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1. Introduction. We shall study a class of mildly nonlinear elliptic eigen­
value problems which are suggested by several recently occurring problems 
concerning the steady state temperature distribution of a physical medium in 
which heat is being generated nonlinearly. (See [12] for references to the physics 
literature.) Specifically, we investigate the general problem 

(1.1) Lu = Xf(x, u), 

Bu= 0, 

xeD, 

xeaD, 

where x = (x1 , x2, • • • , xN) and Lis the uniformly elliptic, second order operator 

N a2u N au 
(1.2) Lu = - I: a;;(x) ~ + I: ak(x) -;- + c(x)u, 

•d=l vX; vX; k•l vXk 

and the boundary operator Bis given by 

N au 
(1.3) Bu = bo(x) + I: bk(x) -a · 

k=l xk 

We denote by cm+a(R) the space of functions which are m times continuously 
differentiable on a point set R and have Holder continuous mth derivatives on 
R with Holder exponent a. We assume that D is a bounded domain in N di­
mensions with aD of class c2+a; that the coefficients a,1(x), ak(x), c(x) are in 
ca(D) and bo(x), bk(x) are in ci+a(aD) for some a E (O, 1). Taking n.(x) as the 
components of the outer normal to aD at x, we assume that 

N N 

(i) I: b,.(x)nk(x) > 0 unless I: b,.(x)b,.(x) = 0, 
k-1 k•l 
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(ii) 

( ... ) either 
111 

or 
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c(x) > 0, 
c(x) ;?;: 0, 

XE D, 
XE D, 

bo(x) ;?;: 0, 
bo(x) > 0, 

xE aD, 
xEaD. 

Under these conditions, a solution of the linear problem, for F(x) e Ca(D), 

(1.4) 
Lu(x) = F(x), 

Bu(x) = 0, 

X£ D, 

xEaD, 

exists in C2 +a(D) ([2], pp. 134-136), is unique, and enjoys the positivity prop­
erty that u(x) > 0 for x ED if F(x) ;?;: 0, F(x) ¢ 0 for x ED ([1] pp. 4-7). Alterna­
tively, L-1 is a continuous, positive operator from Ca(D) to C2 +a(D) I\ 
(w(x) I w(x) £ c2 +a(D), Bw(x) = 0, x £ aD}. 

The nonlinearity is assumed to satisfy the following conditions, hereafter 
referred to as conditions (H): 

(H) f(x, u) is defined on D X lu I u ;?;: O} = Di, f(x, u) e C"(Di), 

f(x, u) is assumed to be monotonic in u and concave in u in the sense that for 
all Te (0, 1), u > 0, (x, u) e Di we have 

(1.5) f(x, TU) - Tf(x, u) > 0. 

(A useful geometrical interpretation of (1.5) is that it implies that f(x, u), when 
graphed as a function of u for fixed x, has the property that any line segment 
from the origin to the function lies below the graph of the function.) 

We assume further that f (x, O) ;?;: 0 for x E D and define 

Case a. The forced case: f(x0 , 0) > 0 for some x0 e D. 
Case b. The unforced (or free) case: f(x, O) = 0 for all x ED. 

This terminology was clearly suggested by the usual physical interpretation 
of the right-hand side Xf(x, u) in (1.1) as a forcing function. With this interpreta­
tion it will not be surprising when we show that the two different cases exhibit 
markedly different behavior in some respects. 

In keeping with the physical problems suggesting our study, we shall look for 
positive solutions of (1.1) in both the forced and unforced cases. In Section 2 we 
shall establish that there exists a unique positive solution of (1.1) for all values 
of X in some interval whose left endpoint depends on the behavior of f(x, u) 
near u = 0 and whose right endpoint depends on the behavior of f(x, u) for 
large u. Furthermore, these endpoints will be given precisely, and the positive 
solutions are characterized constructively by iteration schemes, involving only 
linear equations, yielding monotonically non-decreasing converging sequences. 

Various properties of the positive solution and the values of X for which it 
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exists are derived in Section 3. The main results are a study of the positive 
solution and the interval of X for which it exists in the forced case in the limit as 
the forcing vanishes. These results clearly show the similarities and differences 
of the problem in the two cases. 

In Section 4, in addition to strengthening the requirements on f(x, u), we 
impose the further condition of self-adjointness on L. Then, two different varia.; 
tional principles are derived, and the implication with regard to stability of the 
positive solution is discussed. Finally, iteration procedures different from those 
of Section 2 are introduced which yield monotonically non-increasing converging 
sequences. Hence, combining these with the results of Section 2, we obtain se­
quences of pointwise upper and lower bounds on the positive solution. 

2. Existence of positive solutions. The purpose of this section is to establish 
that under the conditions of hypothesis (H) there exists a unique positive solu­
tion of the boundary value problem (1.1) for all values of X in some interval 
whose left endpoint depends on the behavior of f(x, u) near u = 0 and whose 
right endpoint depends on the behavior off (x, u) for large u. Furthermore, these 
endpoints will be given precisely. 

