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This document provides supplementary information to “Ultrabroadband nonlinear optics in 
nanophotonic periodically poled lithium niobate waveguides,” https://doi.org/10.1364/
OPTICA.7.000040. In this supplemental, we discuss the calculation of the effective areas for 
nonlinear interactions in tightly confining waveguides. The detailed calculations presented 
here will help readers to reproduce the results shown in the main article.

1. EFFECTIVE AREA OF SECOND HARMONIC GENER-
ATION

In this section, we derive the nonlinear coupling between two
waveguide modes and define the effective area, Aeff, associated
with these interactions. The effective area provides a measure
of the strength of a nonlinear interaction due to the tight con-
finement of the waveguide; small effective areas correspond
to large field intensities and large normalized efficiencies. We
begin by reviewing the necessary components of linear optical
waveguide theory to establish the notation used throughout this
section. Then, we review the coupled wave equations for sec-
ond harmonic generation (SHG) in a nonlinear waveguide. The
treatment used here accounts for the fully-vectorial nature of
the modes, with each field component of the waveguide mode
coupled together by the full nonlinear tensor, dijk, of the media
that comprise the waveguide. Remarkably, these equations have
the same form as the coupled wave equations for SHG in much
simpler contexts, such as SHG of plane waves and paraxial gaus-
sian beams. The effective area arises naturally when calculating
the normalized conversion efficiency of the power in the second
harmonic, P2ω/Pω .

Waveguide modes arise as the solution to Maxwell’s equa-
tions in the absence of a nonlinear polarization, with a dielectric

constant that varies in two spatial dimensions,

∇× H(x, y, z, ω) = iωε̄(x, y, ω)E(x, y, z, ω), (S1a)

∇× E(x, y, z, ω) = −iωµ0H(x, y, z, ω). (S1b)

We note that the media considered here are anisotropic, thus
ε̄(x, y, ω) is a second order tensor. We expand the field in a series
of guided modes

E(x, y, z, ω) = ∑
µ

aµ(ω)Eµ(x, y, ω)e−ikµ(ω)z (S2a)

H(x, y, z, ω) = ∑
µ

aµ(ω)Hµ(x, y, ω)e−ikµ(ω)z (S2b)

where aµ represents the component of E contained in mode µ
around frequency ω. The transverse mode profiles, Eµ and Hµ,
and their associated propagation constant, kµ, arise as solutions
to an eigenvalue problem[1], and each pair of waveguide modes
satisfies the orthogonality relation∫

A

1
2

Re
([

Eν × H∗µ
]
· ẑ
)

dxdy = Pδµ,ν. (S3)

The fields, as defined, are normalized such that P = 1W, and
therefore the power contained in mode µ is P|aµ|2. For conve-
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nience, we define the transverse mode profiles using dimension-
less functions e(x, y) and h(x, y)

Eµ(x, y) =

√
2Z0P

nµ Amode,µ
eµ(x, y), (S4a)

Hµ(x, y) =

√
2nµP

Z0 Amode,µ
hµ(x, y), (S4b)

where nµ is the effective index of mode µ, and Z0 is the
impedance of free space. As a consequence of Eqn. (S3), the ef-
fective area of mode µ is given by Amode,µ =

∫
(eµ × h∗µ) · ẑdxdy.

The presence of a nonlinear polarization at frequency ω gives
rise to driving terms that cause aµ to evolve in z. Under these
conditions, it can be shown using the methods described in [2, 3]
that aµ evolves as

∂zaµ(z, ω) =
−iω
4P

eikµ

∫
E∗µ · PNL,µdxdy. (S5)

For second harmonic generation in the limit where one pair of
modes is close to phasematching, we consider one mode for
the fundamental at frequency ω and for the second harmonic
at frequency 2ω without loss of generality. For the remainder
of this article, the modes under consideration will be referred
to as aω and a2ω for the fundamental and second harmonic,
respectively. In this case, the nonlinear polarization is given by

PNL,ω = 2ε0deffa2ωa∗ω ∑
jk

d̄ijkEj,2ωE∗k,ωe−i(k2ω−kω)z (S6a)

PNL,2ω = ε0deffa
2
ω ∑

jk
d̄ijkEj,ωEk,ωe−2ikωz (S6b)

where i, j, k ∈ {x, y, z}. deff = 2
π d33 is the effective nonlinear

coefficient for a 50% duty cycle periodically poled waveguide,
and d̄ijk is the normalized χ(2) tensor. For lithium niobate, this
is expressed using contracted notation[4] in the coordinates of
the crystal as

d̄i J =
1

d33


0 0 0 0 d15 d16

d16 −d16 0 d15 0 0

d15 d15 d33 0 0 0


where d15 = 3.67 pm/V, d16 = 1.78 pm/V, and d33 = 20.5 pm/V
for SHG of 2-µm light. These values are found using a least
squares fit of Miller’s delta scaling to the values reported in [5, 6],
and have relative uncertainties of ±5%. We therefore expect a
relative uncertainty in any calculated normalized efficiency to
be ±10%.

We arrive at the coupled wave equations for SHG by substi-
tuting Eqns. (S6a-S6b) into Eqn. (S5) and defining Aω =

√
Paω

∂z Aω = −iκA2ω A∗ωe−i∆k (S7a)

∂z A2ω = −iκA2
ωei∆k (S7b)

The coupling coefficient, κ, and the associated effective area are
given by

κ =

√
2Z0ωdeff

cnω
√

Aeffn2ω
(S8a)

Aeff =
A2

mode,ω Amode,2ω∣∣∣∫ ∑i,j,k d̄ijke∗i,2ωej,ωek,ωdxdy
∣∣∣2 (S8b)

We conclude this section by noting that for the waveguide modes
considered here the overlap integral in Eqn. (S8b) and the result-
ing κ are real. The general case, in which κ is complex, is beyond
the scope of this supplemental.
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