (0),
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where the constant C(a, α, S(0)) depends on a, α and S(0).

4.2.4. Comparison between different Hilbert transforms.

Lemma 4.6 (Comparison of Hilbert transforms). With the bootstrap assumptions (4.48) and
(4.49), for |x| ≤ S(t), the difference between Ht (4.45) on the circle and the Hilbert transform
on the real line H can be controlled by

(4.57)
|(Htω)(x) −Hω(x)| .α Cl(t)S(t) ,

|x(Htωx)(x) − x(Hωx)(x)| .α,µ Cl(t)S(t) .

Remark 4.7. We only care about x in the support of Ω since for x outside the support of Ω,
U(x) does not enter the equation (4.47).

Proof. It suffices to consider x ∈ [0, S(t)] due to the symmetry. We only prove the second
inequality in (4.57) and the first one can be proved similarly. Firstly, from (4.45), we have
(4.58)

|x(Htωx)(x) − x(Hωx)(x)| =
∣
∣
∣
x

π

∫ S(t)

−S(t)

ωx(y, t)

(

cot(Cl(t)x − Cl(t)y)Cl(t)−
1

x− y

)

dy
∣
∣
∣.

The bootstrap assumption (4.48) shows that |Cl(x − y)| ≤ π
2 for |x|, |y| ≤ S(t). Using the

elementary inequality
∣
∣
∣
1
z − cot z

∣
∣
∣ . min(|z|, 1) . 1, ∀|z| . π

2 , we obtain

∣
∣
∣ cot(Cl(t)x − Cl(t)y)Cl(t)−

1

x− y
∣
∣
∣ = Cl(t)

∣
∣
∣ cot(Cl(t)x − Cl(t)y)−

1

Cl(t)(x− y)
∣
∣
∣ . Cl(t).

Using the Cauchy-Schwartz inequality, we can estimate (4.58) as follows

|x(Htωx)(x) − x(Hωx)(x)| . Cl(t)|x|
∫ S(t)

−S(t)

|ωx(y, t)|dy

≤Cl(t)|x|〈ω2
x, |y|1−α + |y|1+α〉1/2

(∫

R

1

|y|1+α + |y|1−α
dy

)1/2

.

Using |x| ≤ S(t) (4.51), we yield

|x(Htωx)(x) − x(Hωx)(x)| .α,µ Cl(t)S(t).

�

4.2.5. Finite time blowup. Recall that for compactly supported solution ω(x, τ) with support
size S(τ) < +∞ in the dynamical rescaling equation (4.47), it corresponds to a solution ωphy in
the physical space (4.43) via

ωphy(x, t) = Cω(τ)
−1ω(Cl(τ)

−1x, t(τ)),

Cl(τ) = Cl(0) exp

(

−
∫ τ

0

cl(s)ds

)

, t(τ) =

∫ τ

0

exp

(∫ s

0

cω(r)dr

)

ds.

The corresponding time in the physical space t(τ) can be obtained by the above formula. By
abusing the notation, we still use t as the time variable in the dynamical rescaling equation. We
can rewrite (4.47) as follows

(4.59)
ωt + (clx+ au)ωx = (cω + ux)ω + ((Htω)(x)− (Hω)(x))ω + a((Iω)(x) − (Itω)(x))xωx

ux = Hω

where u = x(Iω)(x) and the operator Itω, Iω are

(Itω)(x) =
1

x

∫ x

0

(Htω)(y)dy, (Iω)(x) =
1

x

∫ x

0

(Hω)(y)dy,

i.e. 1/x times the velocity generated by different Hilbert transforms. We choose the following
normalization condition

cl(t) =
1

α
− a(Htω(t, ·))(0), cω(t) = 1− (Htω(t, ·))(0).
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The difference between (4.9) and the above condition is the Hilbert transform, which can be
bounded by (4.57).

For the difference of the Hilbert transform in (4.59), we use (4.57) to obtain the pointwise
estimate of Htω−Hω and x(Htω−Hω)x. Similarly, we have the pointwise estimate of Iω(x)−
Itω(x) for all |x| < S(t)

(4.60)

|(Iω)(x) − (Itω)(x)| ≤ sup
|y|≤|x|

|(Htω)(x) −Hω(x)| .α Cl(t)S(t) ,

|x(Iω − Itω)x(x)| ≤ |(x(Iω − Itω))x|+ |(Iω − Itω)(x)|
= |((Htω)(x)−Hω(x)|+ |(Iω − Itω)(x)| .α Cl(t)S(t).

For compactly supported initial data ω ∈ Cα with support size S(0) and

E(0) =
(
〈(ω(0, ·)− ωα)

2, ϕα〉+ µ〈(ωx(0, ·)− ωα,x)
2, ψα〉

)1/2
< C2|a|α,

all the estimates of the perturbation ω−ωα in the proof of Theorem (1.2) and (4.1) can be derived
in the same way with additional terms depending on the difference of the Hilbert transforms,
which can be bounded using (4.60). For instance, we consider the Cα case on the circle. Under
the bootstrap assumption (4.48) and (4.49), the Cα differential inequality (4.38) becomes

1

2

d

dt
E2(t) ≤ −

(
3

8
− C|a|α

)

E2(t) + C|a|αE(t) + CE3(t) + C4(a, α, µ)Cl(t)S(t)E
2(t),

where the constant C4(a, α, µ) depends on a, α, µ. Using the control of the support (4.56), we
have

(4.61) Cl(t)S(t) = P (t) ≤ C(a, α, S(0))P (00) = C(a, α, S(0))Cl(0)S(0),

which implies

(4.62)

1

2

d

dt
E2(t) ≤ −

(
3

8
− C|a|α

)

E2(t) + C|a|αE(t) + CE3(t)

+ C5(a, α, µ, S(0))Cl(0)S(0)E
2(t),

where the constant C5(a, α, µ, S(0)) depends on a, α, µ, S(0). Note that Cl(0) is independent
of the initial data ω(0, ·) in the dynamical rescaling space and only depends on how we rescale
ω(0, ·) to get the data in the physical space. We first choose compactly supported ω(0, ·) that
satisfies

E(0) =
(
〈(ω(0, ·)− ωα)

2, ϕα〉+ µ〈(ωx(0, ·)− ωα,x)
2, ψα〉

)1/2
< C2|a|α.

In this case, S(0) < +∞. Then we choose Cl(0) sufficiently small such that

(C(a, α, S(0)) + C5(a, α, µ, S(0)) + 1)Cl(0)S(0) <
1

16
.

Under the bootstrap assumption (4.48) and (4.49), we plug the above inequality in (4.61) and
(4.62) to get

Cl(t)S(t) ≤ C(a, α, S(0))Cl(0)S(0) <
1

16
<
π

4
,

1

2

d

dt
E2(t) ≤ −

(
3

8
− C|a|α

)

E2(t) + C|a|αE(t) + CE3(t) +
1

16
E2(t).

The above differential inequality differs from (4.38) only by the extra term, E(t)2/16. (4.41)
shows that the right hand side of the above differential inequality at E(t) = C2|a|α is less than

E2(t)(−1

4
+

1

16
) < 0.

Since this constant C2 is the same as that in (4.49), it follows that the bootstrap assumption
(4.48) and (4.49) can be continued. The remaining steps are exactly the same as those in the
proof of Theorem 4.1 and we conclude the proof of Theorem 1.4 for the Cα case. For the case
when a is a small positive constant, we can also prove a similar result. We will omit the proof
here.
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4.3. Criticality of the Cα Regularity. Note that the self-similar solutions in (4.2) all satisfy
that wα is odd and wα is negative for x > 0, we shall consider general initial datum within this
class. We remark that the results in this Section only hold true for positive a.

4.3.1. The DG equation on the real line. In this Section, we prove Theorem 1.5, which implies
that for large positive a, the Hölder regularity in the initial datum is crucial for the focusing
self-similar blow-up.

Remark 4.8. In the later proof, we choose C1 = (1 + 0.015)/(1 − 0.015) ≈ 1.03 in Theorem
1.5. The compact support assumption in Theorem can be relaxed easily by imposing a growth
condition on ω0, e.g. ω0 is bounded.

To prove Theorem 1.5, we need the following crucial Lemma, which indicates that the con-
vection term can be stronger than the nonlinear term.

Lemma 4.9. Let ε = 0.015. Suppose that β ∈ [1, 2) and a > 0 satisfies

(4.63) a >
ε(β − 1) + 1

(1− ε)(β − 1)
.

The following inequality

(4.64)

∫ ∞

0

uxω − auωx

yβ
dy ≥ 0

holds as long as the left hand side is well-defined and that ω is odd and non-positive for x > 0.

Proof. From the assumption of ω, we know

ω(x) = O(|x|α), u(x) = O(|x|) ,
for small |x|. Denote by I the integral in (4.64). Using integration by parts and expanding the
kernel, we get

I =

∫ ∞

0

(1 + a)
uxω

xβ
− aβ uω

x1+β
dx =

1

π

∫ ∞

0

(1 + a)
ω(x)

xβ

∫ ∞

0

ω(y)

(
1

x− y −
1

x+ y

)

dydx

+
1

π

∫ ∞

0

aβ
ω(x)

x1+β

∫ ∞

0

log
∣
∣
∣
y + x

y − x
∣
∣
∣ω(y)dydx

=
1 + a

π

∫ ∞

0

∫ ∞

0

[
1

xβ

(
1

x− y −
1

x+ y

)

+
aβ

1 + a

1

xβ+1
log
∣
∣
∣
y + x

y − x
∣
∣
∣

]

ω(x)ω(y)dxdy.

Since ω is odd, we can symmetrize the integral kernel

I =
1 + a

2π

∫ ∞

0

∫ ∞

0

[
1

xβ

(
1

x− y −
1

x+ y

)

+
aβ

1 + a

1

xβ+1
log
∣
∣
∣
y + x

y − x
∣
∣
∣

+
1

yβ

(
1

y − x −
1

x+ y

)

+
aβ

1 + a

1

yβ+1
log
∣
∣
∣
y + x

y − x
∣
∣
∣

]

ω(x)ω(y)dxdy.

Denote

τ =
aβ

1 + a
, s =

y

x
.

We can simplify the integrand as follows

1

xβ

(
1

x− y −
1

x+ y

)

+
1

yβ

(
1

y − x −
1

x+ y

)

=
1

y1+β

y1+β

x1+β

(
x

x− y −
x

x+ y

)

+
1

y1+β

(
y

y − x −
y

x+ y

)

=
1

y1+β
s1+β

(
1

1− s −
1

1 + s

)

+
1

y1+β

(
s

s− 1
− s

s+ 1

)

= − 1

y1+β
(s1+β − 1)

2s

s2 − 1
,

1

xβ+1
log
∣
∣
∣
y + x

y − x
∣
∣
∣+

1

yβ+1
log
∣
∣
∣
y + x

y − x
∣
∣
∣ =

1

y1+β
(s1+β + 1) log

∣
∣
∣
s+ 1

s− 1

∣
∣
∣.
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Then I becomes

(4.65) I =
1 + a

2π

∫ ∞

0

∫ ∞

0

1

y1+β

(

τ(sβ+1 + 1) log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣− (s1+β − 1)

2s

s2 − 1

)

ω(x)ω(y)dxdy.

Denote

F (s, β) ,
1− s1+β

1 + s1+β

2s

1− s2
(

log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣

)−1

, s ∈ [0, 1], β ∈ [1, 2].

We have the following basic property for F (s, β).

Lemma 4.10. Assume that s ∈ [0, 1], β ∈ [1, 2]. Then (a) F (s, β) is monotonically increasing
with respect to β. (b) For any s ∈ [0, 1], we have

(4.66) F (s, 1) ≤ 1, F (s, β) < 1 + 0.015(β − 1) ∀β ∈ (1, 2].

We defer the proof of the above Lemma to the Appendix. Let ε = 0.015. As a result, if

(4.67) τ =
aβ

1 + a
> 1 + ε(β − 1) ⇐⇒ a >

ε(β − 1) + 1

(1− ε)(β − 1)
,

then I in (4.65) is non-negative

I =
1 + a

2π

∫ ∞

0

∫ ∞

0

1

y1+β

(

(sβ+1 + 1) log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣(τ − F (s, β))

)

ω(x)ω(y)dxdy ≥ 0,

where we have used ω(x)ω(y) ≥ 0 ∀x, y ≥ 0. �
Now, we are in a position to prove Theorem 1.5.

Proof of Theorem 1.5. Denote a0 = 1+ε
1−ε . If 1 ≥ α > a0/a, we get

aα > a0 =
1 + ε

1− ε ≥
εα+ 1

1− ε ⇒ a >
1 + εα

(1− ε)α.

Therefore, we can choose 1 ≤ β < α + 1, e.g. β = 1 + α− δ for some sufficiently small δ, such
that

a >
1 + ε(β − 1)

(1− ε)(β − 1)
,

i.e. (a, β) satisfies the assumption (4.63) in Lemma 4.9. For ω ∈ Cα with compact support (or
some growth condition at the far field), we have ω(y)|y|−β ∈ L1. Using (1.3) and Lemma 4.9,
we get

d

dt

∫ ∞

0

ω(t, y)

yβ
dy =

∫ ∞

0

uxω − auωx

yβ
dy ≥ 0.

Note that ω is odd and non-positive for x > 0. We yield

0 ≥
∫ ∞

0

ω(t, y)

yβ
dy ≥

∫ ∞

0

ω(0, y)

yβ
dy ⇒

∣
∣
∣

∣
∣
∣
ω(t, ·)
|y|β

∣
∣
∣

∣
∣
∣
1
≤
∣
∣
∣

∣
∣
∣
ω(0, ·)
|y|β

∣
∣
∣

∣
∣
∣
1
< +∞

for all t > 0. If ω blows up in a self-similar fashion, i.e.

ω(t)→ (T − t)−1Ω

(
x

(T − t)cl

)

,

in some suitable functional space, (the convergence can be measured in the dynamical rescaling
space), we can plug the self-similar blowup ansatz in I(t) to yield

∣
∣
∣

∣
∣
∣
ω(t, ·)
|y|β

∣
∣
∣

∣
∣
∣
1
→ (T − t)−1

∫

R

∣
∣
∣Ω

(
x

(T − t)cl

) ∣
∣
∣|x|−βdx = (T − t)−1+cl−βcl

∫

R

∣
∣
∣
Ω(x)

xβ

∣
∣
∣dx

as t→ T . Since
∣
∣
∣

∣
∣
∣
ω(t,·)
|y|β

∣
∣
∣

∣
∣
∣
1
is bounded uniformly in t, we get

−1 + cl − βcl ≥ 0⇒ cl ≤ −
1

β − 1
,

for any β < 1 + α. Letting β → α+ 1, we get cl ≤ −α−1. �
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4.3.2. DG equation on the circle. For the DG equation the circle, we can prove a stronger result.

Theorem 4.11. Suppose that ω ∈ Cα is odd, π periodic, ω ≤ 0 for x ∈ (0, π/2) and 1 ≥ α >
a0/a. Then the result in Theorem 1.5 holds true. Furthermore, ux(0), ||ω||1 do not blow up at
the blowup time T , if it exists, and grow at most exponentially fast.