It is well known that the lowest eigenvalues and eigenfunctions of the problem 
(1.1) linearized about u = 0 and u = oo play an important role in discussing 
(1.1). Hence, for each m > 0 we define µ(m) and <Pcm> (x) to be the lowest eigen­
value and normalized eigenfunction of 

(2.1) 
( f(x, m)) L<Pcmh) = µ(m) --;;:- <Pcmh), xeD, 

B<Pcmh) = 0, xeaD, 

such that <P<m> (x) > 0 for x e D and f n <P~m/x) dx = 1. From [2] we conclude 
that <P<m>(x) e C2+"(D). If m1 > m2 > 0, it follows from (1.5) that f(x, m1)/m1 < 
f(x, m2)/m2 • Consequently, for a given if;(x) ~ 0, ¢ O, in C2+"(D) we have 

L-1('(x~~1))1/;(x) ~ L-1(f(x~~2))1/;(x), 

and from [5], p. 94, we conclude that µ(m1) > µ(m2) > 0. 
We define 

µ(O) = lim [µ(m)], 
(2.2) m--+O 

µ(oo) = lim [µ(m)], 
m--+OO 

allowingµ( oo) = oo if the latter limit is not finite. Note that in the event that 
f(x, u) e C1(D X (-E, E)) for some E > 0, then in the unforced case (i.e., f(x, O) 
= O) we have limm .... o f(x, m)/m = f,,(x, O) > 0 for x e D, and thus µ(O) > 0 is 
the primary eigenvalue of (1.1) linearized about u = 0. 
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The main results of this section are embodied in the 

Theorem 2.1. Let f(x, u) satisfy the conditions (H). Then, there exists a 
unique positive solution u(x; X) e C2+"(D) of (1.1) 

(a) in the forced case for Xe (0, µ( oo )), and 
(b) in the unforced case for X e (µ(O), µ( oo)). 

Theorem 2.1 will be proven in three main steps, (i) the generation of a mono­
tone non-decreasing sequence of successive approximations, (ii) the proof in 
Lemma 1.1 of a uniform bound for the sequence and (iii) the proof in Lemma 
1.2 that the regularity of the members of the sequence is inherited by the limit 
which consequently is a solution of (1.1). Comparable existence theorems for 
the forced case in [3] and in [5] use a similar first step. However the abstract 
theory is non-constructive, and cannot be applied directly to spaces giving the 
regularity results given here. Furthermore, Theorem 2.1 relaxes somewhat the 
smoothness requirements on f(x, u) of previous theorems. 

For the unforced case (b) we define our sequence of successive approximations 
as follows: Choose an m such that X > µ(m), and then define 

(2.3) Lun(X) = Xf(x, Un-1(x)), X £ D, }n = l, 2, 3, .... 

Bun(x) = 0, x e aD, 

Take u 0 (x) = E<Pcm>(x) where e is chosen so as to ensure that the sequence is 
monotone non-decreasing. This is accomplished as follows: Equations (2.1) and 
(2.3) imply that 

L(u1 - Uo) = Xf(x, u0) - µ(m)[f(x~m)Ju0 

(2.4) = [X - µ(m)]f(x, uo) + µ(m{f(x, uo) - f(x~m) uo] 
= [X - µ(m)]f(x, E<P<m>) + µ(m{f(x, E<Pcm>) - f(x~m) E<Pcm>l 

Choose e such that E<Pcm> (x) < m. Then, (1.5) implies 

Hence, 

f(x, m) _ [f(x, E<P<m> _ f(x, m)J > O f(x, E<Pcm>) - -m EC,O(m) - EC,O(m) = • 
EC,O(m) m 

L(u1 - Uo) E::;; 0, 

B(u1 - Uo) = 0, 

X£ D, 

xeaD. 

Thus, from the Maximum Principle [11] for uniformly elliptic second order 
equations, we conclude that u1 (x) ~ u0 (x) on D. It follows by a simple induction 
argument that { Un(x)} is monotone non-decreasing inn. 
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For the forced case (a) we define our sequence of successive approximations 
by taking u0 (x) = 0 and defining u,.(x) for n = 1, 2, 3, · · · by (2.3). An induction 
argument shows here also that {u,.(x)} is monotone non-decreasing inn. 

Lemma 2.1. Let {u,.(x)} be the sequence defined by (2.3) with u0 (x) ~ 0. 
Then, there is a constant M such that for x e fJ, 

0 ~ u,.(x) ~ M. 

Proof. Let m be chosen sufficiently large so that 

(2.5) X < µ(m), and u0 (x) ~ m. 

