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Abstract. In this paper, we study the Poincaré inequality with subsampled measurement
functions and apply it to functional recovery problems. The optimality of the inequality

with respect to the subsampled length scale is demonstrated. The approximation accuracy

of the recovery using different basis functions and under different regularity assumptions is
established by using the subsampled Poincaré inequality. The error bound blows up as the

subsampled length scale approaches 0 if the underlying function is not regular enough. We

discuss a weighted version of the Poincaré inequality to address this problem.

1. Introduction

The Poincaré inequality, in one of its forms, states that for a bounded domain Ω in Rd, there
exists a constant C(d, p), depending on d and p only, such that for every function u in the
Sobolev space W 1,p(Ω), it holds

‖u− (u)Ω‖Lp(Ω) ≤ C(d, p)diam(Ω)‖Du‖Lp(Ω) ,

where, (u)Ω is the average of u in Ω, i.e. (u)Ω = 1
|Ω|
∫

Ω
u(x) dx. Here, ‖ · ‖Lp(Ω) represents the

Lp norm of a function in the domain Ω, and diam(Ω) is the diameter of Ω.
From a functional recovery perspective, we can interpret it in the following way. Suppose we

have the knowledge that the function u is in W 1,p(Ω) and ‖Du‖Lp(Ω) ≤ M for some M > 0,
and we measure the average data (u)Ω. Our target is to recover u as accurate as possible.
Simple recovery of u can be chosen as the constant function (u)Ω. Despite being so simple,
guaranteed error control in the Lp norm of the recovery, due to the Poincaré inequality, is given
by C(d, p)diam(Ω)M , in the worst case.

Now, one starts to place more sensors in the physical domain to look for more refined mea-
surement data. For simplicity, let us assume Ω = [0, 1]d and the domain is partitioned evenly
into 1/Hd cubes each with a length scale H. We denote by Ω =

⋃
i∈I ω

H
i where ωHi is the cube

for the index i ∈ I and |I| = 1/Hd. The measuring strategy is that for each i, we acquire the
data (u)ωH

i
, which is the average of u in ωHi . With these data, a recovery of u is taken as a

piecewise constant function uH , which attains the value (u)ωH
i

in the patch ωHi for every i ∈ I.

We have the following error control of this recovery:

‖u− uH‖pLp(Ω) =
∑
i∈I
‖u− (u)ωH

i
‖p
Lp(ωH

i )
≤ C(d, p)pHp

∑
i∈I
‖Du‖p

Lp(ωH
i )

= C(d, p)pHp‖Du‖pLp(Ω) .

So, we get ‖u − uH‖Lp(Ω) ≤ C(d, p)MH by using the bound on Du. From the estimate, we
see that the worst case error decreases with the rate of O(H) as we refine the measurements.
In fact, it is the best error rate one can achieve when we only know that the function satisfies
‖Du‖Lp(Ω) ≤M , in the perspective of the Kolmogorov n-width [16].

The above example implies the usefulness of the Poincaré inequality for estimating recovery
residues. Indeed, many of the estimates in approximation theory, finite element analysis rely
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Figure 1. Domain Ω = [0, 1]2; the local cube ωHi and the subsampled cube ωh,Hi

on similar ideas, where many local basis functions with error control are constructed, and a
suitable global coupling scheme glues these basis functions to get the final recovery. Inspecting
the process, we see there may be two potential places to generalize: 1) the measurement data
type, which is the average in the local patches in the above example; 2) the local recovery
basis, which is taken to be a constant function in each patch in the example. In this paper,
we are interested in the subsampled data, which, under the above context, is an average of u

in the set ωh,Hi ⊂ ωHi that has a possibly smaller length scale compared to that of the patch
ωHi for each i, i.e. h ≤ H, see Figure 1 for a demonstration in the case d = 2. Thus, it is a
generalization for the h = H case. Physically, the measurement data of a field function are often
the macroscopic averaged quantities and represented by integration over a small region. The
subsampled measurements match this context and are also more general than the Diracs type
of measurements (i.e., h = 0 case), which may not be well-defined if the function does not have
enough regularity according to the Sobolev embedding theorem [6]. It is useful to understand
the behavior of these subsampled data in such a setting. We will also discuss the scenario that
the measurement data is integration against some low dimensional slices of the domain.

Given the subsampled data, we discuss different local basis functions for the recovery that can
attain desired approximation accuracy when u is in different functional classes. The approach
relies on a generalized Poincaré inequality for subsampled measurement data with an optimal
rate on the small scale parameter h. To improve from the piecewise constant recovery, we borrow
ideas in the spline approximation theory to obtain basis functions with better regularity. This
has connections to the multiscale PDEs context, see the work of rough polyharmonic splines [15]
and Gamblets [13]. We will discuss the implication of our subsampled setting in the multiscale
PDEs problem and other applications in our subsequent paper [3].

In the functional recovery setting, when the underlying function is not regular enough, we
observe that the error bound of the recovery blows up as we decrease the subsampled scale
h. This is due to the fact that the point-wise value of a W 1,p function is not well-defined if
d ≥ p. However, if we put more structures on u, for example,

∫
Ω
w(x)|Du(x)|p dx < ∞ for

some singular weight function, then we can obtain improved accuracy. We discuss a weighted
Poincaré inequality to analyze the error of the recovery in such a case.
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Related works. Many people have considered extending the constant (u)Ω in the Poincaré
inequality to a general linear functional on u. In [9][10], the authors analyzed the condition
of the functional in a great depth. In Chapter 4 of [18], a unified approach of the Poincaré
inequality was discussed. In [1], the linear constraints in Poincaré and Korn type inequalities
were investigated. Our subsampled measurements can be seen as a special case of their linear
functional or linear constraints. However, the motivation is different, and their results do not
directly lead to the optimal rate of h here. In the literature, we found a result similar to ours in
Corollary 2.7 of [17] with a different proof strategy. Their rate on h is a little tighter than ours
up to a log term in the critical p = d case. We prove the rate is indeed optimal with respect to
h in Proposition 2.1.