Remark 4.12. From our numerical experiments, we found that for various initial data, ux(0, t) =
maxux(x, t) for some finite time. Theorem 4.11 gives a strong indication that ux is bounded
from above if ux(0) is bounded. From

d

dt
maxω ≤ (maxux)maxω,

( maxω > 0) and the assumption ux(0, t) = max ux(x, t), we obtain the boundedness of maxω
for all time. Since ω is odd, we get ||ω||∞ = maxω is bounded globally. Applying the BKM-type
blowup criterion yields the global well-posedness.

The following Lemma is an analogy of Lemma 4.9 on the circle.

Lemma 4.13. With the assumption as Lemma 4.9,
∫ π/2

0

(uxω − auωx) (cot y)
β
dy ≥ 0.

The proof is similar to that of Lemma 4.9 and we defer it to the Appendix.

Proof of Theorem 4.13. Using Lemma 4.13 and an argument similar to that in the proof of
Theorem 1.5, we derive

∫ π/2

0

ω0 (cot y)
β ≤

∫ π/2

0

ω (cot y)β ≤ 0⇒ ||ω(t, ·)| cot y|β ||L1 ≤ ||ω0| cot y|β ||1 < +∞ ,

for some 1 < β < 1 + α. Next, we estimate the L1 norm of ω. Integrating (4.43) from π/2 to π
yields

(4.68)

d

dt

∫ π/2

0

ω
(

y +
π

2

)

dy = −(1 + a)

∫ π/2

0

∫ π/2

0

ω
(

x+
π

2

)

ω
(

y +
π

2

)

cot (x+ y) dxdy

=− 2(1 + a)

∫

0≤x≤y≤π/2

ω
(

x+
π

2

)

ω
(

y +
π

2

)

cot (x+ y)dxdy.

=− 2(1 + a)

∫ π/2

0

ω
(

x+
π

2

)
(
∫ π/2

x

ω
(

y +
π

2

)

cot (x+ y) dy

)

dx.

Note that ω ≥ 0 on (π/2, π) and cot(x+ y) ≥ 0 if x+ y ≤ π/2. We yield

−
∫ π/2

x

ω(y + π/2) cot (x+ y) dy ≤ −
∫ π/2

x∨(π/2−x)

ω(y + π/2) cot (x+ y) dy.

For x ∈ [0, π/2], x ∨ (π/2− x) ≤ y ≤ π/2, we have

0 ≤ x+ y − π/2 ≤ y ≤ π/2, π/4 ≤ y ⇒ − cot(x+ y) = tan(x+ y − π/2) ≤ tan y ≤ (tan y)β ,

where β ≥ 1 satisfies the assumption in Lemma 4.9. It follows that

−
∫ π/2

x

ω(y + π/2) cot (x+ y) dy ≤
∫ π/2

x∨(π/2−x)

ω(y + π/2) tan ydy

≤
∫ π/2

0

ω(y + π/2)(tan y)βdy ≤ ||ω(t, ·)| cot y|β ||L1 ≤ ||ω0| cot y|β ||L1 .

Plugging the above estimate in (4.68) implies

d

dt

∫ π/2

0

ω(y + π/2)dy . (1 + a)||ω0| cot y|β ||L1

∫ π/2

0

ω(y + π/2)dy.
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Note that ω ≥ 0 on [π/2, π] and ||ω||L1 = 2
∫ π/2

0 ω(y + π/2). Using the Gronwall inequality, we
obtain

||ω(t, ·)||L1 ≤ exp
(

C(1 + a)
∣
∣
∣

∣
∣
∣ω0| cot y|β

∣
∣
∣

∣
∣
∣
L1
t
)

||ω0||L1 ,

where C is some universal constant. Interpolating ||ω||L1 and
∣
∣
∣

∣
∣
∣ω| cot y‖β

∣
∣
∣

∣
∣
∣
L1

gives

|ux(0)| =
∣
∣
∣
2

π

∫ π/2

0

ω cot ydy
∣
∣
∣ . ||ω||1−1/β

L1

∣
∣
∣

∣
∣
∣ω| cot y|β

∣
∣
∣

∣
∣
∣

1/β

L1
. K1 exp (K2t) ,

where K1,K2 depend on the initial datum and a, α only. �
Finally, we state a result for a = 1.

Proposition 4.14. For a = 1, suppose that ω0 ∈ Hs(S1), s > 5/2, ω0,x(0) = 0 and ω0 ≤ 0 for
x ∈ (0, π/2), then ux(t, 0), ||ω||1 do not blow up at the blowup time T < +∞, if it exists.

Proof. Since ω ∈ Hs, s > 5/2, we have local well-posedness and that ω(t, ·) ∈ C2 by the Sobolev
embedding. Note that for a = 1, ωx(t, 0) ≡ ωx(0, 0) = 0. Since ω(t, 0) = ωx(t, 0) = 0, we have
ω(t, x) = O(x2) near x = 0. Define

I ,

∫ π/2

0

(uxω − uωx) (cot y)
β
dy.

for any β ∈ (1, 3). In particular, for β = 2.2, using an argument similar to that in the proof
of Lemma 4.13, one can show that I > 0. The boundedness of ux(0), ||ω||1 follows by using an
argument similar to that in the proof of Theorem 4.11. �

Remark 4.15. The regularity of ω0 can be relaxed easily and we do not explore it.

5. Finite Time Blowup for Negative a with C∞ initial data

For the sake of completeness, we state the finite time blowup result of (1.3) for negative a
with smooth initial data.

Theorem 5.1. Let ω ∈ C∞
c (R) or ω ∈ C∞(S1) be an odd function such that ux(0) = Hω(0) >

0. Then (1.3) with a < 0 develops a singularity in finite time.

The real line case was proved in [1]. We will present a proof for S1. We consider π periodic
and use the Hilbert transform given in (4.44).

Proof. Taking the Hilbert transform on (1.3) yields

(ux)t =
1

2
(u2x − w2)− aH(uωx).

Note that ω(0) = 0. Choosing x = 0 gives

(5.1)
d

dt
ux(t, 0) =

1

2
ux(t, 0)

2 − aH(uωx)(t, 0).

Next we show that H(uωx)(t, 0) ≤ 0. Since ω is odd, π-periodic and smooth locally in time , it
admits a decomposition

ω(t, x) =
∑

n≥1

an(t) sin(2nx), ωx =
∑

n≥1

2nan(t) cos(2nx),

for some an(t) decays sufficiently fast as n→ +∞. It is easy to show that

u(t, x) = −
∑

n≥1

an
2n

sin(2nx).
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Next, we compute u/ sin(x), ωx cosx. Using telescoping, we get

sin(2nx)

sin(x)
=

∑

1≤k≤n

2 cos((2k − 1)x), cos(2nx) cos x =
cos(2n− 1)x+ cos(2n+ 1)x

2
,

⇒ u

sinx
= −

∑

n≥1

an
2n

∑

1≤k≤n

2 cos((2k − 1)x) = −
∑

k≥1

cos((2k − 1)x)
∑

n≥k

an
n
,

ωx cosx =
∑

n≥1

2nan
cos(2n− 1)x+ cos(2n+ 1)x

2
=
∑

n≥1

cos((2n− 1)x)(nan + (n− 1)an−1),

where a0 = 0 and we have used summation by parts to get the last two identities, which
are valid since an decays sufficiently fast. Using the orthogonality of {cos((2n − 1)x)}n≥1 on
L2(−π/2, π/2), we derive

H(uωx)(t, 0) = −
1

π

∫ π/2

−π/2

u

sinx
ωx cos(x)dx = −1

2

∑

k≥1

(
∑

n≥k

an
n
)(kak + (k − 1)ak−1).

Denote
Sk ,

∑

n≥k

an
n
∀k ≥ 1, S0 = 0.

Since an decays sufficiently fast, so does Sn. We then have

ak = k(Sk − Sk+1)⇒ kak + (k − 1)ak−1 = k2(Sk − Sk+1) + (k − 1)2(Sk−1 − Sk).

We can reduce H(uωx)(t, 0) to

H(uωx)(t, 0) = −
1

2

∑

k≥1

Sk(k
2(Sk − Sk+1) + (k − 1)2(Sk−1 − Sk))

= −1

2

∑

k≥1

S2
k(k

2 − (k − 1)2)− 1

2



−
∑

k≥1

SkSk+1k
2 +

∑

k≥1

SkSk−1(k − 1)2





= −1

2

∑

k≥1

S2
k(k

2 − (k − 1)2) ≤ 0.

Consequently, for a < 0, (5.1) implies

d

dt
ux(t, 0) ≥

1

2
u2x(t, 0).

Since ux(0, 0) > 0, it follows that the solution must develop a finite time singularity. �

Appendix A.

A.1. Properties of the Hilbert transform. Throughout this section, without specification,
we assume that ω is smooth and decays sufficiently fast. The general case can be obtained
easily by approximation. The following identity is very well known whose proof can be found
in, e.g. [10].

Lemma A.1 (The Tricomi identity). We have

(A.1) H(ωHω) =
1

2
((Hω)2 − ω2).

The Hilbert transform has a very nice property that it almost commutes with the power
x−1, x.

Lemma A.2. Suppose that ux = Hω. Then we have

(A.2)
ux − ux(0)

x
= H

(ω

x

)

, or equivalently (Hω)(x) = (Hω)(0) + xH
(ω

x

)

.

Similarly, we have

(A.3) uxx = Hωx, xuxx = H(xωx).
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Suppose that in addition ω is odd. Then we further have

(A.4) x2uxx = H(x2ωx), xux = H(xω),
uxx
x

= H

(
ωx − ωx(0)

x

)

.

If ω is odd and a piecewise cubic polynomial supported on [−L,L] with ω(L) = ω(−L) = 0
(ω′, ω′′ may not be continuous at x = ±L), then we have

(A.5) uxxx(x
2 − L2) = H(ωxx(x

2 − L2)).

We apply (A.5) to study the approximate profile ω̄ for a = 1.

Proof. The identity (A.2) is very well known.

ux − ux(0)
x

=
1

πx
P.V.

∫

ω(y)

(
1

x− y +
1

y

)

dy =
1

π
P.V.

∫
ω(y)

(x− y)y dy = H

(
ω

y

)

(x).

For (A.3), note that

Hωx = uxx, H(xωx)(0) = −
1

π

∫

ωxdx = 0.

From (A.2), we get

H(xωx)(x) = H(xωx)(0) + x(Hωx)(x) = xuxx(x).

For (A.4), if ω is odd, then we obtain

H(x2ωx)(0) = −
1

π

∫

xωxdx =
1

π

∫

ωdx = 0.

Applying (A.2) again yields

H(x2ωx) = H(x2ωx)(0) + xH(xωx) = xH(xωx) = x2uxx.

For the second identity, since ω is odd, we can apply a similar argument to yield

H(xω)(0) = − 1

π

∫

ωdx = 0⇒ H(xω)(x) = H(xω)(0) + xHω = xHω = xux.

For the third identity in (A.4), first of all, we have

ωx = −Huxx.
If ω is odd, then u, uxx are also odd. ωx−ωx(0)

x and uxx

x are L2 for ω smooth with suitable decay
at infinity. Using an argument similar to that in the proof of (A.2) implies

ωx − ωx(0)

x
= −H

(uxx
x

)

.

Applying the Hilbert transform on both sides proves the third identity.
Next, we consider (A.5). Since ω is continuous globally and is a piecewise cubic polynomial

on [−L,L], we know

ω ∈ H1(R), ω ∈ C2,1[−L,L], ωx(x
2 − L2) ∈ C0,1(R).

Since ω ∈ H1(R), we can apply (A.4) to yield

x2uxx = H(x2ωx), L2uxx = L2H(ωx) ⇒ (x2 − L2)uxx = H(ωx(x
2 − L2)).

Since ωx(x
2 − L2) is globally Lipschitz, it is in H1(R). By the L2 isometry of the Hilbert

transform, uxx(x
2 − L2) ∈ H1(R). Hence the derivative commutes with the Hilbert transform

∂xH(ωx(x
2 −L2)) = H(∂x(ωx(x

2 −L2)))⇒ uxxx(x
2 −L2) + 2uxxx = H(ωxx(x

2−L2) + 2xωx).

Using the linearity of the Hilbert transform and (A.3), we conclude that

uxxx(x
2 − L2) = H(ωxx(x

2 − L2)) + 2H(xωx)− 2xuxx = H(ωxx(x
2 − L2)).

�
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The following Lemma is used to estimate the velocity. We have applied this Lemma to study
the nonlinear stability of a smooth profile.

Lemma A.3. Suppose ux = Hω. (a) We have

∫

R

(ux − ux(0))ω
x

dx =
π

2
(u2x(0) + ω2(0)) ≥ 0.(A.6)

Furthermore, if ω is odd (so is uxx due to the symmetry of Hilbert transform), we have

∫

R

(ux − ux(0))ω
x3

dx =
π

2
(ω2

x(0)− u2xx(0)) =
π

2
ω2
x(0) ≥ 0.(A.7)

In particular, (A.6) vanishes if ux(0) = ω(x) = 0; (A.7) vanishes if ωx(0) = 0 .
(b) We have

(A.8)

∫

R

uxxωxxdx = 0.

(c) The Hardy inequality: Suppose that ω is odd and ωx(0) = 0. For p = 2, 4, we have

(A.9)

∫
(u − ux(0)x)2
|x|p+2

dx ≤
(

2

p+ 1

)2 ∫
(ux − ux(0))2

|x|p dx =

(
2

p+ 1

)2 ∫
ω2

|x|p dx.

Proof of (A.6). Note that

ux = Hω, ux(0) = Hω(0) = − 1

π

∫
ω

x
dx.

Using Lemma A.1, we get

∫
(ux − ux(0))ω

x
dx =

∫
ω ·Hω
x

dx− ux(0)
∫
ω

x
dx = −πH(ω ·Hω)(0) + πux(0) · ux(0)

=
π

2
(ω2(0)− u2x(0)) + πu2x(0) =

π

2
(ω2(0) + u2x(0)).

If ω(0) = 0, the above equality is reduced to π
2u

2
x(0). �

Proof of (A.7). If ω is odd and smooth, then ω/x is even and smooth and H(ω/x) is odd. Using
(A.2) and Lemma A.1, we have

∫
(ux − ux(0))ω

x3
dx =

∫
1

x

ω

x
H
(ω

x

)

dx = −πH
(ω

x
H
(ω

x

))

(0)

=
π

2

{(ω

x
(0)
)2

−H
(ω

x

)

(0)2
}

=
π

2
(ω2

x(0)− u2xx(0)).

If uxx(0) = 0, the above equality is reduced to π
2ω

2
x(0). �

Proof of (A.8). Applying (A.6) with (ux, ω) replaced by (uxx, ωx) yields

〈uxxωx, x〉 =
∫

(xωx)H(xωx)

x
dx =

∫
(xωx)(H(xωx)−H(xωx)(0))

x
dx

=
π

2
((xωx)

2(0) + (xuxx)
2(0)) = 0,

where we have used (xuxx)(0) = (xωx)(0) = 0 to obtain the last equality. �
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Proof of (A.9). The first inequality in (A.9) is the standard Hardy inequality [14]. Since ω is
odd and ωx(0) = 0, ω/x, ω/x2 ∈ L2(R). From (A.3), we have

ux − ux(0)
x

= H
(ω

x

)

, H
( ω

x2

)

=
1

x

(

H
(ω

x

)

−H
(ω

x

)

(0)
)

.