Then, it follows from the Positivity Lemma of H. B. Keller and D. S. Cohen 
[3] that a function h(x) > 0 can be defined in Das the solution of 

(2.6) Lh(x) - x[t<x~m)Jh(x) = Xf(x, m), x e D, 

We shall show that 

(2.7) 

Let 

(2.8) 

Bh(x) = 0, x t: aD. 

u,.(x) ~ h(x) + m. 

w,.(x) = max {u,.(x) - m, 0}, 

S,. = {x lxeD,u,.(x) > m}. 

x £ fJ, 

Since { u,.(x)} is monotone increasing in n, for x £ S,. , 

Lw,.(x) = Lu,.(x) - c(x)m 

(2.9) 
= Xf(x, u .. -1(x)) - c(x)m 

~ Xf(x, w .. -1(x) + m) - c(x)m 

~ X(f(x, m)/m)(w11-1(x) + m) - c(x)m, 

the last inequality following from (1.5). Using (2.6), we obtain 

(2.10) L(h(x) - w,.(x)) ~ X(f(x, m)/m)(h(x) - w .. -1(x)) + c(x)m. 

From the Minimum Principle for L, we can conclude that if 

(2.11) 

the minimum of h(x) - w,.(x) is assumed on as .. . Let~ t: as .. be a point at which 
this minimum occurs; then either~£ D, in which case w .. (~) = O, or~ e aD, in 
which case 

B(h(~) - w,.(~)) - ba(~)m, 
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that is, 

(2.12) b.(~) o(h(~) O~i Wn(~)) = -bo(~)(h(~) - W,.(~)) + bo(~)m. 

At a minimum on aD the left side of (2.12) must be negative ([1], pp. 4-7) 
although bo(x)m ~ o. Hence on whichever part of as .. I~ lies, we can conclude 
that 

Consequently, 

(2.13) 

h(~) - w,.(~) ~ 0. 

h(x) - w,.(x) ~ 0 for x E S,. . 

Hence from (2.11) we conclude that (2.13) is true. However, our choice of m, 
(2.5), ensures that w0 (x) = 0. Hence, by induction we have w,.(x) ~ h(x) for 
all n, which by the definition (2.8) implies (2.7). Q.E.D. 

On the basis of this lemma we conclude that the sequence {u,.(x)} of iterates 
converges at least pointwise in D, and for x ED we let 

(2.14) u(x) = lim [u,.(x)]. 

In order to establish that this limit u(x) is the positive solution u(x; X) of the 
Theorem 2.1 we need several a priori inequalities which we derive in the 

Lemma 2.2. Let {u,.(x)} be the sequence of successive approximations defined 
by (2.3) such that u 0 (x) E C2+"'(D). Then, the functions u,.(x) are Ho'lder continuous 
with exponent µ, and Holder constants uniform in n for 0 < µ, < 1. 

Proof. We employ a technique used by Morrey [7], p. 79, to prove a Sobolev 
Lemma. Let H;(D) be the space of functions defined on D, with distributional 
derivatives up to order min Lv(D), and let llw(x)llm.v,D be the norm on H;(D). 
Then if D' is a sphere containing Din its interior, w(x) E H;(D) can be extended 
to w(x) E H;(D') such that 

(2.15) llw(x)ll ... ,,,,D• ~ K llw(x)llm.v,D, 
where K depends only on m, p, D and D' ([7], p. 74). Each iterate u,.(x) belongs 
to c2+"'(D) and hence H!(D) for every p ~ 1; we now consider u,.(x) as extended 
to D' so that (2.15) holds form = 2 and p sufficiently large. By Theorem 3.6.6 
of [7], the extended functions will be in C1+fl(D') for f3 = 1 - N /p. For arbitrary 
µ,, 0 < µ, < 1, and some Eo > 0 depending on D, we shall exhibit a constant, C, 
independent of n such that 

(2.16) lu,.(x) - u .. (~)I ~ C Ix - ~I" 

for x, ~ in D and Ix - ~I < Eo • 

For x and~ in D, let x = (x + ~)/2, Ix - ~I = 2p and let B(x, p) be the sphere 
of radius p centered on x. Since DC D', we can choose Eo such that if p < E0/2, 
B(x, p) C D'. For any 'll E B(i, p), since u,.(x) E c1+fl(D') 1 we can write 



EIGENVLAUE PROBLEMS 901 

(2.17) 
lu .. (11) - u .. (~) I = I (7/k - ~k) { u,.,k(~ + t(71 - m dtl 

~ 111 - ~I { lgradu,.(~ + t(11 - ml dt. 

Denoting the volume of B (x, p) by IB (x, p) I, we can average (2.17) over B (x, p) 
with respect to 11 to obtain 

(2.18) 2p f 11 ~ IB(- )I lgradu,.(~ + t(11 - m1 dt d71 
X, p B(:e,p) 0 

= IB(~P ) I { J !grad u,.(y) I rN dy dt, 
X, p O Bl(:e,p) 

where y = ~ + t(11 - ~)and B,(i, p) is the sphere of radius tp tangent to B(x, p) 
at ~. Using Holder's Inequality and replacing B,(x, p) by B(x, p) for 
q = p/(p - 1), we obtain further that 

IB(xl ) I J _ lu .. (11) - u .. (~) I d11 
' p B(~,p) 

2 11 (f )l/p(f )l/o ~ IB(/ p)I 0 Bl(:e,p) lgradu,.(y)l'P dy Bc(:e,p) 1 dy rN dt 

(2.19) IB~P )111 (J lgradu,.(y)I,,, dy)11,,,(CN(tp)N)1'•rN dt 
X, p O Bl(:e,p) 

