Supporting Information

Li-Diffusion at the Interface between Li-Metal and [Pyr₁₄][TFSI]-Ionic Liquid: Ab Initio Molecular Dynamics Simulations

Boris V. Merinov,^{*,†} Saber Naserifar,[†] Sergey V. Zybin,[†] Sergey Morozov,[‡] William A. Goddard III,[†] Jinuk Lee,[§] Jae Hyun Lee,[§] Hyea Eun Han,[§] Young Cheol Choi,[§] and Seung Ha Kim[§]

[†]*Materials and Process Simulation Center (MSC), California Institute of Technology (Caltech), Pasadena, California, 91125, U.S.A.*

[‡]South Ural State University, 76 Lenin Avenue, Chelyabinsk 454080, Russia

[§]Battery R & D, LG Chem, Yuseong-Gu, Daejeon 34122, Republic of Korea

Table S1. Ion diffusivity, $D \times 10^{11}$, m^2/s , in the SEI compact layer of the smaller 83Li/2[TFSI] and larger 164Li/4[TFSI] systems at 400 K.

System	С	F	О	N	S	Li
83Li/2[TFSI]	0.421	0.758	0.356	0.623	0.213	3.192
164Li/4[TFSI]	0.948	2.213	0.244	0.204	0.268	3.528

The higher D value for the F atoms in the larger system is due to a jump of ~7 Å of two of the 24 F atoms at ~45 and 70 ps, respectively. The other F atoms have D values similar to those in the smaller system. If these two F atoms are excluded from the D calculation for the F atoms, the value will be much closer to that in the smaller system, 1.166×10^{-11} m²/s vs. 0.758×10^{-11} m²/s. Possibly diffusivity of the F atoms in the larger system would be close to that in the smaller system for a longer simulation (similar to the time of the simulation on the smaller system, ~700 ps).

Figure S1. Mean square displacements (MSD) of Li atoms in the Li-metal region and SEI compact layer (SEI CL) in the equilibrated region of the trajectory for the smaller 83Li/2[TFSI] system at 400 K.

Figure S2. Mean square displacements (MSD) of Li atoms in the Li-metal region and SEI compact layer (SEI CL) in the equilibrated region of the trajectory for the larger 164Li/4[TFS] system at 400 K.

Figure S3. Arrhenius plot of the Li-diffusivity calculated from MSD in the Li-metal region ($D_{\text{Li-metal}}$) of the smaller 83Li/2[TFSI] system. The corresponding activation energy $E_a = 0.03 \text{ eV}$.

Figure S4. Arrhenius plot of the Li-diffusivity calculated from MSD in the SEI compact layer (D_{SEI}) of the smaller 83Li/2[TFSI] system. The corresponding activation energy $E_a = 0.09$ eV.

Figure S5. Arrhenius plot of the Li-diffusivity calculated from MSD in the Li-metal region ($D_{\text{Li-metal}}$) of the larger 164Li/4[TFSI] system. The corresponding activation energy $E_a = 0.11 \text{ eV}$.

Figure S6. Arrhenius plot of the Li-diffusivity calculated from MSD in the SEI compact layer (D_{SEI}) of the larger 164Li/4[TFSI] system. The corresponding activation energy $E_a = 0.06 \text{ eV}$.

Figure S7. Arrhenius plot of the Li-diffusivity in the Li-metal region ($D_{\text{Li-metal}}$) of the smaller 83Li/2[TFSI] system, calculated using the 2PT method. The corresponding activation energy $E_a = 0.03 \text{ eV}$.

Figure S8. Arrhenius plot of the Li-diffusivity in the SEI compact layer (D_{SEI}) of the smaller 83Li/2[TFSI] system, calculated using the 2PT method. The corresponding activation energy $E_a = 0.03$ eV.

Figure S9. Arrhenius plot of the Li-diffusivity in the SEI compact layer ($D_{\text{Li-metal}}$) of the larger 164Li/4[TFSI] system, calculated using the 2PT method. The corresponding activation energy $E_a = 0.09 \text{ eV}$.

Figure S10. Arrhenius plot of the Li-diffusivity in the SEI compact layer (D_{SEI}) of the larger 164Li/4[TFSI] system, calculated using the 2PT method. The corresponding activation energy $E_a = 0.00 \text{ eV}$.