Since ω is odd, we can simplify the second equality as follows

H
(ω

x

)

(0) = − 1

π

∫
ω

x2
dx = 0 ⇒ H

( ω

x2

)

=
1

x
H
(ω

x

)

=
1

x

ux − ux(0)
x

=
ux − ux(0)

x2
.

Using the isometry property of the Hilbert transform H from L2(R) to L2(R), we conclude that
∫
ω2

x2
dx =

∫
(ux − ux(0))2

x2
dx,

∫
ω2

x4
dx =

∫
(ux − ux(0))2

x4
dx.

�
The following Lemma is an analogy of Lemma A.3 for Hölder continous functions. (A.10),(A.11)

and (A.12) are from Córdoba & Córdoba [6].

Lemma A.4 (Weighted estimate for Cα functions). Suppose that ux = Hω and ω is odd in
(A.10), (A.12) and (A.13). (a) For β ∈ (0, 2), we have

∫
(ux − ux(0))2
|x|1+β

dx ≤ 1

min(tan2 βπ
4 , cot

2 βπ
4 )

∫
w2

|x|1+β
dx .

1

(β ∧ (2 − β))2
∫

w2

|x|1+β
dx,

(A.10)

∫
u2x
|x|1−β

dx ≤ 1

min(tan2 βπ
4 , cot

2 βπ
4 )

∫
w2

|x|1−β
dx .

1

(β ∧ (2 − β))2
∫

w2

|x|1−β
dx,(A.11)

provided that the right hand side is finite. Note that we do not need to assume that ω is odd in
(A.11).

(b) For β ∈ (0, 2), we have

(A.12)

∫
(ux − ux(0))ω
sgn(x)|x|1+β

dx ≥ 0.

(c) 1D Hardy inequality [14]: For β ∈ (0, 1), we have

(A.13)

∫
(u− ux(0)x)2
|x|3+β

dx ≤
(

2

β + 2

)2 ∫
(ux − ux(0))2
|x|β+1

dx .
1

β2

∫
ω2

|x|β+1
.

The first inequality in (A.13) is the Hardy inequality [14] and the second inequality in (A.13)
follows from (A.10).

A.2. Estimate of the Cα approximate self-similar solution. We establish the estimate of
the approximate self-similar solution in Lemma 4.3 in this section.

Proof of Lemma 4.3.

Proof of (4.10). Recall the explicit formula for ωα, uα,x in (4.2) and the weight ϕα, ψα in (4.4).
Denote cα = cos(απ/2), sα = sin(απ/2). Without loss of generality, we consider x > 0. We have

ϕα =
1

2sα

(1 + 2cαx
α + x2α)2

x1+3α
,

xϕα,x

ϕα
= x(log(ϕα)x =

2(2αx2α + 2αcαx
α)

1 + 2cαxα + x2α
− (1 + 3α),

which implies

1

2ϕα

(
1

α
xϕα

)

x

+ (c̄ω + uα,x) =
1

2α
+
xϕα,x

2αϕα
− 1 +

2(1 + cαx
α)

1 + 2cαxα + x2α

=− 1 + 3α

2α
+

2(x2α + cαx
α)

1 + 2cαxα + x2α
+

1

2α
− 1 +

2(1 + cαx
α)

1 + 2cαxα + x2α
= −3

2
− 1 + 2 = −1

2
,
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which is the first identity in (4.10). The second identity can be proved similarly. For the third
inequality, we have

uα,xxψα = ∂x

(
2(1 + cαx

α)

1 + 2cαxα + x2α

)
(1 + 2cαx

α + x2α)2

2sαα2
x1−3α

=
(
2αcαx

α−1(1 + 2cαx
α + x2α)− 2(1 + cαx

α)2α(cαx
α−1 + x2α−1)

)
x1−3α(2sαα

2)−1

=2α(−cαx3α−1 − 2x2α−1 − cαxα−1)x1−3α(2sαα
2)−1 = −(2x−α + cα(x

−2α + 1))(sαα)
−1,

which is monotone increasing with respect to x and the desired inequality follows.

Proof of (4.11). Since all quantities are symmetric, we only consider x ≥ 0. For (4.11), we have

∣
∣
∣
xωα,x

ω

∣
∣
∣ = α

∣
∣
∣

1− xα
1 + 2 cos

(
απ
2

)
|x|α + |x|2α

∣
∣
∣ ≤ α ,

∣
∣
∣
x2ωα,xx + xωα,x

ωα

∣
∣
∣ = α2

∣
∣
∣
1− 6x2α + x4α − 2 cos

(
απ
2

)
xα(1 + x2α)

(1 + 2 cos
(
απ
2

)
xα + x2α)2

∣
∣
∣ . α2,

uniformly for all x ≥ 0. Using the triangle inequality, we get

∣
∣
∣

∣
∣
∣
x2ωα,xx

ωα

∣
∣
∣

∣
∣
∣
∞
≤
∣
∣
∣

∣
∣
∣
xωα,x

ω

∣
∣
∣

∣
∣
∣
∞

+
∣
∣
∣

∣
∣
∣
x2ωα,xx + xωα,x

ωα

∣
∣
∣

∣
∣
∣
∞

. α.

Proof of (4.12). Assume y ≥ 0. For (4.12), we have

∣
∣
∣
uα(y)

y
− uα,x(0)

∣
∣
∣ =

∣
∣
∣
1

y

∫ y

0

(

2(1 + cos
(
απ
2

)
|x|α)

1 + 2 cos
(
απ
2

)
|x|α + |x|2α − 2

)

dx
∣
∣
∣ =

∣
∣
∣
1

y

∫ y

0

2|x|2α + 2 cos
(
απ
2

)
|x|α

1 + cos
(
απ
2

)
|x|α + |x|2α dx

∣
∣
∣

.
∣
∣
∣
1

y

∫ y

0

|x|α ∧ 1dx
∣
∣
∣ ≤ min

(∣
∣
∣
1

y

|y|1+α

1 + α

∣
∣
∣, 1

)

. |y|α ∧ 1 ,

∣
∣
∣
uα(y)

y
− uα,x(y)

∣
∣
∣ =

∣
∣
∣
1

y

∫ y

0

(uα,x(x) − uα,x(y))dx
∣
∣
∣ =

∣
∣
∣
1

y

∫ y

0

xuα,xx(x)dx
∣
∣
∣

=
∣
∣
∣
2α

y

∫ y

0

xα(2xα + cos
(
απ
2

)
(1 + x2α))

(1 + cos
(
απ
2

)
|x|α + |x|2α)2 dx

∣
∣
∣ .

∣
∣
∣
2α

y

∫ y

0

|x|α ∧ 1dx
∣
∣
∣ . α|y|α ∧ 1.

Proof of (4.13). For (4.13), the first two inequalities follow from the definition of ϕα, ψα in (4.4)
and

− 1

ωα
≍ 1

α
(|x|α + |x|−α).

From the definition ψα = x2ϕα/α
2, we know

xψα,x

ψα
− 1 =

x(x2ϕα)x
x2ϕα

− 1 =
x3ϕα,x + 2x2ϕα

x2ϕα
− 1 =

xϕα,x

ϕα
+ 1.

Hence, for the third inequality in (4.13), we get

∣
∣
∣
xψα,x

ψα
− 1
∣
∣
∣ =

∣
∣
∣
xϕα,x

ϕα
+ 1
∣
∣
∣ = α

∣
∣
∣
−3 + x2α − 2 cos

(
απ
2

)
xα

1 + cos
(
απ
2

)
xα + x2α

∣
∣
∣ . α.

Proof of (4.14). Recall the definition of error term in (4.7)

Fα(ωα) = −a(uα − uα,x(0)x)ωα,x.
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For the first inequality in (4.14), we use the result (4.11) and (4.12) that we just proved to yield

〈Fα(ωα)
2, ϕα〉 = a2

〈

(uα − uα,x(0)x)2ω2
α,x,−

1

sgn(x)ωα

1 + 2 cos
(
απ
2

)
|x|α + |x|2α

|x|1+2α

〉

. a2
〈

(uα − uα,x(0)x)2ω2
α,x,−

1

sgn(x)ωα
(|x|−1 + |x|−1−2α)

〉

= a2
〈(uα

x
− uα,x(0)

)2 x2ω2
α,x

ω2
α

, |ωα|(|x|−1 + |x|−1−2α)
〉

. a2
〈

(|x|α ∧ 1)2α2, |ωα|(|x|−1 + |x|−1−2α)
〉

. a2α2
〈

|ωα|, |x|−1〉 = a2α2
∣
∣
∣

∫

R

ωα

x
dx
∣
∣
∣ = a2α2π|uα,x(0)| . a2α2,

where we have used ωα/x ≤ 0 for all x ∈ R to obtain the last line.
For the second inequality in (4.7), we first rewrite (Fα(ωα))x as follows

(Fα(ωα))x = −a((uα − uα,x(0)x)ωα,x)x = −a
{(uα

x
− uα,x(0)

)

(xωα,x)
}

x

= −a
(uα
x
− uα,x(0)

)

x
(xωα,x)− a

(uα
x
− uα,x(0)

)

(xωα,x)x

= a

(
uα(x)

x
− uα,x(x)

)

ωα,x − a
(uα
x
− uα,x(0)

) x2ωα,xx + xωα,x

x
.

We can use (4.12) to estimate uα and uα,x as follows:

|(Fα(ωα))x| . aα (|x|α ∧ 1) |ωα,x|+ a(|x|α ∧ 1)
∣
∣
∣
x2ωα,xx + xωα,x

x

∣
∣
∣.

Then we use (4.11) to estimate ωα,x, x
2ωα,xx + xωα,x

(A.14) |(Fα(ωα))x| . aα (|x|α ∧ 1)α
∣
∣
∣
ωα

x

∣
∣
∣+ a(|x|α ∧ 1)α2

∣
∣
∣
ωα

x

∣
∣
∣ . aα2(|x|α ∧ 1)

∣
∣
∣
ωα

x

∣
∣
∣.

Hence, we can estimate the weighted H1 error as follows

(A.15)

〈(Fα(ωα))
2
x, ψ〉 =

〈

(Fα(ωα))
2
x,

x2

α2|ωα|
1 + 2 cos

(
απ
2

)
|x|α + |x|2α

|x|1+2α

〉

.
〈

(Fα(ωα))
2
x,

x2

α2|ωα|
(|x|−1 + |x|−1−2α)

〉

.a2α4
〈

(|x|α ∧ 1)2
∣
∣
∣
ωα

x

∣
∣
∣

2

,
x2

α2|ωα|
(|x|−1 + |x|−1−2α)

〉

.a2α4
〈∣
∣
∣
ωα

x

∣
∣
∣

2

,
x2

α2|ωα|
|x|−1

〉

= a2α2〈|ωα|, |x|−1〉 = a2α2π|uα,x(0)| . a2α2.

Proof of (4.15). Using (4.11), we get

(|x|α ∧ 1)|ωα,x| . α(|x|α ∧ 1)
∣
∣
∣
ωα

x

∣
∣
∣.

Note that the above bound is the same as (A.14) up to a factor aα. Hence, we can use the same
estimate as in (A.15) to yield

〈(|x|α ∧ 1)2ω2
α,x, ψα〉 . 1. �

Proof of Lemma 4.5.
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Proof of (4.16). Firstly, we apply the weighted inequality (A.11) with β = α, 2− α to yield
∫

u2x
|x|1−α

dx .
1

α2

∫
ω2

|x|1−α
dx,

∫

u2xx|x|1−αdx .
1

α2

∫

ω2
x|x|1−αdx.

It follows that

||ux||2∞ ≤ 2

∫

|uxuxx|dx ≤ 2

(∫
u2x
|x|1−α

dx

)1/2(∫

u2xx|x|1−αdx

)1/2

.
1

α2

(∫
ω2

|x|1−α
dx

)1/2(∫

ω2
x|x|1−αdx

)1/2

.

Using the asymptotic properties of ϕα, ψα in (4.13) and |x|1−α ≤ |x|1−3α + |x|1+α, we conclude

||ux||∞ . 〈ω2, ϕα〉1/4〈ω2
x, ψα〉1/4.

Proof of (4.17). Firstly, we use ω(0) = 0 and integration by parts to get

J ,

∫ ∞

0

ωx(y)

(
y

x
log
∣
∣
∣
x+ y

x− y
∣
∣
∣− 2

)

dy = −P.V.
∫ +∞

0

ω(y)

(
1

x
log
∣
∣
∣
x+ y

x− y
∣
∣
∣+

y

x
(

1

y + x
− 1

y − x)
)

dy .

Using
y

x
(

1

y + x
− 1

y − x ) =
1

x− y −
1

x+ y
,

ũ = u− ux(0)x and that ω is odd, we derive

J = −P.V.
∫ +∞

0

ω(y)

(
1

x
log
∣
∣
∣
x+ y

x− y
∣
∣
∣+ (

1

x− y −
1

x+ y
)

)

dy = π
(u

x
− ux

)

= π

(
ũ

x
− ũx

)

.

Using this integral formula of ũ/x − ũx = J , the asymptotic property (4.13) and the Cauchy-
Schwartz inequality, we have

∣
∣
∣
ũ

x
− ũx

∣
∣
∣ . 〈ω2

x, |y|1−3α + |y|1+α〉1/2
(
∫ ∞

0

(
y

x
log
∣
∣
∣
x+ y

x− y
∣
∣
∣− 2

)2
1

|y|1−3α + |y|1+α
dy

)1/2

. α3/2〈ω2
x, ψα〉

(
∫ ∞

0

(
y

x
log
∣
∣
∣
1 + y/x

1− y/x
∣
∣
∣− 2

)2
1

|y|1−3α + |y|1+α
dy

)1/2

.

Next, we estimate the integral

I(x) ,

∫ ∞

0

(
y

x
log
∣
∣
∣
1 + y/x

1− y/x
∣
∣
∣− 2

)2
1

|y|1−3α + |y|1+α
dy.

To conclude (4.17), it suffices to prove

|I(x)| . 1

α
(|x|2α ∧ 1).

Without loss of generality, we assume x ≥ 0. Using change of variable s = y/x yields

I(x) =

∫ ∞

0

(

s log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣ − 2

)2
x

(xs)1−3α + (xs)1+α
ds

=

(
∫ x−1∧1/2

0

+

∫ 1/2

x−1∧1/2

+

∫ ∞

1/2

)(

s log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣− 2

)2
x

(xs)1−3α + (xs)1+α
ds

, I1(x) + I2(x) + I3(x).

We introduce f(s) and it satisfies the following estimate

(A.16) f(s) ,
∣
∣
∣s log

∣
∣
∣
s+ 1

s− 1

∣
∣
∣− 2

∣
∣
∣ . s−1, ∀s > 2 ;

∣
∣
∣s log

∣
∣
∣
s+ 1

s− 1

∣
∣
∣− 2

∣
∣
∣ . 1, ∀s < 1/2.
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For I3(x), we use (xs)1−3α + (xs)1−α ≥ xs and the decay of f(s) in (A.16) to obtain

I3(x) ≤ min

{
∫ ∞

1/2

(

s log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣− 2

)2
x

xs
ds,

∫ ∞

1/2

(

s log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣− 2

)2
x

(xs)1−3α
ds

}

= min

{
∫ ∞

1/2

f(s)2
1

s
ds, |x|3α

∫ ∞

1/2

f(s)2
1

s1−3α
ds

}

. min
(
1, |x|3α

)
.

Next, we estimate I1(x). For s ∈ [0, 1/2], we use the boundedness of f(s) in (A.16) to obtain

I1(x) .