~ N '!! !grad u,.(y) I,,, dy ~nta-o dt 20110 l+Nla (f )11,,, 11 
IB(x, p) I B<:e.p> o 

~ K l-Nc1-11•> llu ()II , - p n Y l,p,D > 

where K is a constant that depends only on N and q. Forµ e (O, 1) we can choose 
p so that 1 - N(l - 1/q) = µ.With p fixed we can conclude from the extension 
of u,.(x) to D' that 

(2.20) I lu .. (y) I li.,,,.n• ~ I lu,.(y) I '2,,,,,n• ~ K1 I lu,.(y) I '2,,,,,n 

~ K2{ llf(y, u .. -1(Y))llo,,,,,D + llu .. (y)llo,,,,,n} 

for constants K 1 and K2 . This last estimate comes from the L,,, estimates for 
the elliptic operator L with the given boundary conditions found in [8] coupled 
with the definition of the sequence {u,.(x)}. However, by Lemma 2.1, we know 
that the successive approximations are uniformly bounded, hence the right hand 
side of (2.20) is bounded independently of n. From (2.19) we find, for a constant 
c, that 

(2.21) (1/IB(x, p) I) J lu .. (11) - u .. (~) I d11 ~ (c/2) Ix - ~I". 
B(z,p) 
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Clearly (2.21) holds with E replaced by x on the left hand side; hence, a use of 
the Triangle Inequality gives the result (2.16). Q.E.D. 

With this lemma proved we can now complete the proof of Theorem 2.1 as 
follows: We pass to the limit with n in (2.16) to conclude that u(x) 2 C"(D) for 
0 < µ < 1. Since { un(x)) converges monotonically to the uniformly continuous 
function u(x), we conclude from Dini's Theorem, that the convergence is 
uniform. These lemmas show that {f(x, vn(x)) I is a sequence of uniformly 
bounded functions in c-r (D) for 0 < 'Y < a with Holder constants depending on 
'Y but uniform inn. Using the Schauder Estimate of Theorem 7.3, [8], we have 

lun(x)l2+-r ~ K{lf(x, u,._1(x)l-r + ju,.(x)lol ~ M, 

where I lm+-y is the Schauder norm on cm+-y(D), I lo is the maximum norm, and 
M is a uniform bound. Thus we have satisfied the hypotheses of Theorem 12.2 
of [8], from which we conclude that u(x) e c2 +-r (D) satisfies (1.1). However, 
u(x) e C2 +-r(D) implies Xf(x, u(x)) e Ca(D), so that u(x) e C2+a(D). The unique­
ness of u(x; X) follows from Theorem 6.3 of [5], completing the proof of Theorem 
2.1. 

Corollary 2.1. The sequence {u,.(x)) defined in Lemma 2.2 converges uni­
formly with its first and second derivatives to the solution of (1.1). 

This corollary follows easily from Theorem 12.2 of [8]. 
In the case f (x, u) is differentiable we have a result on non-existence given in 

Theorem 2.2. If µ(O) > 0 (that is, in the unforced case), then (1.1) has no 
positive solutions for},, e (0, µ(O)). 

Proof. Let v(x; }..) be a positive solution of (1.1) for Xe (O, µ(O)), i.e. 

(2.22) v(x; X) = XL- 1f(x, v(x; X)). 

We can interpret (2.22) as implying that },, -i is the primary eigenvalue, with 
eigenfunction v(x; X), of the linear operator A, defined, for w(x) e C2+a(D) and 
Bw(x) = 0 for x e iJD, by 

(2.23) Aw(x) = L-1([f(x, v(x; X))/v(x; X)]w(x)). 

Now (1.5) implies that for 0 < E < 1 

f(x, EV(x; X))/EV(x, X) > f(x, v(x; X))/v(x; X). 

If we define A, by 

(2.24) A,w(x) = L-1([f(x, Ev(x; X))/Ev(x; X)]w(x)), 

then for all positive functions w(x) e C2+a(D), A,w(x) ;;;;; Aw(x). Hence, denoting 
the primary eigenvalue of A, by x;1 , 

x;1 ;;;;; }..-1, i.e. x, ~}.. 
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([5], p. 94). However, >., converges to µ(O) as e tends to zero, which contradicts 
>. e (O, µ(O)). Q.E.D. 

In the event that µ(O) > 0, we shall extend the definition of u(x; >.) by defining 
u(x, >.) = 0 for x e D, >. e (O, µ(O)]. 

3. Properties of the positive solution. The iteration schemes and char­
acterization of the positive solution given in Section 2 lead to a variety of results 
for the positive solution u(x, >.) of (1.1). Bounds and estimates on µ(O) and 
µ( oo) and various comparison theorems can be given analogous to those derived 
in Section 3 of [3] for the self-adjoint operator L with slightly more restrictive 
conditions on f(x, u). We restrict ourselves here to new results, one of which 
is the proof of a conjecture made in [3]. One of our principal results is the study in 
Theorem 3.3 of the behavior of u(x, >.) and µ(O) in the forced case as the forcing 
vanishes (that is, the behavior as the forced case approaches the unforced case). 