The optimal recovery problem has been framed in [11]. In a recent book [14], the authors
discussed the game-theoretical and Bayesian ways of optimal recovery and numerical homoge-
nization. When h = 0 and the coefficient a used in the improved basis functions is constant, our
improved basis functions reduce to the polyharmonic splines [7][5]. When h = 0 or H, and the
coefficient a is in L∞(Ω), then the improved basis functions reduce to Gamblets [13] and rough
polyharmonic splines [15]. We remark that in [14], the discussion of the measurement function
entails a great generality, and some general conditions on the measurements were proposed to
guarantee the approximation accuracy. Our h ∈ (0, H) case does satisfy their condition, but the
results there do not cover the optimal dependence regarding h. In the finite element context,
the case h 6= 0 also relates to the Clément interpolation [4].

There has been a vast literature on the weighted Sobolev space and weighted Poincaré in-
equality. To the best of our knowledge, most of them focus on the case in which both the
left-hand side and the right-hand side of the inequality are weighted. In our case, we only set
the right-hand side gradient norm to be weighted. In [2], a similar degeneracy issue regarding the
graph Laplacian approach [12] for semi-supervised learning was discussed. Our weight function
shares a form similar to theirs.

Notations. We present our notations here. We use χA(x) for the characteristic function of
the set A. The diameter of a set Ω ⊂ Rd is denoted by diam(Ω). For a function in Euclidean
space Rd with variable x, i.e. f(x), the integration on a measurable set A against the Lebesgue
measure will be denoted by

∫
A
f(x) dx, while the integration with respect to a measure λ will be

written as
∫
A
f(x) dλ(x). When there is no ambiguity, the variable name “x” in the integration

may be omitted for simplicity. Lp(Ω) stands for the space of pth power summable functions
over Ω with the corresponding norm ‖ · ‖Lp(Ω), and W 1,p(Ω) represents the standard Sobolev
space on the domain Ω. We use | · | for both the absolute value of a scalar and the modulus of a
vector. When we say a set Ω is a domain, it refers to a connected, open set. The d dimensional
Lebesgue measure of Ω ⊂ Rd (i.e. the volume) is written as µd(Ω). For k < d, we use µk(Γ) to
represent the k dimensional Hausdorff measure of a k dimensional measurable subset Γ ⊂ Rd.

Throughout the paper, C(d, p) (resp. C(d)) stands for a positive generic constant which only
depends on d, p (resp. d) and may attain different values at different places.

Organization. In Section 2, we discuss a generalized version of the Poincaré inequality, and
establish the optimality of the subsampled Poincaré inequality. The sliced measurement data is
also mentioned here. In Section 3, we consider an improvement of the basis function using ideas
from the spline approximation theory, motivated by the works on rough polyharmonic splines
[15] and Gamblets [13]. In Section 4, we present a weighted Poincaré inequality. Finally, we
conclude the paper in Section 5.
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2. The Poincaré inequality with general measurement function

We prove a generalized version of the Poincaré inequality here, which allows a general measure
as measurement functional. First, we give the assumption on the domain under consideration.

Assumption 2.1. Let Ω ⊂ Rd (d ≥ 2) be a bounded convex domain with a Lipschitz boundary.
λ is a non-negative measure with unit mass on Ω.

The convexity assumption could be relaxed, see Remark 2.1. We start with a Poincaré
inequality for W 1,1(Ω) in Theorem 2.1, and then generalize it to W 1,p(Ω) for 1 < p < ∞ in
Theorem 2.2 through a special weighted Hölder inequality.

Theorem 2.1. Under Assumption 2.1, the following inequality holds for every u ∈W 1,1(Ω) :

‖u−
∫

Ω

udλ‖L1(Ω) ≤ diam(Ω)

∫
Ω

(∫ 1

0

1

td
λ(
z − tΩ
1− t

∩ Ω) dt

)
|Du(z)|dz .(2.1)

Proof. We only need to prove the result for u ∈ C∞(Ω) ∩W 1,1(Ω) since this set is dense in
W 1,1(Ω). A direct calculation gives

(2.2)

‖u−
∫

Ω

udλ‖L1(Ω)

=

∫
Ω

∫
Ω

(u(x)− u(y)) dλ(x)dy

≤
∫

Ω

∫
Ω

|u(x)− u(y)|dλ(x)dy .

We express the difference u(x)− u(y) through its derivative Du using the Newton-Leibniz rule:

|u(x)− u(y)| = |
∫ 1

0

(x− y) ·Du((1− t)x+ ty) dt|

≤ diam(Ω)

∫ 1

0

|Du((1− t)x+ ty)|dt .

Plugging the above formula into the integral in (2.2) and using Fubini’s theorem, we obtain

(2.3)

∫
Ω

∫
Ω

|u(x)− u(y)|dλ(x)dy ≤ diam(Ω)

∫ 1

0

dt

∫
Ω

∫
Ω

|Du((1− t)x+ ty)|dλ(x)dy .

For any 0 ≤ t ≤ 1, we have

(2.4)

∫
Ω

∫
Ω

|Du((1− t)x+ ty)|dλ(x)dy

=

∫
Ω

dλ(x)

∫
Ω

|Du((1− t)x+ ty)|dy

(a)
=

∫
Ω

dλ(x)

∫
Ω

|Du(z)|χ(1−t)x+tΩ(z)
1

td
dz

=
1

td

∫
Ω

|Du(z)|dz
∫

Ω

χ z−tΩ
1−t

(x) dλ(x)

=
1

td

∫
Ω

λ(
z − tΩ
1− t

∩ Ω)|Du(z)|dz .

where we have used the change of variables z = (1 − t)x + ty in step (a). Since the set Ω is
assumed to be convex, the whole line will lie inside Ω, a fact which is employed in the above
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calculation. Combining (2.3) and (2.4) leads to

(2.5)

∫
Ω

∫
Ω

|u(x)− u(y)|dλ(x)dy ≤ diam(Ω)

∫
Ω

(∫ 1

0

1

td
λ(
z − tΩ
1− t

∩ Ω) dt

)
|Du(z)|dz .

