
This is a repository copy of Ctrl-MORE: A Framework to Integrate Controllers of Multi-DoF
Robot for Developers and Users.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/156162/

Version: Accepted Version

Proceedings Paper:
Castano, JA, Kryczka, P, Delhaisse, B et al. (2 more authors) (2018) Ctrl-MORE: A
Framework to Integrate Controllers of Multi-DoF Robot for Developers and Users. In: 2018
IEEE International Conference on Robotics and Automation (ICRA). International
Conference on Robotics and Automation (ICRA), 21-25 May 2018, Brisbane, QLD,
Australia. IEEE , pp. 543-549. ISBN 978-1-5386-3082-2

https://doi.org/10.1109/icra.2018.8460947

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Ctrl-MORE: A Framework to Integrate Controllers of Multi-DoF

Robot for Developers and Users

Juan A. Castano, Przemyslaw Kryczka, Brian Delhaisse, Chengxu Zhou and Nikos G. Tsagarakis

Abstract— In recent years, many different feedback con-
trollers for robotic applications have been proposed and im-
plemented. However, the high coupling between the different
software modules made their integration into one common
architecture difficult. Consequently, this has hindered the ability
of a user to employ the different controllers into a single, general
and modular framework.

To address this problem, we present Ctrl-MORE, a software
architecture developed to fill the gap between control developers
and other users in robotic applications. On one hand, Ctrl-
MORE aims to provide developers with an opportunity to
integrate easily and share their controllers with other roboti-
cists working in different areas. For example, manipulation,
locomotion, vision and so on. On the other hand, it provides to
end-users a tool to apply the additional control strategies that
guarantee the execution of desired behaviors in a transparent,
yet efficient way. The proposed control architecture allows an
easier integration of general purpose feedback controllers, such
as stabilizers, with higher control layers such as trajectory
planners, increasing the robustness of the overall system.

I. INTRODUCTION

Nowadays, many cross-platform software solutions have

arisen to provide general purpose tools and accelerate the

research in different robotic applications. The purpose of

those programs is to provide a structure that can be used

by a wide range of roboticist, to integrate their works on the

considered hardware. To reach this aim, software developers

have worked in different layers of abstraction to facilitate the

technological development in robotics.

One of the first abstraction levels is the Hardware Layer.

The goal of this abstraction is to hide the hardware complex-

ity from task designers and high level users of the robot [1].

This layer permits to write software solutions that are not

robot dependent; since the hardware is transparent to other

software layers, such as perception and locomotion [2].

At a different abstraction level we find YARP [3] and ROS

[4] which are tools that facilitate the communication between

different modules and data sources. These frameworks act as

a bridge between different data sources and merge them into

a single decentralized application. As result, it is possible

to handle information from different sensors, control plat-

forms, and different modules and combine them into single

platforms in a transparent and general way.

These software abstractions hide the hardware layer from

software developers on other layers. With such abstractions,

This work is supported by the FP7 European project WALK-MAN (ICT-
2013-10).

All authors are with the Department of Advanced Robotics, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
Email: name.surname@iit.itt

end users do not need to consider hardware particularities

and signal sources. They can use the robots’ signals directly,

facilitating code development and integration in a centralized

application. However, many developments are made as de-

centralized applications due to the expertise of researchers

and the integration of different programs and libraries. This

causes difficulty when integrating all of them in a single

centralized application.

To integrate specific modules such as manipulation, lo-

comotion, planning, etc. and switch between them, there is

a cross-robot software called XBotCore software platform

[5] which has been implemented on the humanoid robots

developed in the authors lab such as COMAN [6] and

Walk-MAN [7]. This work is a standard control system

that is modular, flexible, and robot independent. It has been

designed to centralize the robot’s information, and reuse the

code between modules and platforms. This work gives the

user and interface to develop, integrate, and switch modules

in a single application which is transparent and user friendly.

Another architecture to handle the robot’s software mod-

ules is given in [8]. In this work, the authors present an

architecture that provides to the operator control of the

robot in different situations. It allows to switch between

existing modules, and have explicit control of the robot

when necessary. When using this architecture, the opera-

tor can control the robot through teleoperation, where the

human may command each robot’s motions, or use highly

autonomous behaviors such as goto commands, providing a

flexible level of interaction from the robot to the operator.

Given the capability to change between modules and

handle them in a secure way, it is possible to develop

decentralized software solutions for particular applications,

which will then be used for a central module according to the

final goal. Therefore, researchers do not need to worry about

communication layers, and prioritization w.r.t other modules

but may focus on their own research problem.

A lower level of abstraction has been presented in [9]. In

that work, the authors introduce “Free Gait”. This architec-

ture provides an easy way to integrate locomotion behaviors,

through a common interface. The interface gives the user

the capability to execute and integrate locomotion behaviors

at different levels of abstraction. For example: task space,

joint space, full trajectory description etc. Additionally, the

architecture includes tracking controllers to increase the

robustness during execution. “Free Gait” allows the user to

integrate in a single module, locomotion gaits, control strate-

gies and additional locomotion capabilities which centralize

the locomotion behaviour.

Controller1

Controller2

Controller3

Controller4

confYAML1

confYAML2

confYAML3

confYAML4

FeedBackControllers

INTERFACE

Documentation methods

Control methods

Map: controlPrototypes

FeedbackControllersManager

Documentation methods

Control methods

Vector: *FeedbackControllers

LocomotionManager

Documentation methods

Control methods

Vector: *locomotionControllers

ManipulationManager

Documentation methods

Control methods

Vector: *ManipulatiControllers

Central module

ControlManager

LocomotinManager

ManipulationManager

Additional Methods

Documentation methods

Control methods

Lib list config File

RobotStates

ControlStates

RobotStates

Measured data

Estimated data

Get/Set methods

ControlStates

References

Additional signals

Get/Set methods

D
O

C
U

M
E

N
TA

T
IO

N

From Robos to

Control’s Module

Fig. 1. Brief representation of the overall architecture scheme.