Our first result is the 

Theorem 3.1. If µ(O) < >-1 < >-2 < µ( oo ), then u(x, >-1) < u(x, >-2), x e D. 

This easily follows from Theorem 2.1 by forming the sequence of successive 
approximations for>. = >-2 with v0 (x) = u(x, >-1). 

We now establish a conjecture made in [3] in our 

Theorem 3.2. 

(3.1) lim [max !u(x, >.) ll = oo. 
A-+µ(a>)- :teD 

Proof. In the event that µ( oo) = oo, the result follows from the fact that 
'Xf(x, u(x; >.))becomes infinite, uniformly on compact subsets of D, as>. becomes 
infinite. We assume that µ( oo) < oo. If (3.1) is not true, then we can find a 
monotone increasing sequence {A..) for which limn-"" >.,. = µ( oo) and { u(x, >.,.)} 
is a monotone increasing sequence uniformly bounded above. Let 

(3.2) lim [u(x, }..,.)] = w(x) ~ M, for x e D, 

for some constant M. Then, {>.,.f(x, u(x, >.,.))) converges in L,,,(D) to 
µ( oo )f(x, w(x)). If we let H<:,!(D) be the closed subspace of H 2 ,,,,(D) satisfying the 
boundary conditions of (1.1) (in the sense of [8]), then it follows from the L,,, 
estimates of [8] that L -l is continuous from L,,(D) to H~~!(D), i.e. that I u(x; >-n)} 
is a Cauchy sequence in H<:,~(D). Hence w(x) e H~~!(D) and 

(3.3) 
w(x) = µ( oo )L-1f(x, w(x)), x e D, 

Bw(x) = 0, x e iJD. 

From (3.2) and (3.3) a contradiction can be derived. We can regard w(x) 
as an eigenfunction of the linear problem 

(3.4) 
w(x) = µ( oo )L-1(p(x)w(x)), xeD, 

Bw(x) = 0, x e iJD, 
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where 

(3.5) p(x) = f(x, w(x))/w(x) > f(x, M)/M 

for x £ D. However, from (3.5) and the comparison theorem of [5] (p. 94), we 
conclude thatµ.( oo) < µ.(M), contradicting the definition ofµ.( oo ). Q.E.D. 

We now wish to show that the positive solution in the free case for X £ (µ.(O), 
µ.( oo)) is the limit of the forced case for vanishing 'load.' To do this we introduce 
the family of functions f(x, u; u) depending on a parameter u > 0 such that for 
each u > 0 f(x, u; u) satisfies the conditions for (1.1) and f(:Z, O; u) > 0 for some 
:Z £ D. Let f(x, u; <r1) ~ f(x, u; <r2) if <r1 ~ <r2 and limu ... o f(x, u; u) = F(x, u) exist 
uniformly on compact subsets of D 1 = D X [O, oo ). We assume that F(x, O) = O, 
and F(x, u) £ Ca(D1). Hence, we have simply embedded our original function 
f(x, u) in a one-parameter family f(x, u; u) such that when u tends to zero the 
forcing tends to zero. Let {u(x; X, u)} be the solutions in the forced cases of 
(1.1) with Xf(x, u; u) on the right-hand side, and let w(x; X) be the solution in 
the unforced case of (1.1) with AF(x, w) on the right-hand side. 

Theorem 3.3. For X £ (O, µ.( oo )) we have 

(3.6) 

Furthermore, as u ~ 0, u(x; >.., u) converges to w(x; X) uniformly for x £ D. 

Proof. For u1 > u2 > 0, consider the successive approximations {v,.(x)} 
generated by (2.3) from the initial choice of v0 (x) = u(x; >.., u 2) with 
Xf(x, v,._1 (x); u1) on the right side. This is a monotone increasing sequence and 
hence by Corollary 2.1 of Theorem 2.1 converges to u(x; >.., u 1), which proves 
(3.6). If we now consider the successive approximations {y,.(x)} for the same 
equation generated from the initial choice y0 (x) = w(x; X) it can be seen that 
this also is a monotone increasing sequence which converges to u(x; >.., u 1), i.e. 

(3.7) u(x; >.., u) ~ w(x; X) 

for x £ D, u > 0. Hence the following limit exists in Lp(D) for 1 ~ p < oo, and 
satisfies 

(3.8) lim u(x; >.., u) = @(x) ~ w(x; >..). 
U-+0 

Furthermore, Xf(x, u(x; >.., u); u) converges in L,,(D) to XF(x, @(x)). From (2.20), 
we conclude that @(x) £ HC:,~(D) and is a weak solution of (1.1) with XF(x, @(x)) 
on the right-hand side. However, by the uniqueness of the solution of (1.1), 
@(x) = w(x; >..), (see [5], Theorem 6.3), and so, by Dini's Theorem the conver­
gence of u(x; >.., u) to w(x, X) is uniform for x £ D. Q.E.D. 