This implies:

(2.6) ‖u−
∫

Ω

udλ‖L1(Ω) ≤ diam(Ω)

∫
Ω

(∫ 1

0

1

td
λ(
z − tΩ
1− t

∩ Ω) dt

)
|Du(z)|dz .

The proof is completed. �

We give an assumption on the upper bound of the measure. This assumption will be satisfied
for our subsampled measurements, see Corollary 2.1 and 2.2.

Assumption 2.2. There exists α(t) such that for every t ∈ [0, 1] and z ∈ Ω it holds that

λ( z−Ω
1−t ∩ Ω) ≤ α(t).

Given the above assumption, the generalized Poincaré inequality for 1 ≤ p <∞ is stated as
follows.

Theorem 2.2. Under Assumptions 2.1 and 2.2, the following Poincaré type inequality is true
for every u ∈W 1,p(Ω) and 1 ≤ p <∞ :

(2.7) ‖u−
∫

Ω

udλ‖Lp(Ω) ≤ diam(Ω)

(∫ 1

0

α(t)
1
p

t
d
p

dt

)
‖Du‖Lp(Ω) .

Proof. The result of the case p = 1 is a direct combination of Theorem 2.1 and Assumption 2.2.
For the case 1 < p <∞, we obtain by using Jensen’s inequality that,

‖u−
∫

Ω

udλ‖pLp(Ω)

=

∫
Ω

(∫
Ω

(u(x)− u(y)) dλ(x)

)p
dy

≤
∫

Ω

∫
Ω

|u(x)− u(y)|p dλ(x)dy .

Similarly, we use the Newton-Leibniz rule to express the term u(x)− u(y):

|u(x)− u(y)|p = |
∫ 1

0

(x− y) ·Du((1− t)x+ ty) dt|p

(b)

≤ diam(Ω)p
(∫ 1

0

w(t)−
1

p−1 dt

)p−1 ∫ 1

0

w(t)|Du((1− t)x+ ty)|p dt .

Here, the step (b) is due to the Hölder inequality, in which we introduce a weight function
w(t) ≥ 0, which will be determined in the subsequent calculations. We remark that without
a correct choice of the weight function, we would not be able to obtain an inequality with a
constant that has an optimal scaling property with respect to h, for case d 6= p, as in Corollary
2.1 and Corollary 2.2.
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Then, by the same change of variables as in (2.4), we get∫
Ω

∫
Ω

|Du((1− t)x+ ty)|p dλ(x)dy

=
1

td

∫
Ω

λ(
z − tΩ
1− t

∩ Ω)|Du(z)|p dz

≤α(t)

td

∫
Ω

|Du(z)|p dz .

Following the same argument as in (2.5) and (2.6), we obtain

‖u−
∫

Ω

udλ‖pLp(Ω) ≤ diam(Ω)p
(∫ 1

0

w(t)−
1

p−1 dt

)p−1(∫ 1

0

w(t)α(t)

td
dt

)
‖Du‖pLp(Ω) .

Now, we optimize the choice of the weight function w(t). Let

w(t)−
1

p−1 =
w(t)α(t)

td
,

which is the condition for the corresponding Hölder inequality to become an equality. Under
such a choice, we obtain

‖u−
∫

Ω

udλ‖Lp(Ω) ≤ diam(Ω)

(∫ 1

0

α(t)
1
p

t
d
p

dt

)
‖Du‖Lp(Ω) .

This completes the proof. �

We remark that some requirements in Assumption 2.1 can be relaxed, such as the convexity
of the domain and the regularity of the boundary, see Remark 2.1 and 2.2. That being said,
the present version is enough for our purpose of applications in the functional recovery and
multiscale PDEs with subsampled data.

Remark 2.1. The convexity assumption of the domain Ω can be relaxed. For general non-
convex domains, we can use the Sobolev extension theorem to extend the function to a larger
convex domain, for example, a ball. Then the results for the convex case can be applied. In this
regard, we only need the assumption of the domain that allows the Sobolev extension theorem to
hold.

Remark 2.2. In Assumption 2.1, we require the regularity of the boundary of the domain.
However, when λ has no mass in the boundary, this requirement can be removed. The reason
is that the density argument of Meyers-Serrin can be applied to any generic domain. That is
to say, C∞(Ω) ∩W 1,p(Ω) is always dense in W 1,p(Ω) and all the arguments follow in the same
way. When λ has mass in the boundary, we need C∞(Ω)∩W 1,p(Ω) to be dense, which puts the
regularity requirements on the boundary.

Using Theorem 2.2, we can get the following inequalities with subsampled data as a special
case.

Corollary 2.1 (Subsampled Poincaré inequality). Consider a bounded convex domain Ω ⊂ Rd
with Lipschitz boundary and a measurable subset D ⊂ Ω. Let µd(Ω) = Hd, µd(D) = hd, then
for any 1 ≤ p <∞ and u ∈W 1,p(Ω), the following inequality holds:

‖u− 1

hd

∫
D

u‖Lp(Ω) ≤ C(d, p)diam(Ω)ρp,d(
H

h
)‖Du‖Lp(Ω) ,
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where

ρp,d(x) =


1, d < p

ln(x+ 1), d = p

x
d−p
p d > p

and C(d, p) is a constant that depends on d and p only.