∫ x−1∧1/2

0

x

(xs)1−3α + (xs)1+α
ds ≤

∫ x−1∧1/2

0

x

(xs)1−3α
ds

= x3α
∫ x−1∧1/2

0

s−1+3αds =
1

3α
x3α(x−1 ∧ 1/2)3α .

1

α
|x|2α ∧ 1.

For I2(x), by definition, I2(x) = 0 if x−1 ≥ 1/2 (i.e. x ≤ 2). For x > 2, we have

I2(x) .

∫ 1/2

x−1

x

(xs)1−3α + (xs)1+α
ds ≤

∫ 1/2

x−1

x

(xs)1+α
ds

= x−α

∫ 1/2

x−1

s−1−αds ≤ x−α 1

α
(x−1)−α ≤ 1

α
≤ 1

α
|x|2α ∧ 1.

Therefore, we conclude

I(x) = I1(x) + I2(x) + I3(x) .
1

α
(|x|2α ∧ 1).

This completes the proof of (4.17).

Proof of (4.18). Without loss of generality, we assume x ≥ 0. Using (4.13) and the Cauchy-
Schwartz inequality, we get

(A.17)

|ω(x)| ≤
∫ x

0

|ωx|dx ≤ 〈ω2
x, |x|1−3α + |x|1+α〉1/2

(∫ x

0

1

|x|1−3α + |x|1+α
dx

)1/2

. α3/2〈ω2
x, ψ〉1/2

(∫ x

0

1

|x|1−3α + |x|1+α
dx

)1/2

.

If x ∈ [0, 1], the integral is bounded by

(A.18)

∫ x

0

|x|−1+3αdx .
1

α
|x|3α ≤ 1

α
|x|2α ≤ 1

α
(|x|2α ∧ 1).

Otherwise, it is bounded by

(A.19)

∫ 1

0

|x|−1+3αdx+

∫ x

1

|x|−1−αdx .
1

α
≤ 1

α
(|x|2α ∧ 1).

Therefore, combining (A.17), (A.18) and (A.19), we conclude

|ω(x)| . α3/2〈ω2
x, ψ〉1/2α−1/2(|x|2α ∧ 1)1/2 = α〈ω2

x, ψ〉1/2(|x|α ∧ 1).

A.3. Proof of other Lemmas.

Proof of Lemma 4.10. Recall the definition of F (s, β)

F (s, β) ,
1− s1+β

1 + s1+β

2s

1− s2
(

log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣

)−1

, s ∈ [0, 1], β ∈ [1, 2].

For s ∈ [0, 1], s1+β is decreasing with respect to β. Hence

1− s1+β

1 + s1+β
is increasing w.r.t. β ⇒ F (s, β) is increasing w.r.t. β.
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Next, we show that F (s, 1) ≤ 1. Denote

G(s) = log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣− 2s

1 + s2
, s ∈ [0, 1].

Note that

G′(s) =
2

1− s2 −
2

1 + s2
+

4s2

(1 + s2)2
≥ 0, lim

s→0+
G(s) = 0.

We conclude G(s) ≥ 0 for s ∈ [0, 1]. It follows that

F (s, 1) =
1− s2
1 + s2

2s

1− s2
(

log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣

)−1

=
2s

1 + s2

(

log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣

)−1

≤ 1.

The equality is achieved at s = 0. Next, we verify that F (s, β) ≤ 1 + 0.015(β − 1). We split
s, β ∈ [0, 1]× [1, 2] into several domains and prove this inequality separately.
Case a. (s, β) ∈ [0.5, 1]× [1, 2]. Using the fact that F (s, β) is increasing w.r.t. β, we know

F (s, β) ≤ F (s, 2) < 0.96 < 1 ∀s ≥ 0.5, β ∈ [1, 2],

where the inequality F (s, 2) < 1 for s ∈ [0.5, 1] can be verified numerically with rigorous error
control. For s close to 1, F (s, β) goes to 0 since log((1 + s)/(1− s)) blows up at s = 1.
Case b. (s, β) ∈ [0.04, 0.5]× [1, 2]. In this domain, F (s, β) is smooth. Denote

M(β) , max
s∈[0.04,0.5]

F (s, β).

For β = 2, we can estimate F (s, β) using Matlab (evaluating the function at some discrete points
with error control and then using the boundedness of ∂sF (s, β) to estimate other points)

M(2) = max
s∈[0.04,0.5]

F (s, 2) ≤ 1.0123 ,

⇒M(β)− 1 ≤M(2)− 1 ≤ 0.0123 ≤ 0.015(β − 1) ∀β ∈ [1.85, 2].

The constant 0.015 in (4.66) comes from the above inequality M(2) ≤ 1.0123. Similarly, we can
estimate M(1.85),M(1.5),M(1.1) to get

M(1.85) ≤ 1.0071⇒M(β)− 1 ≤M(1.85)− 1 ≤ 0.0071 ≤ 0.015(β − 1) , ∀β ∈ [1.5, 1.85],

M(1.5) ≤ 1.0007⇒M(β)− 1 ≤ 0.0007 ≤ 0.015(β − 1) , ∀β ∈ [1.1, 1.5],

M(1.1) ≤ 0.9989⇒M(β)− 1 ≤ 0 ≤ 0.015(β − 1) , ∀β ∈ [1, 1.1].

Therefore, for s, β ∈ [0.04, 0.5] × [1, 2], the above inequalities imply F (s, β) ≤ M(β) ≤ 1 +
0.015(β − 1).
Case c. (s, β) ∈ [0, 0.04]× [1, 2]. The partial derivative ∂βF (s, β) is given by

∂βF (s, β) = −
2s1+β log s

(1 + s1+β)2
2s

1− s2
(

log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣

)−1

.

It is not singular near s = 0 due to the power s2+β. Since s1+β is decreasing with respect to β
and t/(1 + t)2 is increasing for t ∈ [0, 1], we get

s1+β

(1 + s1+β)2
≤ s2

(1 + s2)2
.

Notice that − log(s) ≥ 0 for s ∈ [0, 1]. We obtain

0 ≤ ∂βF (s, β) ≤
−2s2 log s
(1 + s2)2

2s

1− s2
(

log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣

)−1

, H(s).

For s ∈ [0, 0.04], we can estimate H(s) numerically with rigorous error control and obtain
H(s) ≤ 0.011. Therefore for s ∈ [0, 0.04], we yield

F (s, β) ≤ F (s, 1) + 0.011(β − 1) ≤ 1 + 0.015(β − 1).

Combining case (a), (b) and (c) , we conclude the proof of (4.66) and Lemma 4.10.

�
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Proof of Lemma 4.13 . Assume that S1 is π- periodic. Then we have

ux(x) =
1

π

∫ π

0

ω(y) cot(x− y)dy, u(x) = − 1

π

∫ π/2

0

log
∣
∣
∣
tan y + tanx

tan y − tanx

∣
∣
∣ω(y)dy.

Symmetrizing the convolution kernel as we did in the proof of Lemma 4.9 and (4.65), we obtain

(A.20) I ,
1

π

∫ π/2

0

(uxω − auωx) (cotx)
β dx =

1

π

∫ π

0

ω(x)ω(y)Ksym(x, y)dxdy,

where the symmetrized kernel Ksym is given by

(A.21)

Ksym(x, y) =
1 + a

2
(cot y)β−1

(

τ(sβ−1 + 1) log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣− (sβ−1 − 1)

2s

s2 − 1

)

+
1 + a

2
(cot y)β+1

(

τ(sβ+1 + 1) log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣− (sβ+1 − 1)

2s

s2 − 1

)

,

with

τ =
aβ

1 + a
, s =

tan y

tanx
=

cotx

cot y
.

Since a, β satisfy the assumption in Lemma 4.9, from the proof of Lemma 4.9, we know that

(A.22) τ(sβ+1 + 1) log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣− (sβ+1 − 1)

2s

s2 − 1
≥ 0, ∀s ≥ 0.

Recall β > 1. For s ∈ [0, 1], we have sβ−1 ≥ sβ+1 and

(A.23)
sβ−1 + 1

1− sβ−1
(1− s2) ≥ sβ+1 + 1

1− sβ+1
(1− s2).

It is not difficult to show that the above inequality also holds true for s ≥ 1 if we replace s by
s−1. Combining (A.22) and (A.23), we get

sβ−1 + 1

1− sβ−1
(1− s2) ≥ sβ+1 + 1

1− sβ+1
(1− s2) ≥ 1

τ
2s

(

log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣

)−1

,

which implies

(A.24) τ(sβ−1 + 1) log
∣
∣
∣
s+ 1

s− 1

∣
∣
∣− (sβ−1 − 1)

2s

s2 − 1
≥ 0, ∀s ≥ 0.

Substituting (A.22) and (A.24) in (A.21), we conclude

Ksym(x, y) ≥ 0, ∀x, y ∈ [0, π/2].

Finally, noticing that ω(x)ω(y) ≥ 0 for all x, y ∈ [0, π/2], we prove I ≥ 0 in (A.20). �
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SUPPLEMENTARY MATERIALS FOR THE PAPER “ON THE FINITE

TIME BLOWUP OF THE DE GREGORIO MODEL FOR THE 3D EULER

EQUATIONS”

JIAJIE CHEN, THOMAS Y. HOU, AND DE HUANG

Abstract. In [1], we have presented linear stability analysis for the linearized operator and
shown that it has strictly negative spectrum in the weighted L

2 + H
1 norm. In the case of

a = 1, we constructed the approximate self-similar profile numerically. Our stability estimate
is uniform for all approximate profiles sufficiently close to the exact self-similar solution. In
principle, if we have access to a very powerful parallel supercomputer, we can afford to take a
sufficiently small mesh size h to construct an approximate self-similar profile with extremely
small residual error. This would have completed the bootstrap argument. The purpose of
this supplementary material is to provide relatively sharp estimates for the cross term in the
weighted H1 estimate, the error term and the nonlinear term. These sharp stability and
error estimates enable us to complete our bootstrap argument using only a personal laptop
computer with a mesh size h = 2 ∗ 10−5 to construct our approximate self-similar profile. To
obtain sharp estimates, we also use the Interval arithmetics software and error analysis for
the Trapezoidal rule to estimate a number of integrals involving our approximate self-similar
profile with rigorous error control. We will provide the estimates for the cross term in Section
2, the error term in Section 3, and the nonlinear term in Section 4.

1. Lemmas, Functions and Notations

We first introduce some Lemmas, functions and notations that were used in [1].

1.1. Functions. The weight ϕ in the L2 estimate is defined as follows:

(1.1) ϕ ,

(

− 1

x3
− e

x
− f · 2x
L2 − x2

)

·
(

χ1

(

ω̄ − xω̄x

5

)

+ χ2

(

ω̄ − (x − L)ω̄x

3

))−1

,

where χ1, χ2 ≥ 0 are some cutoff functions such that χ1 + χ2 = 1 and

χ1(x) =

{

1 x ∈ [0, 4]

0 x ∈ [6, 10]
, χ1(x) =

exp
(

1
x−4 + 1

x−6

)

1 + exp
(

1
x−4 + 1

x−6

) ∀x ∈ [4, 6] .

The weight ψ in the H1 estimate is given below:

(1.2) ψ = − 1

ω̄

(
1

x
− x

L2

)

, x ∈ [0, L].

The normalization conditions for cl, cω are defined as follows:

(1.3) cl = −
u(L)

L
, cω = cl .

The inner product is defined on the interval [0, L]

〈f, g〉 ,
∫ L

0

f · gdx,

since the support of ω, ω̄ lies in [−L,L]. We only consider the half real line due to symmetry.
The nonlinear and the error terms in the weighted L2 and H1 estimates are defined below:

(1.4)
N(ω) = (cω + ux)ω − (clx+ u)ωx, F (ω̄) = (c̄ω + ūx)ω̄ − (c̄lx+ ū)ω̄x,

N1 , 〈N(ω), ωϕ〉, F1 , 〈F (ω̄), ωϕ〉, N2 , 〈(N(ω))x, ωxψ〉, F2 , 〈(F (ω̄))x, ωϕ〉.
1
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We express ux(0), ux(L) and cω = cl as the projection of ω onto some functions

(1.5)

cω = cl = 〈ω, gcω〉, ux(0) = 〈ω, gux(0)〉, ux(L) = 〈ω, gux(L)〉,

gcω ,
1

Lπ
log

(
L+ x

L− x

)

, gux(0) , −
2

πx
, gux(L) ,

2x

π(L2 − x2) .

1.2. Parameters and Notations. We will use the following parameters and notations

n = 8000, h0 =
L

n
=

1

800
, N = 400000, h =

L

N
= 2.5 · 10−5, xi = ih, i = 0, 1, .., N.

We introduce the following constants which can be estimated accurately
(1.6)

K1 , ||ω̄x||L∞[0,L], K1r , ||ω̄x||L∞[M,L], K2 , ||ūx||L∞[0,L],

K3 , max
[0,L]
|c̄l + ūx|, K4 , ||ūxx||L∞[0,M ],

K5l ,
∣
∣
∣

∣
∣
∣

ω̄

x(x2 − L2)

∣
∣
∣

∣
∣
∣
L∞[0,M ]

, K5 ,
∣
∣
∣

∣
∣
∣

ω̄

(x2 − L2)

∣
∣
∣

∣
∣
∣
L∞[0,L]

,

K6 , ||(ω̄xx(x
2 − L2))x||L∞[0.25,L−0.25], K7 , ||ω̄xx(x

2 − L2)||L∞[0,L], K8 = ||ω̄xx||L∞[0.25,L−0.25],

J1 ,

∫ M

0

ω̄2
xxxdx, J2 ,

∫ M

0

ω̄2
xx

x2
dx, J3 ,

∫ L

0

(ωx − ωx(0))
2

x2
dx,

J4 ,

∫ L

0

ω̄2
xx(x

2 − L2)2dx, J5 ,

∫ L

0

ω̄2
xxx(x− L)2dx, J5r ,

∫ L

M

ω̄2
xxx(x− L)2dx,

J6 ,

∫ L

0

ω̄2
xdx, J7 ,

∫ L

0

ω̄2
xxdx, J7r ,

∫ L

M

ω̄2
xxdx.

Using the theoretical estimates and the methods of interval arithmetics introduced in section
3 [1], we can obtain rigorous upper bounds for the positive quantities above. In particular, for
each quantity q, our numerical verifications using the interval arithmetics will provide an interval
[ql, qr] that rigorously contain the exact value, where ql, qr are two accurate real numbers with
16 digits. We then round up qr to 4 significant digits to be a strict upper bound of q. One can
verify that

(1.7)

K1 < 1.001, K1,r < 0.8092, K2 < 3.595 K3 < 2.896, K4 < 0.9295,

K5,l ≤ 1.000× 10−2, K5 ≤ 4.433× 10−2, K6 < 11.13, K7 < 26.65, K8 < 0.5152,

J
1/2
1 ≤ 0.1683, J

1/2
2 ≤ 0.2141, J

1/2
3 ≤ 0.5757, J

1/2
4 ≤ 53.37, J

1/2
5 ≤ 1.960,

J
1/2
5,r ≤ 1.960, J

1/2
6 ≤ 2.096, J

1/2
7 ≤ 0.6965, J

1/2
7,r ≤ 0.4500,

||(x2 − L2)−1ψ1/2ϕ−1/2||L∞[0.5,9.5] < 0.1, ||ψxψ
−1/2ϕ−1/2||L∞[0.5,9.5] < 2.