As an immediate consequence of this theorem and Theorem 2.2 we have the 

Corollary 3.3. For X 2 (0, µ.(O)) 

lim [u(x; X, u)] = 0 for x £ D. 
u-+O 
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4. The self-adjoint case and variational principles. The object of this sec­
tion is to present a variety of properties of the unique positive solution, which, 
with the exception of Theorem 4.1, one way or another stem from the basic 
lemma of the section, Lemma4.l, to the effect that A< µ(u(x; "A)). The properties 
themselves, of differentiability of u(x; "A) with respect to "A, two variational 
characterizations, and a representation of u(x; "A) as a uniform limit of monotone 
decreasing upper bounds have no clear common connection; however critical 
in our proof of each has been the use of Lemma 4.1. In this section we shall 
requir~ the following additional hypothesis on f(x, u): 

(H')f(x, u) is continuously differentiable with respect to u and f,,(x, u) & 

C" (D1). In addition, throughout this section we shall require that L be self-adjoint 
with boundary operator B. In particular, this implies that ak(x) == 0, x & D, for 
k = 1, · · · , N, and 

N 

b;(x) = L a;;(x)n,(x), xe8D, for j=l,···,N. 
i-1 

We can now introduce µ(h(x)) for a smooth, positive function h(x) 
lowest eigenvalue of the problem (1.1) linearized about h(x); that is, 

(4.1) 
Lv = µf,,(x, h(x))v, x e D, 

Bv = 0, xe8D. 

as the 

We wish to note here for future reference that the concavity condition (1.5) 
implies that f(x, u)/u is a decreasing function of u for positive u. Therefore, with 
f(x, u)/u continuously differentiable on (O, oo) the condition (1.5) is equivalent 
to 

(4.2) _ff,_ [t(x, u)] = ! [f (x u) _ f(x, u)] < O. 
du u u " ' u 

We shall now demonstrate a result complimentary to Theorem 3.2, i.e. in the 
unforced case max Ju(x; "A)J ~ 0 as A~ µ(O)+. It seems to us that this should 
hold under the conditions (H') on f(x, u). However, we have been able to prove 
this result only under the stronger restrictions on f(x, u) given in the 

Theorem 4.1. If, in addition to satisfying (H), the function f(x, u) is twice 
continuously differentiable with fuu(x, u) < 0 for u > 0, then in the unforced case, 

(4.3) lim [max lu(x; A) 11 = 0. 
>.-+µ(O) + :z:tD 

Proof. Since by Theorem 3.1 u(x; A) is monotone decreasing as)..~ O, then 
lim>.-+µ<o>+ [u(x; "A)] exists and is equal to w(x), say, and w(x) satisfies 

(4.4) 
Lw = µ(O)f(x, w), xeD, 

Bw = 0, xe8D. 

This follows from the application of Theorem 12.2 of [8] to the one parameter 
family of inhomogeneous terms { Af (x, u(x; A))}. Recall that we showed in Sec-
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tion 2 (before the statement of Theorem 2.1) that in the unforced case µ(O) is the 
primary eigenvalue of (1.1) linearized about u = 0. Now, using Taylor's Theo­
rem, we can write (4.4) as 

w2 
Lw - µ(O)fu(x, O)w = µif,,,,(x, ~) 2 , 

(4.5) 
X& D, 

Bw = 0, xeaD, 

where 0 ;;;;; Hx) ;;;;; w(x). Hence, w(x) = 0 for x e D because if there exists an 
~ e D such that w(~) > 0, then by the Fredholm Alternative Theorem µ(O)f ,,,. 
• (x, ~)w2/2 must be orthogonal to v(x), the principal eigenfunction of Lv -
µ(O)f,,(x, O)v = O, Bv = 0. However, v(x) and µ(O)f .... (x, ~)w2/2 each have only 
one sign in D, and thus, this latter situation is impossible. Q.E.D. 

Lemma 4.1. If u(x; A.) is the unique positive solution of (1.1), then 

(4.6) A. < µ(u(x; A.)) 

(a) in the forced case for A. e (O, µ( oo )), and 
(b) in the unforced case for A. & (µ(O), µ( oo )). 

Proof. Let p(x) = X{f(x, u(x; A.)) - f,,(x, u(x; A.))u(x; A.)}. Then, from (4.2), 
p(x) ~ 0 for x e D with inequality for some x & D. Thus the problem, for A. as 
specified in the above statement, 

(4.7) 
Lw(x) - A.f.,(x, u(x; X))w(x) = p(x), 

Bw(x) = 0, 

X&D, 

xeaD, 

has the positive solution w(x) = u(x; X) and, by the Positivity Lemma of [3], 
A. < µ(u(x; A.)). Q.E.D. 

Corollary 4.1. u(x; X) is continuously differentiable with respect to A., for 
A. & (µ(O), µ( oo)) in the free case; and X & (O, µ( oo)) in the forced case, and au(x; A.)/ ax 
= y(x) satisfies 

Ly(x) - A.f,.(x, u(x; X))y(x) = f(x, u(x; A.)). 