Proof of Corollary 2.1. Let the measure λ in Theorem 2.1 be supported on D and uniform in
D. Then, 1

hd

∫
D
u =

∫
Ω
udλ. Hence, we have

‖u− 1

hd

∫
D

u‖Lp(Ω) ≤ diam(Ω)

(∫ 1

0

α(t)
1
p

t
d
p

dt

)
‖Du‖Lp(Ω) ,

where α(t) is an upper bound on λ( z−tΩ1−t ∩Ω). A trivial bound is α(t) ≤ 1. On the other hand,
since λ is supported on D, we have

λ(
z − tΩ
1− t

∩ Ω) = λ(
z − tΩ
1− t

∩D) ≤ 1

hd
µd(

z − tΩ
1− t

) ≤ Hd

hd
(

t

1− t
)d,

where we have used the fact that the density of λ on D is 1
hd . Thus, we choose

α(t) = min{1, H
d

hd
(

t

1− t
)d} =

Hd

hd
(

t

1− t
)d · χ[0, h

H+h )(t) + 1 · χ[ h
H+h ,1](t) .

We then calculate the integral:

(2.8)

∫ 1

0

α(t)
1
p

t
d
p

dt = (
H

h
)

d
p

∫ h
H+h

0

1

(1− t)
d
p

dt+

∫ 1

h
H+h

1

t
d
p

dt .

When d < p, the integral in (2.8) becomes

(2.9)
p

p− d

(
(
H

h
)

d
p (1− (

H

H + h
)1− d

p ) + 1− (
h

H + h
)1− d

p

)
.

Since −1 < d
p − 1 < 0, by Bernoulli’s inequality, we have

(
H

h
)

d
p (1− (

H

H + h
)1− d

p ) = (
H

h
)

d
p (1− (1 +

h

H
)

d
p−1) ≤ (

H

h
)

d
p
h

H
(1− d

p
) ≤ 1− d

p
,

where we have used the fact (Hh )
d
p h
H = ( hH )1− d

p ≤ 1. Thus, we have the quantity in (2.9)
bounded by

p

p− d
(1− d

p
+ 1) =

2p− d
p− d

≤ C(d, p) .

When d = p, the integral in (2.8) is

(2.10)
H

h
ln(1 +

h

H
) + ln(1 +

H

h
) ≤ 1 + ln(1 +

H

h
) ≤ C ln(1 +

H

h
) .

When d > p, the integral in (2.8) becomes

(2.11)
p

d− p

(
(
H

h
)

d
p ((1 +

h

H
)

d−p
p − 1) + (1 +

H

h
)

d−p
p − 1

)
≤ C(d, p)(

H

h
)

d−p
p .

The proof is completed. �
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In the literature, we found that in Corollary 2.7 of [17], a similar rate on h is obtained through
a different approach from ours. In the critical case p = d, they use the Orlicz norm to get the
log dependence of H/h. Indeed, their result is a little tighter in the power of log than ours.
Based on their results, we can improve the rate function to be

(2.12) ρ̃p,d(x) =


1, d < p

(ln(x+ 1))
d−1
d , d = p

x
d−p
p d > p

We show the optimality of the rate above for Ω, D being balls. However, this choice of domain
to be balls here is just for the sake of the construction of critical examples. The optimality shall
hold for more general domains by following similar ideas here.

Proposition 2.1 (Sharpness of the rate). Let Ω = B1(0), Dh = Bh(0) be the balls centered at
0 with radius 1 and 0 ≤ h ≤ 1/4 respectively. Then, for d ≥ p, there exists a constant C(d, p)
that depends on d and p only, such that we can find a sequence of functions uh ∈W 1,p(Ω) which
satisfy

‖uh − 1
µd(Dh)

∫
Dh

uh‖Lp(Ω)

‖Duh‖Lp(Ω)
≥ C(d, p)ρ̃p,d(

1

h
) .

Proof of Proposition 2.1. We construct the sequence uh explicitly. For d = p, we take

uh(x) =
max {0, ln(1 + |x|

h )− ln 2}
ln(1 + 1

h )
.

Then uh(x) equals 0 in Dh. Thus,

‖uh −
1

µd(Dh)

∫
Dh

uh‖pLp(Ω) =

∫
B1(0)\Bh(0)

uph

= µd−1(Sd)
∫ 1

h

max {0, ln(1 + r
h )− ln 2}p

ln(1 + 1
h )p

rd−1 dr

≥ µd−1(Sd)
(ln(1 + 1

2h )− ln 2)p

ln(1 + 1
h )p

∫ 1

1/2

rd−1 dr

≥ C(d, p)

for some C(d, p) > 0 independent of h, since limh→0
ln(1+ 1

2h )

ln(1+ 1
h )

= 1. Here we use Sd to represent

the d dimensional unit sphere. On the other hand,

‖Duh‖pLp(Ω) =
1

(ln(1 + 1
h ))p

∫
B1(0)\Bh(0)

1

(h+ |x|)p
dx

= µd−1(Sd)
1

(ln(1 + 1
h ))p

∫ 1

h

rd−1

(h+ r)p
dr

≤ C(d, p)
1

(ln(1 + 1
h ))d−1

for some C(d, p) dependent of d, p. In the last step, we have used the inequality h+ r ≥ r and

the fact that limh→0
ln(1+ 1

h )

ln( 1
h )

= 1.

Hence, for this sequence uh, we get

‖uh − 1
µd(Dh)

∫
Dh

uh‖Lp(Ω)

‖Duh‖Lp(Ω)
≥ C(d, p)(ln(1 +

1

h
))

d−1
d = C(d, p)ρ̃p,d(

1

h
) .
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For d > p, we construct

uh(x) = min {max {|x| − h, 0}
h

, 1} .

Then, uh(x) vanishes in Dh, and

‖uh −
1

µd(Dh)

∫
Dh

uh‖pLp(Ω) =

∫
B1(0)\Bh(0)

uph

≥
∫
B1(0)\B1/2(0)

uph = C(d, p) ,

where C(d, p) is independent of h. Here we have used the fact h ≤ 1/4 and uh = 1 when
|x| ≥ 1/2. In the meanwhile, we get

‖Duh‖pLp(Ω) =

∫
B2h(0)\Bh(0)

1

hp
dx = C(d, p)hd−p .