2. The cross term in the weighted H1 estimate

In [1], we have derived the following weighted H1 estimate:

(2.1)

1

2

d

dt
〈ω2

x, ψ〉 =
〈 1

2ψ
((c̄lx+ ū)ψ)x, ω

2
xψ
〉

+ 〈ūxxω, ωxψ〉 − 〈(clx+ u)ω̄xx, ωxψ〉

+ 〈N(ω)x, ωxψ〉+ 〈F (ω̄)x, ωxψ〉 , I + II2 +N2 + F2 ,

where I, II2 are defined below

(2.2) I =
〈 1

2ψ
((c̄lx+ ū)ψ)x, ω

2
xψ
〉

+ 〈ūxxω, ωxψ〉, II2 = −〈(clx+ u)ω̄xx, ωxψ〉.

We further decompose I into the a damping term and a cross term

(2.3) I = 〈D2(ω̄), ω
2
xψ〉+ I2, D2(ω̄) ,

1

2ψ
((c̄lx+ ū)ψ)x, I2 , 〈ūxxω, ωxψ〉.

In this Section, we estimate the constant for the cross terms I2, II2 in the weighted H1

estimate and prove Lemma 2.1.
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Lemma 2.1. The weighted H1 estimate satisfies

(2.4)
1

2

d

dt
〈ω2

x, ψ〉 = I + II2 +N2 + F2 ≤ −0.25〈ω2
x, ψ〉+ 7.5〈ω2, ϕ〉+N2 + F2,

where I, II2 are defined in (2.2).

In [1], we have shown that 〈D2(ω̄), ω
2ψ〉 in I is a damping term. To control the cross term,

one can use the Cauchy-Schwartz inequality and split it into weighted L2 norm of ω and ωx.
However, this estimate is too crude and leads to a large constant in our estimate, which is
roughly of order 100〈ω2, ϕ〉, in Lemma 2.1. Then to close the bootstrap argument, it requires
the error term to be extremely small, which increases the computational burden. To overcome
this difficulty, we will use part of the damping term and some property of the profile to control
the cross term, so that we can get a smaller constant in Lemma 2.1, which is about 7.5〈ω2, ϕ〉.

We first consider I2 = 〈ūxxω, ωxψ〉 in I (2.3). Note that ūxxψ is increasing on the grid points.
Formally, by using integration by parts, we get

(2.5) I2 = 〈ūxxω, ωxψ〉 = −
1

2
〈(ūxxψ)x, ω2〉 ≤ 0.

However, since ūxxx is not continuous, we cannot justify (ūxxψ)x ≥ 0. To address this problem,
we consider the following piecewise linear approximation of ūxxψ

Sk,h(x) ,







(ūxxψ)(0.5) 0 ≤ x ≤ 0.5,

(ūxxψ)(xi) + ((ūxxψ)(xi+1)− (ūxxψ)(xi))
x−xi

h x ∈ [xi, xi+1] ⊂ [0.5, 9.5],

(ūxxψ)(9.5) x ≥ 9.5,

where ūxx(xi), xi = ih is evaluated using the Hilbert transform (see (A.5))

(2.6) ūxx = Hωx, ūxx(x
2 − L2) = H(ω̄x(x

2 − L2)).

For x close to 0 or L, we construct Sk,h(x) to be constant since ūxxψ blows up at x = 0, L. We
can verify rigorously that Sk,h(x) is monotonically increasing by checking its values on the grid
points since Sk,h is piecewisely linear. Using the fact that Sk,h(x) is monotonically increasing,
we can justify (2.5) as follows
(2.7)
〈ūxxω, ωxψ〉 = 〈ūxxψ − Sk,h(x), ωωx〉+ 〈Sk,h(x), ωωx〉

= 〈(ūxxψ − Sk,h(x))ϕ
−1/2ψ−1/2, ϕ1/2ωψ1/2ωx〉 −

1

2
〈∂xSk,h(x), ω

2〉

≤ ||(ūxxψ − Sk,h(x))ϕ
−1/2ψ−1/2||L∞ ||ωϕ1/2||L2 ||ωxψ

1/2||L2 − 1

2
〈∂xSk,h(x), ω

2〉.

Next we estimate the error of linear interpolation. We have plotted the numerical values of Sk,h

and ∆(x) defined below on the grid points in the first subfigure in Figure 1 in the Appendix.

Lemma 2.2. The weighted approximation error satisfies

(2.8) ||(ūxxψ − Sk,h(x))ϕ
−1/2ψ−1/2||L∞ ≤ 0.1.

Proof. Define

∆(x) , (ūxxψ − Sk,h(x))ϕ
−1/2ψ−1/2.

For x ≤ 0.5 or x ≥ 9.5, we use the interval arithmetics computation to show that the maximal
value of ∆(x) on the grid points is bounded by 0.09. In (2.10),(2.11), we show that ūxx, ūxxx(x

2−
L2) grow at most logarithmically near x = L. Using the asymptotic property of the weight

ψ ≍ x−2 + 1, ϕ ≍ x−4 + (x− L)−2 ,

we obtain that
ψ1/2ϕ−1/2, ψ−1/2ϕ−1/2 . (x−1 + (x− L)−1)−1,

which vanishes at x = 0, L. For x sufficiently close to x = L, e.g. |x − L| < ε, we can use the
fact that ∆(x) vanishes at x = L and that ∆(x) is at least C1/2 to verify |∆(x)| ≤ 0.1. For
|x − L| > ε, we can use the smoothness of ψ, ϕ ∈ C1,1 and uxx ∈ C1 to verify |∆(x)| ≤ 0.1 for
x that is not on a grid point.
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For x ∈ [xi, xi+1] , Ii ⊂ [0.5, 9.5], we use the standard approximation theory to show that

(2.9)

|ūxxψ − Sk,h(x)| ≤ hmax
Ii
|(ūxxψ)x| = hmax

Ii
(|ūxxx(x2 − L2)ψ(x2 − L2)−1|+ |ūxxψx|)

≤ hmax
Ii
|ūxxx(x2 − L2)|max

Ii
|ψ(x2 − L2)−1|+ hmax

Ii
|ūxx|max

Ii
|ψx|.

Let δ = 0.25. From the relation (2.6), we have for x ∈ [0.5, 9.5] that

ūxxx(x)(x
2 − L2) = P.V.

1

π

∫ L

−L

ω̄xx(y)(y
2 − L2)

x− y dy

=
1

π

∫

|x−y|<δ

ω̄xx(y)(y
2 − L2)− ω̄xx(x)(x

2 − L2)

x− y dy +
1

π

∫

|x−y|>δ,|y|≤L

ω̄xx(y)(y
2 − L2)

x− y dy,

which implies

|ū(x)xxx(x2 − L2)| ≤ 2δ

π
||(ω̄xx(x

2 − L2))x||L∞[0.5−δ,9.5+δ] +
2

π
||ω̄xx(y

2 − L2)||∞ log
2L

δ

=
2δ

π
K6 +

2

π
K7 log

2L

δ
,(2.10)

where K6,K7 are defined in (1.6). Similarly, for ūxx = Hω̄x, we have

(2.11) |ūxx(x)| ≤
2δ

π
||ω̄xx||L∞[0.5−δ,9.5+δ] +

2

π
||ω̄x||∞ log

2L

δ
=

2δ

π
K8 +

2

π
K1 log

2L

δ
,

where K8,K1 are defined in (1.6). Hence, for x ∈ [0.5, 9.5], ūxx, ūxxx are bounded. Taking δ =
L−x in (2.10) and (2.11), we see that both ūxxx(x

2−L2), ūxx can grow at most logarithmically
near x = L with another constant in the upper bound. For x ∈ [xi, xi+1] ⊂ [0.5, 9.5], one
can verify that ψ and ϕ remain smooth over one grid cell. Specifically, we have the following
estimate:

(2.12) max
Ii
|ψx| ≤ 1.1|ψx(xi)|, max

Ii
|ψ(x2 − L2)−1| ≤ 1.1|ψ(xi)(x2i − L2)−1|.

Substituting the bounds on ūxx, ūxxx in (2.10), (2.11) with δ = 0.25 and (2.12) into (2.9), we
obtain

max
[0.5,9.5]

|∆(x)| ≤ 1.1h
2

π

(

δK6 +K7 log
2L

δ

)

||(x2 − L2)−1ψ1/2ϕ−1/2||L∞[0.5,9.5]

+ 1.1h
2

π

(

δK8 +K1 log
2L

δ

)

||ψxψ
−1/2ϕ−1/2||L∞[0.5,9.5]

≤ 84h||(x2 − L2)−1ψ1/2ϕ−1/2||L∞[0.5,9.5] + 3.2h||ψxψ
−1/2ϕ−1/2||L∞[0.5,9.5]

≤ (84 · 0.1 + 3.2 · 2)h < 0.1,

where we have used (1.7) and h = 2.5× 10−5. Combining all the above estimate would give the
desired upper bound |∆(x)| ≤ 0.1, ∀x ∈ [0, L]. �

Using Lemma 2.2, we can estimate (2.7) below

(2.13) I2 = 〈ūxxω, ωxψ〉 ≤ 0.1||ωϕ1/2||L2 ||ωxψ
1/2||L2 ≤ d0||ωϕ1/2||2L2 +

0.01

4d0
||ωxψ

1/2||2L2 .

Next, we consider the remaining linear term II2 = 〈(clx+ u)ω̄xx, ωxψ〉 in (2.1). First of all,
using integration by parts, we yield

(2.14) II2 = −〈(clx+ u)ω̄xx, ωxψ〉 = 〈(cl + ux)ω̄xxψ, ωx〉+ 〈(clx+ u)(ω̄xxψ)x, ω〉 , T1 + T2.

We use a strategy similar to the one that we performed the weighted L2 estimate for a = 1
in [1]. For T1, we first find a combination of power x, x−1 that approximates ω̄xxψ

T1 = 〈uxω̄xxψ, ω〉+ cl〈ω̄xxψ, ω〉 =
〈

ux

(
d1
x
− d2x

)

, ω
〉

+
〈

ux(ω̄xxψ −
d1
x

+ d2x), ω
〉

+ cl

〈

ω̄xxψ −
d3
x
, ω
〉

+ cld3

〈 1

x
, ω
〉

,
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where d1, d2, d3 > 0 are to be determined. By using the cancellation property (A.6), we get

d1〈uxω, x−1〉 = d1
(
ux(0)〈ω, x−1〉+ 〈(ux − ux(0))ω, x−1〉

)

= d1

(

−ux(0)
π

2
(Hω)(0) +

π

4
ux(0)

2
)

= −πd1
4
ux(0)

2,

where we have a factor 1/2 since the integral is from 0 to L rather than the real line. Using
xux = H(xω) in (A.4) and (A.1), we derive

〈uxω, x〉 = 〈H(xω)(xω), x−1〉 = −π
2
H(H(xω)(xω))

= −π
4

(
(H(xω))2(0)− (xω)2(0)

)
= −π

4
(H(xω))2(0) = −π

4
(xux)

2(0) = 0.

Using an elementary inequality 2ab ≤ a2 + b2, we get

cld3〈x−1, ω〉 = −π
2
cld3ux(0) ≤

πd1
4
u2x(0) +

πd23
4d1

c2l .

Using the above estimates, we can reduce T1 to
(2.15)

T1 ≤ −
πd1
4
u2x(0) +

〈

ux(ω̄xxψ −
d1
x

+ d2x), ω
〉

+ cl

〈

ω̄xxψ −
d3
x
, ω
〉

+
πd1
4
u2x(0) +

πd23
4d1

c2l

≤
〈

ux(ω̄xxψ −
d1
x

+ d2x), ω
〉

+ cl

〈

ω̄xxψ −
d3
x
, ω
〉

+
πd23
4d1

c2l

=
〈

ux(ω̄xxψ −
d1
x

+ d2x), ω
〉

+ cl

〈

ω̄xxψ −
d3
x

+
πd23
4d1

gcω , ω
〉

≤ ||ux||2||(ω̄xxψ −
d1
x

+ d2x)ω||2 + cl

〈

ω̄xxψ −
d3
x

+
πd23
4d1

gcω , ω
〉

= ||ω||2||(ω̄xxψ −
d1
x

+ d2x)ω||2 + cl

〈

ω̄xxψ −
d3
x

+
πd23
4d1

gcω , ω
〉

,

where gcω defined in (1.5) satisfies cl = cω = 〈ω, gcω〉 and we have used ||ux||2 = ||ω||2. The
second term will be estimated later.

To estimate T2 in (2.14), we again use a strategy similar to the one that we performed the
weighted L2 estimate for a = 1 in [1] by subtracting the different linear part near x = 0 and
x = L. Let M2 ∈ (0, L) be some parameter to be chosen later. For x ∈ [0,M2], we have

(2.16)
T2l , 〈(clx+ u)(ω̄xxψ)x1x≤M2

, ω〉 = 〈(u − ux(0)x)(ω̄xxψ)x1x≤M2
, ω〉

+ (cl + ux(0))〈x(ω̄xxψ)x1x≤M2
, ω〉 , T2l,1 + T2l,2.

We first use the Cauchy-Schwartz inequality to split the first term and then apply the Hardy
inequality (A.7)
(2.17)

T2l,1 =
〈

(u− ux(0))
√

25d4x−6 + 9d5x−4,
√

25d4x−6 + 9d5x−4
−1

(ω̄xxψ)x1x≤M2
ω
〉

≤ 1

4
〈(u− ux(0))2, 25d4x−6 + 9d5x

−4〉+
〈

(25d4x
−6 + 9d5x

−4)−1((ω̄xxψ)x)
21x≤M2

, ω2
〉

≤ d4〈ω2, x−4〉+ d5〈ω2, x−2〉+
〈

(25d4x
−6 + 9d5x

−4)−1((ω̄xxψ)x)
21x≤M2

, ω2
〉

,

where d4, d5 > 0 are to be determined. The constants 25/4, 9/4 come from (A.7) with p = 4, 2.
T2l,2 will be estimated later.

For x ∈ [M2, L], we use (1.3) to rewrite clx+ u and T2r

(2.18)

clx+ u = u− u(L) + cl(x− L) = u− u(L)− ux(L)(x− L) + (cl + ux(L))(x− L).
T2r , 〈(clx+ u)(ω̄xxψ)x1x>M2

, ω〉 = 〈u− u(L)− ux(L)(x− L), (ω̄xxψ)x1x>M2
ω〉

+ (cl + ux(L))〈(x − L)(ω̄xxψ)x1x>M2
, ω〉 , T2r,1 + T2r,2.
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Notice that u − u(L) − ux(L)(x − L) and its derivative vanishes at x = L. We apply the
Cauchy-Schwartz inequality and then the Hardy inequality similar to (A.7) with p = 2 to yield

T2r,1 = 〈(u − u(L)− ux(L)(x− L))(x − L)−2, (x − L)2(ω̄xxψ)x1x>M2
, ω〉

≤9d6
4
〈(u− u(L)− ux(L)(x− L))2, (x− L)−4〉+ 1

9d6
〈( (x− L)2(ω̄xxψ)x1x>M2

)2, ω2〉

≤d6〈(ux − ux(L))2, (x − L)−2〉+ 1

9d6
〈( (x − L)2(ω̄xxψ)x1x>M2

)2, ω2〉.