Proof. This statement follows as an application of the abstract Implicit 
Function Theorem ([9], p. 265) applied to the operator 

T(u; A.) = Lu(x) - Xf(x, u(x)) 

mapping H':,~(D)x( - oo, oo) onto L,,.(D). (Here f(x, u) is extended to negative 
arguments in u in anyway convenient.) Q.E.D. 

In this self adjoint case, (1.1) is the Euler Equation for the functional 

(4.8) 
J(w) = J a;;(x) a~(x) a~(x) + c(x)w2(x) 

D uX; uX; 

- x(fow(a:) f(x, ~) d~) dx + flD bo(x)w2(x) dx. 
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Regarding J(w) as the potential energy of a system which has u(x; l>.) as an 
equilibrium position, a common 'rule of thumb' for the stability of the equilib­
rium position u(x; l>.) is that }>. < µ(u(x; l>.)), i.e. the linearized eigenvalue rep­
resents the instability threshold for X. We show that this criterion, which is 
satisfied according to Lemma 4.1, implies that u(x; X) is a local minimum for 
J(w(x)). Other aspects of the stability of u(x; X) are discussed in [3]. 

Theorem 4.2. For l!u(x; X) - v(x)ll"' ~ 0 and sufficiently small, 

(4.9) J(v(x)) > J(u(x; X)). 

Proof. We can expand J(v(x)) about u(x; X) using Taylor's Formula ([9], 
p. 186) 

(4.10) J(v(x)) = J(u(x; X)) + J'(u) · (u - v) 

+ { (1 - s)J"(u + s(v - u))·(u - v, u - v) ds. 

However, since u(x; X) satisfies the Euler Equation for J(u), J'(u) = 8, the 
zero mapping. Writing the last term of (4.10) explicitly, we have 

(4.11) J(v) = J(u) + 11 (1 - s) J [a;;(x) a(ua - v) a(ua - v) 
o D X, X1 

+ c(x)(u - v) 2 - Xf,.(x, u + s(u - v))(u - v) 2] dx ds. 

For llu(x; X) - v(x)ll .. sufficiently small X ~ µ(u(x; X) + s[u(x; X) - v(x)]) 
for s a: [O, 1), by Lemma 4.1. Hence by the Rayleigh Quotient Inequality for 
µ(u(x; X) + s[u(x; X) - v(x)]), the integrand in the last term of (4.11) is positive 
for alls a: [O, 1), which yields (4.6). Q.E.D. 

For the forced problem we can give an interesting alternate variational 
characterization of the position solution. For X a: (O, µ( oo )), let w(x; X) be the 
solution of (1.1) for a forced case, and let u(x; X) be the solution as defined above 
for the corresponding free case, i.e. 

(4.12) Lu(x; X) = X[f(x, u(x; X)) - f(x, O)], 

Bu(x; X) = 0, 

xa:D, 

xr,oD. 

For a non-negative function v(x) r, C"(D) we can define h(x) as the solution of 
the linear problem 

(4.13) 
Lh(x) - Xf,.(x, v(x))h(x) = X[f(x, v(x)) - v(x)f,.(x, v(x))], XED, 

Bh(x) = 0, xa:aD. 

To indicate its dependence on the function v(x), we write h(x) as h(x; v). 

Theorem 4.3. Let f(x, u) satisfy (1.5), (H) and (H'). In addition, let 

(4.14) 
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Then, 

(4.15) w(x, >.) = mm [h(x, v)]. 

Remark 1. For Xe (O, µ(O)), the representation (4.15) reduces to 

(4.16) w(x; >.) = min [h(x, v)]. 
•(z)it;O 

Remark 2. The concavity condition (4.14) implies that 

(4.17) f(x, u) = min [f(x, v) + f,.(x, v)(u - v)]. 

Hence, Theorem 4.3 gives a sense in which the minimizing operation of (4.17) 
can be interchanged with the solution operator for the linear problem (4.13), i.e. 
a form of quasilinearization, [10]. 

Proof. For v(x) ~ u(x; >.), v(x) E ca(D), we have 

Lw(x; X) = X[f(x, v(x)) + (w(x; >.) - v(x))f,.(x, v(x))] - Xp(x), xeD, 

where 

p(x) = f(x, v(x)) + (w(x; >.) - v(x))f,.(x, v(x)) - f(x, w(x; >.)) ~ O, 

for x i: D, in consequence of ( 4.17). Then 

L(h(x, v) - w(x; >.)) - Xf,.(x, v(x))(h(x, v) - w(x; >.)) = Xp(x) ~ O, xi:D, 

B(h(x, v) - w(x; X) = O, xi: an. 
However, from Lemma 4.1 and (4.14), we have X < µ(u(x; >.)) ~ µ(v(x)). Hence, 
by the Positivity Lemma of [3], we conclude that h(x; v) ~ w(x; >.). Since w(x; >.) 
~ u(x; >.), we can set v(x) = w(x; >.), in which case, h(x, v) = w(x; >.), which 
proves (4.15). Q.E.D. 