Hence, we conclude that

‖uh − 1
µd(Dh)

∫
Dh

uh‖Lp(Ω)

‖Duh‖Lp(Ω)
≥ C(d, p)h

p−d
p = C(d, p)ρ̃p,d(

1

h
) .

The proof is completed. �

Remark 2.3. In the functional recovery context, suppose we have the measurement data {(u)ωh,H
i
}i∈I ,

then following the same argument in the introduction, we get the error bound of the piecewise
constant recovery

C(d, p)Hρ̃p,d(
H

h
)‖Du‖Lp(Ω) .

Inspecting this formula, we see that if the ratio H/h > 0 is fixed, then the error still achieves
the O(H) rate for functions in the space W 1,p(Ω). If p ≤ d, then taking h→ 0 the error bound
will blow up. This is due to the fact that the Sobolev embedding theorem fails to embed W 1,p(Ω)
to the functional space consisting of continuous functions.

We also consider the sliced version of the subsampled data, in the following Corollary 2.2.

Corollary 2.2 (Subsampled Poincaré inequality with sliced data). Consider a bounded convex
domain Ω ⊂ Rd with Lipschitz boundary and a hyperplane Γ ⊂ Ω with dimension d − 1. Let
µd−1(Γ) = hd−1, and suppose that for every hyperplane contained in Ω that is parallel to Γ,
its d − 1 dimensional Hausdorff measure is bounded by Hd−1. Then for any 1 < p < ∞ and
u ∈W 1,p(Ω), the following inequality holds:

‖u− 1

hd−1

∫
Γ

u‖Lp(Ω) ≤ C(d, p)diam(Ω)ρp,d(
H

h
)‖Du‖Lp(Ω) ,

where

ρp,d(x) =


1, d < p

ln(x+ 1), d = p

x
d−p
p d > p

and C(d, p) is a constant that depends on d and p only.

Proof of Corollary 2.2. Similar to the proof of Example 2.1, we first characterize α(t), and then
calculate the related integral. Since λ is supported on Γ, we have

λ(
z − tΩ
1− t

∩ Ω) = λ(
z − tΩ
1− t

∩ Γ) ≤ Hd−1

hd−1
(

t

1− t
)d−1,
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where we have used the fact that the density of λ on the d − 1 dimensional Γ is 1
hd−1 . Hence,

we choose

α(t) = min{1, H
d−1

hd−1
(

t

1− t
)d−1} =

Hd−1

hd−1
(

t

1− t
)d−1 · χ[0, h

H+h )(t) + 1 · χ[ h
H+h ,1](t) .

The corresponding integral is

(2.13)

∫ 1

0

α(t)
1
p

t
d
p

dt = (
H

h
)

d−1
p

∫ h
H+h

0

1

t
1
p (1− t)

d−1
p

dt+

∫ 1

h
H+h

1

t
d
p

dt .

For the first term in (2.13),

(
H

h
)

d−1
p

∫ h
H+h

0

1

t
1
p (1− t)

d−1
p

dt ≤(
H

h
)

d−1
p (1 + (1 +

h

H
)

d−1
p )

∫ h
H+h

0

1

t
1
p

dt

=
p

p− 1
(
H

h
)

d−1
p (1 + (1 +

h

H
)

d−1
p )(1 +

H

h
)

1
p−1

=
H

d−1
p (H + h)

1
p−1

h
d−p
p

(1 + (1 +
h

H
)

d−1
p )

≤(2
1
p−1 + 1)(

H

h
)

d−p
p (2 + 2

d−1
p ) ,

where in the last step we have used the estimate

(H + h)
1
p−1 ≤ H

1
p−1 + (2H)

1
p−1 and (1 +

h

H
)

d−1
p ≤ 1 + 2

d−1
p .

This is due to 0 ≤ h ≤ H and the fact that, the value of a one dimensional non-negative
monotone function will be not larger than the summation values of its two endpoints in an
interval. Observe that the last term in the above calculation will be bounded by a constant

C(d, p) if d ≤ p and by C(d, p)(H/h)
d−p
p if d > p. Moreover, the second term in (2.13) is the

same as in (2.8). Thus, the same argument there can be applied here. Finally, we obtain the
Poincaré inequality with the same ρp,d dependence on H/h. �

It is possible to combine arguments in Corollary 2.7 of [17] (the Orlicz norm) to improve the
rate in the critical case d = p, i.e., to gain a log factor.

Remark 2.4. Similar to the case in Corollary 2.1, if we use the sliced data to make the piecewise
constant recovery, the error bound is given by C(d, p)Hρp,d(

H
h )‖Du‖Lp(Ω).

3. Improve the regularity of the recovery

The discussion above only concerns piecewise constant function recovery. In this section, we
consider an improvement of the regularity of the basis function for p = 2. To achieve so, we apply
L−1 on it, where L = −∇ · (a∇·) is an elliptic operator with homogeneous Dirichlet boundary
condition. The coefficient a in this operator is assumed to satisfy 0 < amin ≤ a(x) ≤ amax for
all x ∈ Ω ⊂ Rd such that its inverse is well-defined.

Let Ω = [0, 1]d and its decomposition into patches follows the previous routine. Given a(x),
the associated energy norm of u is defined by ‖u‖2H1

a(Ω) =
∫

Ω
a(x)|∇u(x)|2 dx. The induced

inner product is denoted by 〈·, ·〉a such that for u, v ∈ H1
0 (Ω), we have

〈u, v〉a =

∫
Ω

a(x)∇u(x) · ∇v(x) dx .

We write the subsampled measurement functions by {φh,Hi }i∈I where each φh,Hi is the L1-

normalized indicator function of the patch ωh,Hi . The improved basis functions, as stated above,
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will span the space spani∈I {L−1φh,Hi }. A set of basis functions for this space can be obtained
through the following optimization problem:

(3.1) ψh,Hi = argminψ∈H1
0 (Ω) ‖ψ‖2H1

a(Ω) s.t.