Furthermore, we apply (A.3) and the L2 isometry of the Hilbert transform to estimate 〈(ux −
ux(L))

2, (x− L)−2〉

〈(ux − ux(L))2, (x− L)−2〉 ≤
∫

R

(ux − ux(L))2(x − L)−2dx = 〈ω2, (x− L)−2 + (x+ L)−2〉,

which implies

(2.19) T2r,1 ≤ d6〈ω2, (x− L)−2 + (x + L)−2〉+ 1

9d6
〈( (x− L)2(ω̄xxψ)x1x>M2

)2, ω2〉.

We use the damping of ωx to control part of the above terms. Applying the Hardy inequality
similar to (A.7) with u− ux(0)x replaced by ω and p = 2, we obtain

(2.20) 〈ω2, x−4〉 ≤ 4

9
〈ω2

x, x
−2〉, 0 ≤ 4d7

9
〈ω2

x, x
−2〉 − d7〈ω2, x−4〉,

where d7 > 0 is a parameter to be determined. Therefore, using the relation II2 = T1 + T2 =
T1 + T2l,1 + T2l,2 + T2r,1 + T2r,2 and combining all the estimates of I2, II2 in the weighted H1

estimate, (2.1), (2.3), (2.13), (2.14), (2.15), (2.16), (2.17), (2.18), (2.19) and (2.20), we derive

(2.21)

I + II2 = 〈D2(ω̄), ω
2
xψ〉+ I2 + T1 + T2l,1 + T2l,2 + T2r,1 + T2r,2

≤ 〈D2(ω̄), ω
2
xψ〉+ d0||ωϕ1/2||2L2 +

0.01

4d0
||ωxψ

1/2||2L2

+ ||ω||2||(ω̄xxψ −
d1
x

+ d2x)ω||2 + cl

〈

ω̄xxψ −
d3
x

+
πd23
4d1

gcω , ω
〉

+ d4〈ω2, x−4〉+ d5〈ω2, x−2〉+
〈

(25d4x
−6 + 9d5x

−4)−1((ω̄xxψ)x)
21x≤M2

, ω2
〉

+ (cl + ux(0))〈x(ω̄xxψ)x1x≤M2
, ω〉+ d6〈ω2, (x− L)−2 + (x+ L)−2〉

+
1

9d6
〈( (x − L)2(ω̄xxψ)x1x>M2

)2, ω2〉+ (cl + ux(L))〈(x − L)(ω̄xxψ)x1x>M2
, ω〉

+

(
4d7
9
〈ω2

x, x
−2〉 − d7〈ω2, x−4〉

)

.

The quantities on the right hand side can be classified into three classes: (a) 〈ω2
x, f〉; (b) 〈ω2, g〉

(except ||ω||2||(ω̄xxψ− d1

x + d2x)ω||2); (c) Projections of ω, i.e. 〈ω, g〉. Using the estimate below

||ω||2||(ω̄xxψ −
d1
x

+ d2x)ω||2 ≤ d8||ω||22 +
1

4d8
||(ω̄xxψ −

d1
x

+ d2x)ω||22,



SUPPLEMENTARY MATERIAL FOR THE DE GREGORIO MODEL 7

we can rewrite (2.21) as

(2.22)

I + II2 ≤ 〈S1, ω
2
xψ〉+ 〈S2, ω

2ϕ〉+ P (ω),

S1 = D2(ω̄) +
0.01

4d0
+

(
4d7
9
x−2

)

ψ−1,

S2ϕ = d0ϕ+ d8 +
1

4d8
(ω̄xxψ −

d1
x

+ d2x)
2 + d4x

−4 + d5x
−2

+ (25d4x
−6 + 9d5x

−4)−1((ω̄xxψ)x)
21x≤M2

+ d6((x − L)−2 + (x + L)−2)

+
1

9d6

(
(x− L)2(ω̄xxψ)x1x>M2

)2 − d7x−4 ,

P (ω) , cl〈R1, ω〉+ (cl + ux(0))〈R2, ω〉+ (cl + ux(L))〈R3, ω〉,

R1 = ω̄xxψ −
d3
x

+
πd23
4d1

gcω , R2 = x(ω̄xxψ)x1x≤M2
, R3 = (x− L)(ω̄xxψ)x1x>M2

.

Finally, we estimate P (ω). Using (1.5), we can rewrite P (ω) as follows

P (ω) = 〈gcω , ω〉〈R1, ω〉+ 〈gcω + gux(0), ω〉〈R2, ω〉+ 〈gcω + gux(L), ω〉〈R3, ω〉.
For some function S3 ∈ C([0, L]), S3 > 0 to be determined, we want to bound P (ω) by 〈S3, ω

2ϕ〉
as sharp as possible. We define

(2.23)
z , (S3ϕ)

1/2ω, η1 , (S3ϕ)
−1/2gcω , η2 , (S3ϕ)

−1/2R1, η3 , (S3ϕ)
−1/2(gcω + gux(0)),

η4 , (S3ϕ)
−1/2R2, η5 , (S3ϕ)

−1/2(gcω + gux(L)), η6 , (S3ϕ)
−1/2R3.

We want to find the best constant of the following inequality for any ω ∈ L2(ϕ)

(2.24) 〈η1, z〉〈η2, z〉+ 〈η3, z〉〈η4, z〉+ 〈η5, z〉〈η6, z〉 ≤ C∗||z||22,
which is equivalent to

(2.25) P (ω) = 〈gcω , ω〉〈R1, ω〉+〈gcω+gux(0), ω〉〈R2, ω〉+〈gcω+gux(L), ω〉〈R3, ω〉 ≤ C∗〈S3, ω
2ϕ〉.

It is easy to see that ηi are generically linearly independent. Suppose that V , span{η1, η2, .., η6}
and {ei}61 is an orthonormal basis of V under the standard L2 inner product on [0, L]. Suppose
that ηi in terms of the orthonormal basis {ei}61 has the coordinate θi ∈ R

6 (a column vector).
We can apply the same analysis as we analyzed the best constant of the projection term in the
L2 estimate for a = 1 in [1] to obtain that

(2.26) C∗ = λmax

(

1

2

3∑

i=1

(θ2i−1θ
T
2i + θ2iθ

T
2i−1)

)

,
1

2

3∑

i=1

(θ2i−1θ
T
2i + θ2iθ

T
2i−1) ∈ R6×6.

2.1. Optimizing the parameters. To optimize the estimate, we choose

d0 = 0.15, d1 = 0.11, d2 = 0.0013, d3 = 0.07, d4 = 4.5, d5 = 0.05,

d6 = 0.03, d7 = 2.5, d8 = 0.0004, M2 = 6.5.

After specifying these parameters, the remaining part of the damping term S1 (see (2.22)) and
the estimate of the cross term S2 are completely determined. We plot the numerical values of
S1, S2 on the grid points in the second subfigure of Figure 1 in the Appendix.

The numerical value of max(S1) is less than −0.3 and we use a conservative estimate

(2.27) S1 < −0.25,
which can be verified using the smoothness of the profile. It is clear that S2 < 7 and we choose

(2.28) S3 = 7.5− S2.

The corresponding ηi in (2.23) are determined. The optimal constant in (2.24) can be computed
via (2.26). The numerical value of C∗ satisfies C∗ < 0.85 and we use a conservative estimate
C∗ < 1, which can be verified rigorously. Plugging this estimate into (2.25), we obtain

P (ω) ≤ C∗〈S3, ω
2ϕ〉 < 〈S3, ω

2〉 = 〈7.5− S2, ω
2ϕ〉 .
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Plugging the above estimate and (2.27) into (2.22), we prove

I + II2 ≤ 〈S1, ω
2
xψ〉+ 〈S2, ω

2ϕ〉+ P (ω) ≤ −0.25〈ω2
x, ψ〉+ 7.5〈ω2, ϕ〉,

which completes the proof of Lemma 2.1.

3. The estimates of the error term

The error terms in the weighted L2, H1 estimate are given below

F1 = 〈F (ω̄), ωϕ〉, F2 = 〈(F (ω̄))x, ωxψ〉, F (ω̄) = (c̄ω + ūx)ω̄ − (c̄lx+ ū)ω̄x,

where ϕ, ψ are defined in (1.1) and (1.2), respectively. For some functions ρ1, ρ2 to be deter-
mined, the Cauchy-Schwartz inequality implies

|F1| ≤ 〈F (ω̄)2, ρ1〉1/2〈ω2, ϕ2ρ−1
1 〉1/2, |F2| ≤ 〈(F (ω̄))2x, ρ2〉1/2〈ω2

x, ψ
2ρ−1

2 〉1/2.
Our goal is to verify that 〈F (ω̄)2, ρ1〉1/2, 〈(F (ω̄))2x, ρ2〉1/2 are small. Note that we can only
evaluate u, ux, uxx at finitely many points via the Hilbert transform. We will use the composite
Trapezoidal rule to approximate the integral and have the following error estimate for the
Trapezoidal rule.

3.1. Error estimate of the Trapezoidal rule.

Lemma 3.1 (Error estimate for the Trapezoidal rule).

∫ M

0

F 2

x4
dx − Th

(
F 2

x4
, 0,M

)

≤ h2

4

(
∫ M

0

F 2
xx

x2
dx

)1/2(∫ M

0

F 2

x6
dx

)1/2

,(3.1)

∫ L

M

F 2

(x− L)2 dx− Th
(

F 2

(x− L)2 ,M,L

)

≤ h2

4

(
∫ L

M

F 2
xxdx

)1/2(∫ L

M

F 2

(x− L)4 dx
)1/2

,(3.2)

∫ L

0

F 2dx− Th(F 2, 0, L) ≤ h2

4

(
∫ L

0

F 2
xxdx

)1/2(∫ L

0

F 2dx

)1/2

,(3.3)

∫ M

0

F 2
x

x2
dx − Th

(
F 2
x

x2
, 0,M

)

≤ h
(
∫ M

0

F 2
xx

x2
dx

)1/2(∫ M

0

F 2
x

x2

)1/2

,(3.4)

∫ L

0

F 2
xdx− Th(F 2

x , 0, L) ≤ h
(
∫ L

0

F 2
xxdx

)1/2(∫ L

0

F 2
xdx

)1/2

,(3.5)

where M = 5, L = 10, F is short for F (ω̄) and the Trapezoidal rule Th is given by

Th(f, a, b) ,
∑

a≤ih<b

f(ih) + f((i+ 1)h)

2
h.

Since the approximate profile ω̄ is a piecewise cubic polynomial in [0, L], ω̄ is only in the class
C2,1 and ūxx blows up at x = L. Thus, the weight is singular and we cannot apply the standard
error estimate for the Trapezoidal rule. From Lemma 3.1, for sufficiently small h, we can verify
that 〈F (ω̄)2, ϕ〉1/2, 〈(F (ω̄))2x, ψ〉1/2 are small using only the values of F on the grid points and
the Trapezoidal rule.

Proof. We first recall the standard error estimate for the Trapezoidal rule:
∫ b

a

f(x)dx − b− a
2

(f(a) + f(b)) =

∫ b

a

f ′′(x)
(x − a)(x− b)

2
dx.

Denote by P a piecewise quadratic polynomial

(3.6) P (x) ,
(x− ih)(x− (i+ 1)h)

2
, ∀x ∈ [ih, (i+ 1)h].
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Then we have

∆1 ,

∫ M

0

F 2

x4
dx− Th

(
F 2

x4
, 0,M

)

=

∫ M

0

(
F 2

x4

)

xx

P (x)dx,

(
F 2

x4

)

xx

=
2FxxF + 2F 2

x

x4
− 16

FxF

x5
+ 20

F 2

x6

=2

(
Fxx

x
− 3

Fx

x2

)
F

x3
+ 2

F 2
x

x4
− 10

FxF

x5
+ 20

F 2

x6
≥ 2

(
Fxx

x
− 3

Fx

x2

)
F

x3
,

where we have used 2a2 + 20b2 ≥ 2
√
40|ab| ≥ 10ab. From (3.6), we know for x ∈ [ih, (i+ 1)h]

P (x) ≤ 0, |P (x)| ≤ 1

2

(
(i+ 1)h− x+ x− ih

2

)2

≤ h2

8
.

Combining the above estimates yields

(3.7)

∆1 ≤
∫ M

0

2

(
Fxx

x
− 3

Fx

x2

)
F

x3
P (x)dx ≤ h2

4

∫ M

0

∣
∣
∣

(
Fxx

x
− 3

Fx

x2

)
F

x3

∣
∣
∣dx

≤ h2

4

(
∫ M

0

(
Fxx

x
− 3

Fx

x2

)2

dx

)1/2(∫ M

0

F 2

x6
dx

)1/2

.

Using integration by parts yields

(3.8)

∫ M

0

(
Fxx

x
− 3

Fx

x2

)2

dx =

∫ M

0

F 2
xx

x2
+ 9

F 2
x

x4
dx−

∫ M

0

3

x3
dF 2

x

=

∫ M

0

F 2
xx

x2
+ 9

F 2
x

x4
dx− 9

∫ M

0

F 2
x

x4
dx− 4F 2

x

x3

∣
∣
∣

M

0
=

∫ M

0

F 2
xx

x2
− 4F 2

x (M)

M3
≤
∫ M

0

F 2
xx

x2
,

where we have used the regularity of the profile which satisfies

lim
x→0+

F 2
x

x3
= 0.

Combining (3.7) and (3.8) completes the proof of (3.1).

For (3.2), we introduce G(x) , F (L − x). After a change of variables, (3.2) is equivalent to

∫ M

0

G2

x2
dx− Th

(
G2

x2
, 0,M

)

≤ h2

4

(
∫ M

0

Gxxdx

)1/2(∫ M

0

G2

x4
dx

)1/2

.

The proof is very similar to the proof of (3.1) and is omitted. The proof of (3.3) is similar to
the previous proof and is omitted here. The proof of (3.4) is based on the following expression
of the error term

∫ b

a

f(x)dx =
b− a
2

(f(a) + f(b))−
∫ b

a

f ′(x)

(

x− a+ b

2

)

dx.

Denote by Q(x) a piecewise linear function

Q(x) =
ih+ (i + 1)h

2
− x, x ∈ [ih, (i+ 1)h), |Q(x)| ≤ h

2
.

It follows that the left hand side of (3.4) can be written as

∆3 =

∫ M

0

(
F 2
x

x2

)

x

Q(x)dx = 2

∫ M

0

(
Fxx

x
− Fx

x2

)
Fx

x
Q(x)dx

≤ 2 · h
2

∫ M

0

∣
∣
∣

(
Fxx

x
− Fx

x2

)
Fx

x

∣
∣
∣dx ≤ h

(
∫ M

0

(
Fxx

x
− Fx

x2

)2

dx

)1/2(∫ M

0

F 2
x

x2

)1/2

≤ h
(
∫ M

0

(
Fxx

x

)2

dx

)1/2(∫ M

0

F 2
x

x2

)1/2

,
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where we have used integration by parts similar to (3.8) to get the last inequality. The proof of
(3.5) is similar to (3.4) and is omitted. �

A corollary of Lemma 3.1 is the following estimates of the error of the approximate profile.