It would be convenient if the class of admissible functions in (4.15) could be 
extended to all non-negative, smooth functions on Das in (4.16) for the whole 
range of >.. The following argument shows that, in general, this is not possible. 
Consider a case in which >. 1 and X may be chosen to satisfy µ(O) < X1 < µ(u(x; 
>.1)) < >.;e.g.,µ( co) = co. Then, taking v(x) = u(x; >.1), we have 

L(h(x; v) - u(x; >.1)) - Xf,.(x, u(x; >-1))(h(x; v) - u(x; >-1)) 

= (X/>-1 - l)f(x, u(x; >-1)). 

Then h(x; v) - u(x; >.1) ~ 0 for xi: D would imply that X < µ(u(x; >-1)) by the 
Positivity Lemma of [3], hence a contradiction. Thus, there is ~ i: D for which 
u(~; >.) ~ u(x; >.1) > h(~, v), and v(x) = u(x; >.1) cannot be an admissible function 
for the variational representation (4.15). 

The successive approximation procedure of Section 2 provides a convergent 
sequence of lower bounds for u(x; >.). With the help of Lemma 4.1, we can in-



EIGENVALUE PROBLEMS 909 

dicate how Newton's Method can be used to provide a convergent sequence of 
upper bounds for u(x; i\). Newton's Method for approximating u(x; i\) is to 
calculate successively the sequence { un(x)} as solutions of the linear problems 

(4.18) Lun(x) - i\fu(x, u,.-1(x))un(x) 

= i\[f(x, Un-1(x)) - fu(x, U,.-1(x))Un-1(x)], XE D, 

Bun(x) = 0, xeaD, N = 1, 2, ···, 

for arbitrary Uo(X) E c2+"(D), Uo(x) ~ 0, x ED. 

In [4], a suitable starting value, u 0 (x), for Newton's Method is constructively 
defined and the monotone decreasing convergence of the sequence is proven for 
the forced case, for i\ e (0, µ(O)). 

Theorem 4.4. For f(x, u) satisfying (4.2) and (4.14), for i\ E (O, µ(co)), let 
{un(x)} be the sequence of approximations calculated by (4.18). If, for all x ED, 

(4.19) ua(x) ~ u1(x) and u0(x) ~ u(x; i\), 

then lu,.(x)} converges monotonically nonincreasing, and uniformly to u(x; i\). 
(It, in fact, converges in HV!,~(D) for 1 ~ p < co. See proof of Theorem 3.2 for 
H~~~(D).) 

Proof. Hypotheses (4.19) are the first steps in two induction proofs. First we 
show that if Un-i(x) ~ u(x; i\) then Un(x) ~ u(x; i\). 

L(un(x) - u(x; i\)) - i\fu(x, Un-1(x))(un(x) - u(x; i\)) 

(4.20) = i\{f(x, u,._1(x)) - f(x, u(x; i\)) - fu(x, Un-1(x))(u,.-1(x) - u(x; i\))} 

= i\ I (fu(x, Hx)) - f u(x' Un-1 (x)) (un-1 (x) - u(x; i\))} ' 

where, by the Mean Value Theorem, ~(x) ~ un_ 1(x). The induction hypothesis 
provides, with (4.14), that the right side of (4.20) is now negative, and that 
i\ < µ(u(x; i\)) ~ µ(un-1(x)). Consequently Un(x) ~ u(x; i\). 

We now deduce that if Un(x) ~ u,._ 1 (x), then Un+1(x) ~ un(x). By an argument 
similar to the preceding one, we have for some t(x) satisfying 

u,.(x) ~ t(x) ~ Un-1 (x), 

(4.21) L(Un+1(x) - Un(x)) - i\fu(x, Un(x))(Un+1(x) - u,.(x)) 

= i\I [fu(X, t(x) - fu(x, Un-1(x))](un(x) - U,.-1(x))}, XE D, 

B(u,.+1(x) - u,.(x)) = 0, x1:aD. 

Ai3 above, using the fact that µ(u,.(x)) ~ µ(u(x; i\)) for all n, we conclude that 
Un+1(x) - un(x) ~ 0 for x ED. Since lu,.(x)} is monotone non-increasing and is 
bounded below by u(x; i\), the sequence converges in Lv(D) to a non-negative 
limit, u(x), in Lv(D) for 1 < p < co. We can rewrite (4.18) as 

(4.22) Un+1(x) = i\L-11f,,(x, Un(x))(Un+1(x) - Un(x)) + f(x, Un(x))}, 



910 R. BRUCE SIMPSON & D. S. COHEN 

where L-1 is continuous from L,,(D) to H~~~(D). As n ~ co, the argument of 
L-1 converges to f(x, u(x)) in L.,(D); hence the left side of (4.24) converges to 
u(x) in H~~~(D). However, by the uniqueness in L.,(D) of the positive solution 
of u(x, X) AL-1/(x, u(x; X)) ([5], Theorem 6.3), we conclude that u(x) = 
u(x; X). Q.E.D. 
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