∫
Ω

ψφh,Hj = δi,j for j ∈ I .

We have spani∈I {ψ
h,H
i } = spani∈I {L−1φh,Hi }, and ψh,Hi is given by a linear combination of

L−1φh,Hi for i ∈ I, see the following Proposition 3.1. The proof follows the same strategy as
Theorem 3.1 in [13].

Proposition 3.1. The solution ψh,Hi has the form

ψh,Hi =
∑
j∈I

Θ−1
i,j L

−1φh,Hj ,

where Θ ∈ R|I|×|I| with entries Θi,j = [φh,Hj ,L−1φh,Hi ] and Θ−1 is the inverse of Θ.

Given the basis functions ψh,Hi , the recovered function is defined by

uh,H =
∑
i∈I

[u, φh,Hi ]ψh,Hi ,

which is the projection of u onto spani∈I {ψ
h,H
i } under 〈·, ·〉a, see Proposition 3.2.

Proposition 3.2. The function uh,H is the projection of u into the space spanned by {ψh,Hi }i∈I
under the inner product 〈·, ·〉a.

Proof. It suffices to show u− uh,H is orthogonal to ψh,Hi for any i ∈ I under the inner product

〈·, ·〉a. Equivalently, we need to show
〈
u− uh,H , ψh,Hi

〉
a

= 0. Since ψh,Hi ∈ spani∈I {L−1φh,Hi },

this is equivalent to [u− uh,H , φh,Hi ] = 0. Observing that

[u− uh,H , φh,Hi ] = [u, φh,Hi ]−
∑
j∈I

[u, φh,Hj ][φh,Hi , ψh,Hj ] = 0 ,

we complete the proof. �

Now, we derive the approximation accuracy of the above recovery. We discuss two scenarios:
1) u ∈ H1

0 (Ω), the same setting as the last section; 2) we further have Lu ∈ L2(Ω), i.e. an
improved regularity assumption on u. Below Theorem 3.1 shows the error estimate.

Theorem 3.1. Suppose u ∈ H1
0 (Ω), then the following error estimate holds:

‖u− uh,H‖H1
a(Ω) ≤ ‖u‖H1

a(Ω) ,

‖u− uh,H‖L2(Ω) ≤
1

√
amin

C(d)Hρ̃2,d(
H

h
)‖u‖H1

a(Ω) ,

where C(d) is a constant that depends on d only.
Moreover, if it holds that Lu ∈ L2(Ω), then, we have the improved H1

a(Ω) estimate:

‖u− uh,H‖H1
a(Ω) ≤

1
√
amin

C(d)Hρ̃2,d(
H

h
)‖Lu‖L2(Ω) ,

which then leads to the improved L2(Ω) estimate

‖u− uh,H‖L2(Ω) ≤
1

amin
C(d)2H2ρ̃2,d(

H

h
)2‖Lu‖L2(Ω) .
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Proof. The first estimate is trivial since uh,H is the projection of u under the energy norm
H1
a(Ω). For the second inequality, introduce functions v, w such that v = u−uh,H and Lw = v.

Then we have

(3.2) ‖u− uh,H‖2L2(Ω) = [v, v] = [v,Lw] = 〈v, w〉a .

Since v is orthogonal to every ψh,Hi under the inner product 〈·, ·〉a, we get

(3.3) 〈v, w〉a =

〈
v, w −

∑
i∈I

[w, φh,Hi ]ψh,Hi

〉
a

≤ ‖v‖H1
a(Ω)‖w −

∑
i∈I

[w, φh,Hi ]ψh,Hi ‖H1
a(Ω) .

For the second term in the above right-hand side, we know from orthogonality:

(3.4) ‖w −
∑
i∈I

[w, φh,Hi ]ψh,Hi ‖H1
a(Ω) = min

ci
‖w −

∑
i∈I

ciL−1φh,Hi ‖H1
a(Ω) .

To obtain an upper bound of this term, we choose ci = 1

‖φh,H
i ‖L1(Ω)

∫
ωH

i
v. Denote w0 =∑

i∈I ciL−1φh,Hi , then

(3.5)

‖w − w0‖2H1
a(Ω) =

∫
Ω

(w − w0)(v −
∑
i∈I

ciφ
h,H
i )

=
∑
i∈I

∫
ωH

i

(w − w0)(v − ciφh,Hi )

=
∑
i∈I

∫
ωH

i

(
w − w0 −

1

‖φh,Hi ‖L1(Ω)

∫
ωH

i

(w − w0)φh,Hi

)
v

c)

≤
∑
i∈I

C(d)Hρ̃2,d(
H

h
)‖D(w − w0)‖L2(ωH

i )‖v‖L2(ωH
i )

≤ 1
√
amin

C(d)ρ̃2,d(
H

h
)‖w − w0‖H1

a(Ω)‖v‖L2(Ω)

where c) is due to the subsampled Poincaré inequality. We get

(3.6) ‖w −
∑
i∈I

[w, φh,Hi ]ψh,Hi ‖H1
a(Ω) ≤ ‖w − w0‖H1

a(Ω) ≤ C(d)
1

√
amin

Hρ̃2,d(
H

h
)‖v‖L2(Ω) .

Returning to (3.3), we obtain

〈v, w〉a ≤
1

√
amin

C(d)Hρ̃2,d(
H

h
)‖v‖H1

a(Ω)‖v‖L2(Ω) .

Recalling v = u− uh,H and equation (3.2), we get
(3.7)

‖u− uh,H‖L2(Ω) ≤
1

√
amin

C(d)Hρ̃2,d(
H

h
)‖u− uh,H‖H1

a(Ω) ≤
1

√
amin

C(d)Hρ̃2,d(
H

h
)‖u‖H1

a(Ω) .