Corollary 3.2. The error of approximate profile F (ω̄) satisfies
(3.9)

∫ M

0

F 2

x4
dx ≤ Th

(
F 2

x4
, 0,M

)

+
B2

1

15
h2,

∫ L

M

F 2

(x− L)2 dx ≤ Th
(

F 2

(x− L)2 ,M,L

)

+
B2

2

3
h2,

∫ L

0

F 2dx ≤ 1

4

(

h2

4
B3 +

√

h4

16
B2

3 + 4Th(F 2, 0, L)

)2

,

∫ M

0

F 2
x

x2
dx ≤ 1

4

(

hB1 +

√

h2B2
1 + 4Th

(
F 2
x

x2
, 0,M

))2

,

∫ L

0

F 2
xdx ≤

1

4

(

hB3 +
√

h2B2
3 + 4Th (F 2

x , 0, L)

)2

,

where Bi defined in (3.12) only depends on Ki, Ji in (1.6).

Corollary 3.2 shows that the weighted L2, H1 errors of the approximate profile can be bounded
by approximating the integral using the Trapezoidal rule with an error of order O(h2).

Proof. Using the Hardy inequality (the first inequality in (A.7) with u−ux(0)x replaced by F ),
we have

(3.10)

∫ M

0

F 2

x6
dx ≤ 4

25

∫ M

0

F 2
x

x4
dx ≤ 4

25
· 4
9

∫ M

0

F 2
xx

x2
dx =

(
4

15

)2 ∫ M

0

F 2
xx

x2
dx,

∫ L

M

F 2

(x− L)4 dx ≤
4

9

∫ L

M

F 2
x

(x− L)2 ≤
4

9
· 4
∫ L

M

F 2
xxdx =

16

9

∫ L

M

F 2
xxdx.

Next, we estimate the weighted L2 integral of Fxx. Note that

Fxx = (F (ω̄))xx = ūxxxω̄ + ūxxω̄x − (c̄lx+ ū)ω̄xxx − (c̄l + ūx)ω̄xx.

We use different estimates for Fxx :
(3.11)
Fxx

x
= ūxxx(x

2 − L2)
ω̄

x(x2 − L2)
+
ūxx
x
ω̄x −

c̄lx+ ū

x
ω̄xxx − (c̄l + ūx)

ω̄xx

x
, x ∈ [0,M ],

Fxx = ūxxx(x
2 − L2)

ω̄

x2 − L2
+ ūxxω̄x −

c̄lx+ ū

x ∧ (L − x) (x ∧ (L− x))ω̄xxx − (c̄l + ūx)ω̄xx , x ∈ [0, L].

For the terms involving ūxx, ūxxx, we use (A.4) and (A.5) in Lemma A.2 and the L2 isometry
of the Hilbert transform H

||ūxxx(x2 − L2)||L2[0,M ] ≤ ||ūxxx(x2 − L2)||L2[0,L] = ||ω̄xx(x
2 − L2)||L2[0,L] = J

1/2
4 ,

∣
∣
∣

∣
∣
∣
ūxx
x

∣
∣
∣

∣
∣
∣
L2[0,M ]

≤
∣
∣
∣

∣
∣
∣
ω̄x − ω̄x(0)

x

∣
∣
∣

∣
∣
∣
L2[0,L]

= J
1/2
3 , ||ūxx||L2[0,L] = ||ω̄x||L2[0,L] = J

1/2
6 .

Note that c̄lx+ u(x) = 0 at x = 0,±L. For the terms involving ū, ūx, we use the L∞ estimate

max
[0,L]

∣
∣
∣

c̄lx+ ū

x ∧ (L − x)
∣
∣
∣ = max

(

max
[0,M ]

∣
∣
∣
c̄lx+ ū

x

∣
∣
∣, max

[M,L]

∣
∣
∣
c̄lx+ ū

x− L
∣
∣
∣

)

≤ max
[0,L]
|c̄l + ūx| = K3.

For the terms involving ω̄, ω̄x, we also use the L∞ estimate
∣
∣
∣

∣
∣
∣

ω̄

x(x2 − L2)

∣
∣
∣

∣
∣
∣
L∞[0,M ]

= K5l,
∣
∣
∣

∣
∣
∣

ω̄

(x2 − L2)

∣
∣
∣

∣
∣
∣
L∞[0,L]

= K5,

||ω̄x||L∞[0,L] = K1, ||ω̄x||L∞[M,L] = K1r.
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For the terms involving ω̄xx, ω̄xxx, we use the L2 estimate

||ω̄xxx||L2[0,M ] = J
1/2
1 ,

∣
∣
∣

∣
∣
∣
ω̄xx

x

∣
∣
∣

∣
∣
∣
L2[0,M ]

= J
1/2
2 , ||ω̄2

xxx(x ∧ (L − x))||L2[0,L] = J
1/2
5 ,

||ω̄2
xxx(x ∧ (L− x))||L2[M,L] = J

1/2
5r , ||ω̄xx||L2[0,L] = J

1/2
7 , ||ω̄xx||L2[M,L] = J

1/2
7r .

We apply the above estimates and the triangle inequality to yield

(3.12)

∣
∣
∣

∣
∣
∣
Fxx

x

∣
∣
∣

∣
∣
∣
L2[0,M ]

≤ K5lJ
1/2
4 +K1J

1/2
3 +K3(J

1/2
1 + J

1/2
2 ) , B1,

||Fxx||L2[M,L] ≤ K5J
1/2
4 +K1rJ

1/2
6 +K3(J

1/2
5r + J

1/2
7r ) , B2,

||Fxx||L2[0,L] ≤ K5J
1/2
4 +K1J

1/2
6 +K3(J

1/2
5 + J

1/2
7 ) , B3.

Combining (3.1), (3.2) in Lemma 3.1, the Hardy inequality (3.11) and the above estimates
(3.12), we obtain the first two inequalities in (3.9).

∫ M

0

F 2

x4
dx− Th

(
F 2

x4
, 0,M

)

≤ h2

15

∫ M

0

F 2
xx

x2
dx ≤ B2

1

15
h2,

∫ L

M

F 2

(x− L)2 dx− Th
(

F 2

(x− L)2 ,M,L

)

≤ h2

3

∫ L

M

F 2
xxdx ≤

B2
2

3
h2.

To obtain the remaining inequalities in (3.9), we note that (3.3), (3.4) and (3.5) are quadratic
inequalities with respect to

I1 , ||F ||L2[0,L], I2 ,
∣
∣
∣

∣
∣
∣
Fx

x

∣
∣
∣

∣
∣
∣
L2[M,L]

, I3 , ||F 2
x ||L2[0,L],

and the coefficients on the right hand side of (3.3), (3.4) and (3.5) are bounded by Bi defined
in (3.12). Using (3.3) and (3.12), we get

I21 ≤ Th(F 2, 0, L) +
h2

4
B3I1,

from which we can solve I1 and obtain the following estimate

I1 ≤
1

2

(

h2

4
B3 +

√

h4

16
B2

3 + 4Th(F 2, 0, L)

)

.

Taking square on both sides, we prove the third inequality in (3.9). The bound for I2, I3 can be
obtained similarly and we omit their proofs.

�
Using (3.12) and the rigorous bounds in (1.7), we have that

B1 < 2.217, B2 < 11.05, B3 < 12.16.

We will use the interval arithmetics computation to verify that

Th(F
2, 0, L) < 8.445× 10−10, Th(

F 2

x4
, 0,M) < 7.388× 10−10.

Th(
F 2

(x− L)2 ,M,L) < 6.248× 10−9,

Th(F
2
x , 0, L) < 9.850× 10−9, Th(

F 2
x

x2
, 0,M) < 2.197× 10−9.
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Then using (3.9), we obtain the following rigorous upper bounds:

(3.13)

IF1 ,

∫ M

0

F 2

x4
dx < 9.435× 10−10 < 10−9,

IF2 ,

∫ L

M

F 2

(x− L)2 dx < 3.164× 10−8 < 4× 10−8,

IF3 ,

∫ L

0

F 2dx < 8.446× 10−10 < 10−9,

IF4 ,

∫ M

0

F 2
x

x2
dx < 6.749× 10−9 < 10−8,

IF5 ,

∫ L

0

F 2
xdx < 1.112× 10−7 < 2× 10−7.

3.2. Estimate of the error terms. We choose the functions ρ1, ρ2 as follows

(3.14) ρ1 = 1.25x−41x≤M + 0.1 + 0.01(x− L)−21x≥M , ρ2 = x−21x≤M + 0.02.

Using these weights and the Cauchy-Schwartz inequality, we can estimate the error terms in
the weighted L2, H1 errors (1.4) as follows

|F1| = |〈F (ω̄), ωϕ〉| ≤
1

4τ
〈F (ω̄)2, ρ1〉+ τ〈ω2, ϕ2ρ−1

1 〉 ,

|F2| = |〈(F (ω̄))x, ωϕ〉| ≤
1

4τ
〈(F (ω̄))2x, ρ2〉+ τ〈ω2

x, ψ
2ρ−1

2 〉,

where τ is to be determined. Choose µ = 0.02 and define F0 below

F0 ,
1

4τ
〈F (ω̄)2, ρ1〉+

µ

4τ
〈(F (ω̄))2x, ρ2〉.

We then obtain

(3.15) |F1 + µF2| ≤ F0 + τ〈ω2, ϕ2ρ−1
1 〉+ µτ〈ω2

x, ψ
2ρ−1

2 〉.
Using the upper bounds of the integrals in (3.13) and the definition of ρi in (3.14), we get

(3.16) F0 ≤
1

4τ
(1.25 · IF1 + 0.01 · IF2 + 0.1 · IF3 + 5µ · IF4 + 0.1µ · IF5) ≤

1

4τ
· 1.760 · 10−9.

4. Estimate of the nonlinear term

4.1. Estimate of ux, ω, u/x. To control the nonlinear term, it suffices to control ||ux||L∞[0,L] .
First of all, we have the following comparison result.

Lemma 4.1. The weights ϕ, ψ satisfy for x ∈ [0, L]

(4.1)
ϕ(x) ≥ 1.15

(
1

x4
+

0.02

x2

)

, ϕ1(x), ϕ(x) ≥ 0.0085

(
1

(x − L)2 +
1

(x+ L)2

)

, ϕ2(x),

ψ(x) ≥ 0.97(x−2 + 0.01) , ψ1(x).

Lemma A.2 and the L2 isometry of the Hilbert transform (A.7) with p = 2, 4 then imply

(4.2)

〈ω2, ϕ〉 ≥ 〈ω2, ϕ1〉 =
∫ L

0

(ux − ux(0))2ϕ1dx,

〈ω2, ϕ〉 ≥ 〈ω2, ϕ2〉 =
∫ L

0

(ux − ux(L))2ϕ2dx, 〈ω2
x, ψ〉 ≥ 〈ω2

x, ψ1〉 =
∫ L

0

u2xxψ1dx.

We plot the numerical values of ϕ1/ϕ, ϕ2/ϕ, ψ1/ψ on the grid points in the first subfigure in
Figure 2 in the Appendix.

We consider the following functions and energy

(4.3) ξ1 , x−3 + 0.0125x−1, ξ2 , (L− x)−1 + 0.029(L− x), E2(t) , 〈ω2, ϕ〉+ µ〈ω2
x, ψ〉,
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where µ > 0 are to be determined. For x < 0, ξ2 should be considered as ξ2 = (L − |x|)−1 +
0.029(L− |x|). Due to the odd/even symmetry, we only focus on x > 0 and drop the absolute
sign to simplify the notations. We have the following estimate for ux.

Lemma 4.2. Suppose that α1, α2 satisfies

(4.4) ξ2i ≤ µ(αiϕi − ξi,x)αiψi, i = 1, 2,

where ψ2 = ψ1 and ϕi are defined in Lemma 4.1. Then we have

(4.5) |ux(x)− ux(0)| ≤
(

α1

ξ1(x)

)1/2

E(t), |ux(x) − ux(L)| ≤
(

α2

ξ2(x)

)1/2

E(t).

By definition, ξ1(x) > 0 and ξ2(x) > 0 for x ∈ [0, L]. We will choose α1 = 5.6 and α2 = 500.
For these parameters, we plot the numerical values of the ratio between the left and the right
hand sides of (4.4) on the grid points in the second subfigure in Figure 2 in the Appendix.

Proof. Note that (ux − ux(0))2ξ1 vanishes at x = 0 due to ux − ux(0) = O(x2). For x close to
0, we differentiate it and use the Cauchy-Schwartz inequality to yield

(ux − ux(0))2ξ1 =

∫ x

0

2uxx(ux − ux(0))ξ1dx+

∫ x

0

(ux − ux(0))2ξ1,xdx

≤
∫ x

0

(ux − ux(0))2(α1ϕ1 − ξ1,x) + u2xxξ
2
1(α1ϕ1 − ξ1,x)−1dx+

∫ x

0

(ux − ux(0))2ξ1,xdx

=

∫ x

0

(ux − ux(0))2(α1ϕ1)dx+

∫ x

0

u2xxξ
2
1(α1ϕ1 − ξ1,x)−1dx ,

where we have used α1ϕ1 − ξ1,x > 0 (4.4) when we applied the Cauchy-Schwartz inequality.
Using the assumption (4.4), we obtain

(ux − ux(0))2ξ1 ≤
∫ x

0

(ux − ux(0))2(α1ϕ1)dx+

∫ x

0

u2xxµα1ψ1dx.

Combining the above estimates and (4.2), we prove

(ux − ux(0))2ξ1 ≤ α1〈ω2, ϕ〉+ µα1〈ω2
x, ψ〉 = α1E

2(t).

Taking the square root yields the first estimate in (4.5). For x close to L, applying an argument
similar to that in our estimate for (ux − ux(L))2ξ2 yields

|ux(x) − ux(L)| ≤ (α2ξ
−1
2 )1/2E(t),

which is the second estimate in (4.5). �
For ω, we have a similar result.

Lemma 4.3. Suppose that the assumptions in Lemma 4.2 holds and x > 0. We have

(4.6) |ω(x)| ≤
(
ξ1(x)

α1
+
ξ2(x)

α2

)−1/2

E(t).

Proof. Using an estimate similar to that in the proof of Lemma 4.2, we have

ω2(x)ξ1(x) ≤ α1

(∫ x

0

ω2ϕ1dx + µ

∫ x

0

ω2
xψ1dx

)

, ω2(x)ξ2(x) ≤ α2

(
∫ L

x

ω2ϕ2dx+ µ

∫ L

x

ω2
xψ1dx

)

.

Using (4.1) and the above estimate, we derive

ω2(x)

(
ξ1(x)

α1
+
ξ2(x)

α2

)

≤
(∫ x

0

ω2ϕdx+ µ

∫ x

0

ω2
xψdx

)

+

(
∫ L

x

ω2ϕdx+ µ

∫ L

x

ω2
xψdx

)

= 〈ω2, ϕ〉+ µ〈ω2
x, ψ〉 = E2(t),

which further implies (4.6) after taking the square root. �
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A direct result of Lemma 4.2 is the following lemma.

Lemma 4.4. Suppose that the assumption in Lemma 4.2 holds and x > 0. We have

(4.7)
∣
∣
∣
u− ux(0)x

x

∣
∣
∣ ≤ 2

5
α
1/2
1 x3/2E(t),

∣
∣
∣
u− u(L)− ux(L)(x− L)

x− L
∣
∣
∣ ≤ 2

3
α
1/2
2 (L− x)1/2E(t).

Proof. From the definition of ξ1, ξ2 in (4.3), we know
(4.8)
(
α1

ξ1

)1/2

=

(
α1x

3

1 + 0.0125x2

)1/2

≤ α1/2
1 x3/2,

(
α2

ξ2

)1/2

=

(
α2(L− x)

1 + 0.029(L− x)2
)1/2

≤ α1/2
2 (L−x)1/2.

Applying the above estimate and (4.5), we yield

∣
∣
∣
u− ux(0)x

x

∣
∣
∣ =

∣
∣
∣
1

x

∫ x

0

ux(y)− ux(0)dy
∣
∣
∣ ≤ 1

x

∫ x

0

(
α1

ξ1

)1/2

dy · E(t)

≤ α1/2

x
E(t)

∫ x

0

y3/2dy =
2

5
α
1/2
1 x3/2E(t),

which is the first inequality in (4.7). Using (4.8) and (4.5), one can derive the second inequality
in (4.7) similarly. The factor 2/3 · (L− x)1/2 comes from

1

L− x

∫ L

x

(L − y)1/2dy =
2

3
(L− x)1/2.

�
For the end points ux(0), ux(L), cω = −u(L)/L, we use (1.5) and the Cauchy-Schwartz in-

equality to obtain the following estimate

(4.9)
|cω + ux(0)| = |〈gcω + gux(0), ω〉| ≤ 〈ω2, ϕ〉1/2〈(gcω + gux(0))

2, ϕ−1〉1/2 ≤ γ1E(t) ,

|cω + ux(L)| = |〈gcω + gux(L), ω〉| ≤ 〈ω2, ϕ〉1/2〈(gcω + gux(L))
2, ϕ−1〉1/2 ≤ γ2E(t) ,

where we have used 〈ω2, ϕ〉 ≤ E(t) and the constants γ1, γ2 are given by

γ1 , 〈(gcω + gux(0))
2, ϕ−1〉1/2, γ2 , 〈(gcω + gux(L))

2, ϕ−1〉1/2.

4.2. Estimate of the nonlinear terms. Recall the nonlinear terms N,N1, N2 in (1.4) and
the normalization conditions of cl, cω (1.3). Using integration by part, we have

(4.10)

N1 = 〈(cω + ux)ω − (clx+ u)ωx, ωϕ〉 =
〈((clx+ u)ϕ)x

2ϕ
+ cω + ux, ω

2ϕ
〉

=
〈3

2
(cω + ux) +

(

cl +
u

x

) xϕx

2ϕ
, ω2ϕ

〉

, 〈T, ω2ϕ〉 .

We use different estimates to handle T for x close to 0 and x close to L. For x close to 0, we
have

T = (cω + ux(0))

(
3

2
+
xϕx

2ϕ

)

+
3

2
(ux − ux(0)) +

(u

x
− ux(0)

) xϕx

2ϕ
.

Using (4.5), (4.7) and (4.9), we obtain

(4.11) |T | ≤
(

γ1

∣
∣
∣
3

2
+
xϕx

2ϕ

∣
∣
∣+

3

2

(
α1

ξ1

)1/2

+
2

5
α
1/2
1 x3/2

∣
∣
∣
xϕx

2ϕ

∣
∣
∣

)

E(t).

For x close to L, we use another decomposition to handle T

T = (cω +ux(L))

(
3

2
+

(x− L)ϕx

2ϕ

)

+
3

2
(ux− ux(L))+

u(x)− u(L)− ux(L)(x− L)
x− L

(x− L)ϕx

2ϕ
.

Using (4.5), (4.7) and (4.9), we obtain

(4.12) |T | ≤
(

γ2

∣
∣
∣
3

2
+

(x− L)ϕx

2ϕ

∣
∣
∣+

3

2

(
α2

ξ2

)1/2

+
2

3
α
1/2
2 (L − x)1/2

∣
∣
∣
(x− L)ϕx

2ϕ

∣
∣
∣

)

E(t).
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Combining (4.10), (4.11) and (4.12), we obtain

(4.13) |N1| ≤ 〈Z1(x), ω
2ϕ〉E(t) ,

where Z1(x) is given by

(4.14)

Z1(x) ,min

(

γ1

∣
∣
∣
3

2
+
xϕx

2ϕ

∣
∣
∣+

3

2

(
α1

ξ1

)1/2

+
2

5
α
1/2
1 x3/2

∣
∣
∣
xϕx

2ϕ

∣
∣
∣,

γ2

∣
∣
∣
3

2
+

(x− L)ϕx

2ϕ

∣
∣
∣+

3

2

(
α2

ξ2

)1/2

+
2

3
α
1/2
2 (L− x)1/2

∣
∣
∣
(x− L)ϕx

2ϕ

∣
∣
∣

)

.

For N2 in (1.4), we use integration by parts to obtain

(4.15)

N2 = 〈((cω + ux)ω − (clx+ u)ωx)x, ωxψ〉 = 〈uxxω − (clx+ u)ωxx, ωxψ〉

=
〈 ((clx+ u)ψ)x

2ψ
, ω2

xψ
〉

+ 〈uxxω, ωxψ〉 , N2,1 +N2,2.

For the first part, using (4.10), (4.11), (4.12) and an estimate similar to that in our estimate for
N1, we obtain

(4.16) N2,1 ≤ 〈Z2(x), ω
2
xψ〉E(t),

where Z2(x) is given by

(4.17)

Z2(x) ,min

(

γ1

∣
∣
∣
1

2
+
xψx

2ψ

∣
∣
∣+

1

2

(
α1

ξ1

)1/2

+
2

5
α
1/2
1 x3/2

∣
∣
∣
xψx

2ψ

∣
∣
∣,

γ2

∣
∣
∣
1

2
+

(x− L)ψx

2ψ

∣
∣
∣+

1

2

(
α2

ξ2

)1/2

+
2

3
α
1/2
2 (L− x)1/2

∣
∣
∣
(x− L)ψx

2ψ

∣
∣
∣

)

.

For N2,2, we use (4.1), (4.2) and the Cauchy-Schwartz inequality to yield

|N2,2| ≤ 〈u2xx, ψ1〉1/2〈ω2, ω2
xψ

2ψ−1
1 〉1/2 ≤ 〈ω2

x, ψ1〉1/2〈ω2, ω2
xψ

2ψ−1
1 〉1/2.

For some constant b3 > 0 to be determined, we use the above estimate and (4.6) to derive
(4.18)

|N2,2| ≤ b3〈ω2
x, ψ1〉E(t) +

1

4b3
〈ω2, ω2

xψ
2ψ−1

1 〉E(t)−1

≤b3〈ω2
xψ, ψ1ψ

−1〉E(t) +
1

4b3

〈(ξ1(x)

α1
+
ξ2(x)

α2

)−1

, ω2
xψ

2ψ−1
1

〉

E(t) , 〈Z3(x), ω
2
xψ〉E(t),

where Z3(x) is given by

(4.19) Z3(x) = b3ψ1ψ
−1 +

1

4b3

(
ξ1(x)

α1
+
ξ2(x)

α2

)−1

ψψ−1
1 .

We choose b3 = 10 in the final estimate.

4.3. Summary of the estimates for the nonlinear terms. Combining the estimate (4.13),
(4.15), (4.16) and (4.18), we prove

(4.20) |N1|+µ|N2| ≤ |N1|+µ(|N2,1|+|N2,2|) ≤ 〈Z1(x), ω
2ϕ〉E(t)+µ〈Z2(x)+Z3(x), ω

2
xψ〉E(t) ,

where Z1, Z2 and Z3 are defined in (4.14), (4.17) and (4.19), respectively.

5. Nonlinear estimate

In this section, we combine all the estimates to obtain the nonlinear stability.
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Optimizing the parameters. We choose the following parameter

µ = 0.02, τ = 0.05, α1 = 5.6, α2 = 500.

We can verify that α1, α2 given above satisfy the assumption in Lemma 4.2.
Combining the weighted L2 estimate

1

2

d

dt
〈ω2, ϕ〉 ≤ −0.3〈ω2, ϕ〉+N1 + F1,

the weighted H1 estimate (2.4) in Lemma 2.1, the energy E(t) in (4.3), the estimate of error
term (3.15) and the estimate of nonlinear term (4.20), we have proved rigorously that
(5.1)
1

2

d

dt
E(t)2 =

1

2

d

dt
(〈ω2, ϕ〉+ µ〈ω2

x, ψ〉) ≤ (−0.3 + 7.5µ)〈ω2, ϕ〉 − 0.25µ〈ω2
x, ψ〉

+
(
F0 + τ〈ω2, ϕ2ρ−1

1 〉+ µτ〈ω2
x, ψ

2ρ−1
2 〉
)
+ 〈Z1(x), ω

2ϕ〉E(t) + µ〈Z2(x) + Z3(x), ω
2
xψ〉E(t).

=− 0.15〈ω2, ϕ〉 − 0.25µ〈ω2
x, ψ〉+ F0 +

〈

τϕρ−1
1 + Z1(x)E(t), ω2ϕ

〉

+ µ
〈

τψρ−1
2 + (Z2(x) + Z3(x))E(t), ω2

xψ
〉

,

where we have used µ = 0.02 to obtain the last equality. We divide the damping term into two
parts as follows to control the error and the nonlinear term

−0.15〈ω2, ϕ〉 − 0.25µ〈ω2
x, ψ〉 = −0.05E(t)2 − 0.1〈ω2, ϕ〉 − 0.2µ〈ω2

x, ψ〉.
With this decomposition, we can further rewrite (5.1) as follows

(5.2)

1

2

d

dt
E(t)2 ≤ −0.05E(t)2 + F0 +

〈

− 0.1 + τϕρ−1
1 + Z1(x)E(t), ω2ϕ

〉

+ µ
〈

− 0.2 + τψρ−1
2 + (Z2(x) + Z3(x))E(t), ω2

xψ
〉

.

We use the bootstrap argument to complete the proof. We choose the threshold below

E∗ , 5 · 10−4.

Suppose that E(0) < E∗. To complete the bootstrap argument, it suffices to show that the right
hand side of (5.2) is negative at E(t) = E∗. In particular, it can be verified rigorously that
(5.3)






F0 − 0.05E∗2 < 0

−0.1 + τϕρ−1
1 + Z1(x)E

∗ < 0

−0.2 + τψρ−1
2 + (Z2(x) + Z3(x))E

∗ < 0,

⇐⇒







1
0.2 · 1.389 · 10−9 − 0.05E∗2 < 0

−0.1 + 0.05ϕρ−1
1 + Z1(x)E

∗ < 0

−0.2 + 0.05ψρ−1
2 + (Z2(x) + Z3(x))E

∗ < 0,

where we have used (3.16) and substituted τ = 0.05. The first inequality comes from a direct
calculation. We plot the numerical values of the left hand side of the second and the third
quantity on the grid points in Figure 3 in the Appendix. Therefore, we prove that the bootstrap
argument can be continued. Hence, E(t) < E∗ for all t > 0 and the nonlinear stability follows.

With this a-priori estimate, one can further establish the convergence result using an argu-
ment similar to that in the proof for small |a|.

Appendix A. Some useful Lemmas

The following Lemmas are proved in the Appendix of [1] and we have used them in this
supplementary material.

Lemma A.1 (The Tricomi identity). We have

(A.1) H(ωHω) =
1

2
((Hω)2 − ω2).

Lemma A.2. Suppose that ux = Hω. Then we have

(A.2)
ux − ux(0)

x
= H

(ω

x

)

, or equivalently (Hω)(x) = (Hω)(0) + xH
(ω

x

)

.
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Similarly, we have

(A.3)
ux − ux(L)
x− L = H

(
ω

x− L

)

, uxx = Hωx, xuxx = H(xωx).

Suppose that in addition ω is odd. Then we have

(A.4) x2uxx = H(x2ωx), xux = H(xω),
uxx
x

= H

(
ωx − ωx(0)

x

)

.

If ω is odd and a piecewise cubic polynomial supported on [−L,L] with ω(L) = ω(−L) = 0
(ω′, ω′′ may not be continuous at x = ±L), then we have

(A.5) uxxx(x
2 − L2) = H(ωxx(x

2 − L2)).

Lemma A.3. Suppose ux = Hω. (a) We have

∫

R

(ux − ux(0))ω
x

=
π

2
(u2x(0) + ω2(0)) ≥ 0.(A.6)

In particular, (A.6) vanishes if ux(0) = ω(0) = 0.
(b) The Hardy inequality: Suppose that ω is odd and ωx(0) = 0. For p = 2, 4, we have

(A.7)

∫
(u− ux(0)x)2
|x|p+2

≤
(

2

p+ 1

)2 ∫
(ux − ux(0))2

|x|p =

(
2

p+ 1

)2 ∫
ω2

|x|p .

Appendix B. Numerical values of some functions on the grid points

We plot the numerical values of some functions on the grid points in this Section. We remark
that all the estimates can be verified rigorously using the strategy we discussed in [1] (see page
21). The following figures are used to visualize several estimates.

0 2 4 6 8 10

x

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04
Estimate of cross term I

2

rescaled S
k, h

: S
k, h

 / 20

Weighted error : ∆(x)

0 2 4 6 8 10

x

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Estimate of cross term II

2

Remaining H1 damping S
1
:

H1 Cross term (recaled): S
2
/7.5

Figure 1. Left: Numerical values of Sk,h and ∆(x) on the grid points. Right:
Numerical values of S1 and S2 on the grid points. We plot the rescaled Sk,h,
i.e. Sk,h/20, and the rescaled S2, i.e. S2/7.5.

B.1. Figure related to Section 2. On the left subfigure of Figure 1, the numerical values of
Sk,h are monotonically increasing and |∆(x)| ≤ 0.1 on the grid points. On the right subfigure,
the numerical values of S1, S2 on the grid points are less than −0.3, 7.5, respectively.



18 JIAJIE CHEN, THOMAS Y. HOU, AND DE HUANG

0 2 4 6 8 10

x

0

0.2

0.4

0.6

0.8

1
Lemma 4.1 : comparison of weights

phi
1
 / phi

phi
2
 / phi

psi
1
 / psi

0 2 4 6 8 10

x

0

0.2

0.4

0.6

0.8

1
Lemma 4.2 : inequalities in the assumption 

Ratio
1

Ratio
2

Figure 2. Comparison of several functions. Left: Numerical values of
ϕ1/ϕ, ϕ2/ϕ, ψ1/ψ on the grid points. Right: Numerical values of two ratios

in (4.4) on the grid points. Here, Ratioi = ξ2i (µ(αiϕi − ξi,x)αiψi)
−1
, i = 1, 2..

B.2. Figure related to Section 4. Numerical values of ϕ1/ϕ, ϕ2/ϕ, ψ1/ψ (see Lemma 4.1)

and the ratio Ratioi = ξ2i (µ(αiϕi − ξi,x)αiψi)
−1 , i = 1, 2 (see Lemma 4.2) on the grid points

are strictly less than 1.

0 1 2 3 4 5 6 7 8 9 10

x

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04
Quantities in the bootstrap argument 

Quantity 2
Quantity 3

Figure 3. Numerical values of the left hand side of the second and the third
inequality in (5.3) on the grid points.

B.3. Figure related to Section 5. Quantity 2, 3 in Figure 3 represents the left hand side of
the second and the third inequality in (5.3), i.e.

Quantity 2 , −0.1 + 0.05ϕρ−1
1 + Z1(x)E

∗,

Quantity 3 , −0.2 + 0.05ψρ−1
2 + (Z2(x) + Z3(x))E

∗.

Numerical values of Quantity 2, 3 on the grid points are less than −0.04 < 0.
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