If Lu ∈ L2(Ω), we follow the strategy (3.4), (3.5) and (3.6) (apply all the operations on w to
the function u), which give us

‖u− uh,H‖H1
a(Ω) ≤

1
√
amin

C(d)Hρ̃2,d(
H

h
)‖Lu‖L2(Ω) .

To get the improved L2 estimate, we apply the argument in (3.7), which leads to

‖u− uh,H‖L2(Ω) ≤
1

√
amin

C(d)Hρ̃2,d(
H

h
)‖u− uh,H‖H1

a(Ω) ≤
1

amin
C(d)2H2ρ̃2,d(

H

h
)2‖Lu‖L2(Ω) .
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The proof is completed. �

Theorem 3.1 implies that under the assumption ‖u‖H1
a(Ω) ≤ M , using piece-wise constant

functions for recovery and the improved basis ψh,Hi (i ∈ I) achieve the same optimal accuracy
rate on H, if the ratio H/h is kept fixed. When we know additional information that ‖Lu‖L2(Ω)

is finite, we can improve to O(H) accuracy in the energy norm and O(H2) accuracy in the L2

norm.
On the other hand, the construction of the basis ψh,Hi (i ∈ I) requires more computational

efforts, since the optimization is on the global domain Ω. The difficulty is addressed by observing

that ψh,Hi exhibits exponential decaying property in energy norm [8][13]. Thus, the computation
of the basis can be localized, i.e., we can replace the global domain Ω in the constraint ψ ∈ H1

0 (Ω)
in (3.1) by some localized oversampling domain around ωHi . We include the discussion of this
issue in our companion paper [3] together with the multiscale PDEs problem.

We note that the above results also hold for the subsampled measurements with sliced type
since Corollary 2.1 and 2.2 share the same form.

4. Weighted Poincaré inequality and non-degenerate recovery

In previous sections, we have seen that when d ≥ p, the error will blow up when h goes to 0.
In general, it is not improvable if we only know the information that u belongs to H1

0 (Ω). Since
in practice, we often encounter recovery problems in high dimensions, we are led to ask if this
degeneracy problem could be fixed by imposing more structures on u. A natural extension of
previous estimates is to consider the weighted Poincaré inequality, which we will present below.

Here, we work under general p that may not equal 2, and we assume d ≥ p such that space
W 1,p(Ω) does not embed into the functional space consisting of continuous functions.

The weighted norm ‖ · ‖Lp
w(Ω) is defined by ‖u‖Lp

w(Ω) := (
∫

Ω
w(x)|u(x)|p dx)1/p. The distance

of x to a set D is denoted by d(x,D), and the distance between two sets A and B in Euclidean
space is denoted by d(A,B).

Assumption 4.1. There exist positive constants C1(d, p) and C2(d, p), such that for the domain
M = Ω or D, it holds that Cd1 diam(M)d ≤ µd(M) ≤ Cd2 diam(M)d.

Theorem 4.1. Let D ⊂ Ω satisfy Assumptions 2.1 and 4.1, with µd(Ω) = Hd and µd(D) = hd.
For every u ∈W 1,1(Ω), the following inequality holds:

‖u− 1

hd

∫
D

u‖L1(Ω) ≤ C(d, p)H‖Du‖L1
w(Ω)

where the weight function is chosen to be

w(x) =

(
H

max{h, d(x,D)}

)d−1

and C(d, p) is a constant that depends on d and p only.

Proof. Assumption 4.1 implies C1diam(Ω) ≤ H ≤ C2diam(Ω) and C1diam(D) ≤ h ≤ C2diam(D).
We use the result in our Theorem 2.1:

‖u−
∫

Ω

udλ‖L1(Ω) ≤ diam(Ω)

∫
Ω

(∫ 1

0

1

td
λ(
z − tΩ
1− t

∩D) dt

)
|Du(z)|dz ,(4.1)

where λ = 1
hdµd in D. Now we characterize λ( z−tΩ1−t ∩D) in more details rather than just using

a uniform bound α(t) as before. We look at when the intersection z−tΩ
1−t ∩ D becomes empty,

i.e. d( z−tΩ1−t , D) > 0. Without loss of generality we assume 0 ∈ D, otherwise we can shift the
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domain to contain the origin. Then, 0 ∈ D ∩ tΩ
1−t . If |z| is large then z−tΩ

1−t will be separated
from D. A sufficient condition can be

|z|
1− t

> diam(
tΩ

1− t
) + diam(D) ≥ 1

C2
(
tH

1− t
+ h) .

This is equivalent to t ≤ C2|z|−h
H−h . Thus we obtain

t ≤ C2|z| − h
H − h

⇒ λ(
z − tΩ
1− t

∩D) = 0 .(4.2)

We decompose the integral on the right-hand side of equation (4.1) into two parts (the integrand
is abbreviated as I): ∫

Ω

Idz =

∫
{C2|z|<2h}∩Ω

Idz +

∫
{C2|z|≥2h}∩Ω

Idz .

For the first part, we use the result in Corollary 2.1:

(4.3)

∫
{C2|z|<2h}∩Ω

Idz ≤ C(d, p)(
H

h
)d−1

∫
{C2|z|<2h}∩Ω

|Du(z)|dz

≤ C(d, p)

∫
{C2|z|<2h}∩Ω

(
H

max{h, |z|}

)d−1

|Du(z)|dz

≤ C(d, p)

∫
{C2|z|<2h}∩Ω

w(z)|Du(z)|dz

where the last line is due to d(z,D) ≤ |z|.
For the second part, we have C2|z| ≥ 2h. Due to equation (4.2), for z ∈ {C2|z| ≥ 2h} ∩ Ω and
at the same time z ∈ {C2|z| ≤ H}, we have

(4.4)

∫ 1

0

1

td
µd(

z − tΩ
1− t

∩D) dt ≤
∫ 1

C2|z|−h
H−h

1

td
dt

≤ 1

d− 1

(
(
C2|z| − h
H − h

)1−d − 1

)
≤ C(d, p)(

H

|z|
)d−1 ≤ C(d, p)w(z) ,

where the last two lines are due to the relation 0 ≤ h ≤ C2

2 |z| and d(z,D) ≤ |z|. For z ∈ {C2|z| ≥
2h} ∩ Ω and also z ∈ {C2|z| > H}, the integral vanishes due to equation (4.2). Combining all
these together, we arrive at

‖u− 1

hd

∫
D

u‖L1(Ω) ≤ C(d, p)H‖Du‖L1
w(Ω) .

This completes the proof. �

Theorem 4.2. Let D ⊂ Ω satisfy Assumptions 2.1 and 4.1, with µd(Ω) = Hd and µd(D) = hd.
For every u ∈W 1,p(Ω) with p > 1, the following inequality holds:

‖u− 1

hd

∫
D

u‖Lp(Ω) ≤ C(d, p)H‖Du‖Lp
w(Ω)

if the weight function satisfies the condition∫
Ω

(
H

max{h, d(z,D)}

) p(d−1)
p−1

w(z)−
1

p−1 dz ≤ Cw(d, p)Hd ,

where C(d, p) and Cw(d, p) are constants that depend on d and p only.
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Proof.

(4.5)

‖u− 1

hd

∫
D

u‖Lp(Ω) ≤ ‖u−
1

Hd

∫
Ω

u‖Lp(Ω) +H
d
p | 1

Hd

∫
Ω

u− 1

hd

∫
D

u|

≤ C(d, p)H‖Du‖Lp(Ω) +H
d
p−d

∫
Ω

∫
D

1

hd
|u(x)− u(y)|dxdy

where we have used the standard Poincaré inequality for the first part. For the second part, due
to the proof in Theorem 2.1 and Theorem 4.1, we have

H
d
p−d

∫
Ω

∫
D

1

hd
|u(x)− u(y)|dxdy ≤ C(d, p)H

d
p−d+1

∫
Ω

(
H

max{h, d(z,D)}

)d−1

|Du(z)|dz .

Using the Hölder inequality, we get∫
Ω

(
H

max{h, d(z,D)}

)d−1

|Du(z)|dz

=

∫
Ω

(
H

max{h, d(z,D)}

)d−1

w(z)−
1
p · w(z)

1
p |Du(z)|dz

≤

∫
Ω

(
H

max{h, d(z,D)}

) p(d−1)
p−1

w(z)−
1

p−1 dz


p−1
p

‖Du‖Lp
w(Ω)

≤C1− 1
p

w Hd− d
p ‖Du‖Lp

w(Ω) .

Plugging this into equation (4.5) gives

‖u− 1

hd

∫
D

u‖Lp(Ω) ≤ C(d, p)H‖Du‖Lp(Ω) + C
1− 1

p
w C(d, p)H‖Du‖Lp

w(Ω) ≤ C(d, p)H‖Du‖Lp
w(Ω)

where C(d, p) represents a generic constant that depends on d and p only. �

Example 4.1. The weight function

w(x) =

(
H

max{h, d(x,D)}

)d−p+β
for any β > 0 satisfies the condition in Theorem 4.2.

Example 4.2. The weight function

w(x) =

(
H

max{h, d(x,D)}

)d−p
(log(

H

max{h, d(x,D)}
) + 1)β

for β > p− 1 satisfies the condition in Theorem 4.2.

A sufficient condition for the assumption on w in Theorem 4.2 is∫
Ω

(
H

|x− x0|

) p(d−1)
p−1

w(x)−
1

p−1 dz ≤ Cw(d, p)Hd ,

for a selected point x0 ∈ D. This condition does not involve h. Similar to Example 4.1, one
candidate function that satisfies this condition is

w(x) =

(
H

|x− x0|

)d−p+β
where β > 0. Hence, for this w, due to Theorem 4.2, for any h > 0, and x0 ∈ D ⊂ Ω, we have

‖u− 1

hd

∫
D

u‖Lp(Ω) ≤ C(d, p)H‖Du‖Lp
w(Ω) .
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If we have the assumption that ‖Du‖Lp
w(Ω) ≤M , i.e.∫

Ω

(
H

|x− x0|

)d−p+β
|Du(x)|p dx ≤M ,

then, for any small h, we have the guaranteed non-degenerate accuracy ‖u − 1
hd

∫
D
u‖Lp(Ω) ≤

C(d, p)HM . Indeed, due to [2], the trace of u at x0 is well-defined. Thus, we even have the
inequality with the pointwise measurements by taking h to 0:

‖u− u(x0)‖Lp(Ω) ≤ C(d, p)H‖Du‖Lp
w(Ω) .

This inequality implies recovery from a pointwise value is possible if ‖Du‖Lp
w(Ω) <∞.

5. Discussion

In this paper, we discussed the subsampled Poincaré inequality with applications to functional
recovery problems. When applied to the recovery problem, the Poincaré inequality naturally
connects to the piecewise constant basis functions. The optimality with respect to the subsam-
pled length scale is demonstrated in such a case. We can use ideas from the spline approximation
theory to improve the regularity of the basis, which will improve the accuracy when the un-
derlying function has better regularity. Inspired by [15][13], these basis functions can be used
to solve the multiscale PDEs problem when their exponential decay and localization property
are established. We will discuss it in our companion numerical paper [3] regarding the trade-
off between the subsampled scale h, the exponential decay rate of the basis function, and the
accuracy of the approximate solution.

Our discussion on the weighted Poincaré inequality connects to the degeneracy issue in graph
Laplacian based semi-supervised learning problems [12], which are formulated as (possibly dis-
crete) functional recovery problems. Adjusting the weights of the Laplacian to achieve good re-
covery performance is essential. Recently [2] established the consistency of the properly weighted
graph Laplacian approach. The weight function there has the same form as our Example 4.1.
These Sobolev critical functions help regularize the process to obtain a non-degenerate recovery.
We will present more examples in the work [3].
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