Following the presented line, the purpose of this work

is to integrate control developments over different modu-

lar software solutions. Ctrl-MORE gives low-level control

designers and high-level task designers a way to integrate

their works within a single scope, as it is desired in the

robotics field. We are willing to have a natural, secure, fast,

and reflexive robot behavior. Therefore, task execution must

consider external interactions and on-line modification of

the original task trajectories. Some of such modifications

are given by the task oriented module itself, such as gait

pattern generator [10], adaptive bipedal locomotion [11],

compliant stabilization [12], or the constrained solutions

while using optimized inverse kinematic algorithms [13],

[14]. Even though these solutions provide certain feasibility,

it is necessary to incorporate additional closed loop capa-

bilities in other modules as shown in [15]. In this sense,

control developers are continuously making strategies that

produce on-line task modifications, but most of the time these

solutions are for specific use even though they can be of

general purpose. Some examples are: balancing controllers

in cooperation with bipedal walking [15], [16], Stabilization

strategies when detecting external interaction [17], CoM and

momentum control to provide stable gait execution.

The present work aims to reduce the gap between control

developers and control users. On one hand, the given archi-

tecture permit the developers to create their controllers in a

common interface to be easily shared with other users reduc-

ing the integration time and increasing the cooperation be-

tween colleagues. Therefore, the proposed framework, Ctrl-

MORE, allows to develop controller that are independent

from the robotic platforms and communication middlewares

such as ROS [4]. On the other hand, Ctrl-MORE permits

final users, such as task planners, to use existing control

tools in their own modules in a simpler and clearer way

i.e. Combining in the same module feedback stabilizers with

manipulation strategies.

By using Ctrl-MORE the effort during the integration of

the desired controllers is reduced, and allows the user to

perform actions such as: use cascade control strategies, use

individual controllers or modify various controller simulta-

neously. This way, the performance of the user’s module

increase once additional control strategies are used and active

cooperation simplify. The open source files are available at
1

II. GENERAL DESCRIPTION

The proposed architecture in Ctrl-MORE gives an easy

interaction between control developers and additional users.

From the control developers point of view, the architecture

allows to share the developments with other users. Since the

interface will provide a general abstraction of the control, it

becomes easier to use and the integration time reduced.

In addition, we consider an abstraction of the robot’s state

using a common structure to encapsulate the robot’s signals.

This way the architecture is also easily ported to different

robots allowing a better collaboration between colleagues.

However, to work in this fashion a responsibility of the

developers is required, since each controller must have its

corresponding documentation. The documentation lets the

user know how to use a specific controller.

A general description of the overall architecture is shown

in Fig. 1 and more specific details will be given in the follow-

ing sections. As it is shown the Documentation is exter-

1https://github.com/ADVRHumanoids/Ctrl-MORE

States

Input Vector

Output Vector

Configuration File

Gains: PID, LQR, Weights.

Model: discrete, continuous, multibody.

Constrains: Upper/Lower bounds, slew

rate, windup.

Other values to be change by the user

Documentation

New Control Doc

Input Vector characteristics.

Output Vector characteristics.

Uses cases, Limitations.

Additional consideration.

Available Controllers

One Control

Other Control

Another Control

New Control: implements

FeedbackControllers

Name: example

Used signals:

My input/output

State: Active

Specified by

the Developer

In/Out signals

Architecture Documentation

Other controllers Documentation

From Robot to

Control’s Module

Lib list config File

List of used

controllers among

many available

Fig. 2. Architecture use from the developers point of view

nal to all modules, but fundamental for the proper use Section

III-C. The modules RobotStates and ControlStates

Section IV, encapsulates the robot’s and controls’ data in a

common interface, facilitating the integration of the control

strategies with different robots.

in Fig. 1 the FeedbackControllersManager is

found, it is described in Section V-B. The manager provides

an interface to handle and execute each of the controllers

listed in the Lib list config File. This module pro-

vides an interface that gives the user the ability to apply

different controllers and receive different information from

the controllers such as states, names, and used signals.

To have a common interface for developers and users,

each of the feedback controllers needs to implement the

feedbackController class, which is an abstract class

that defines the controller’s interface and gives the standard

methods to each controller such as execute, paused, active,

document, and read. As can be seen in the diagram, each

controller is linked to its particular config file which provides

the final user with some degrees of freedom to tune the

gains of the particular controller. Additionally, Lib list

config File will contain the list of all the available

controllers and will provide the final user a text interface

to define which controllers should be loaded.

The central module of Ctrl-MORE implements the

different managers for different purposes such as the

FeedbackControllersManager. The list containing

the managers and the corresponding control members

i.e. (ControlManager->FeedbackCtrls List) are

listed in a config file (Lib list config File in the

figure). Additionally, the central module implements the

robot and control states which are shared by all controllers.

A representation of the modules that are used by the

controls’ developers is given in Fig. 2, and we highlight

the parts that are modified by the controller’s developers in

green. More details of each part of the architecture will be

provided in the following sections.

First, the robot signal, including sensors readings, signal

estimation, and control references are translated from the

robot into the corresponding state container mentioned in

States

Input Vector

Output Vector

Configuration Files for each

selected controller

Gains: PID, LQR, Weights.

Model: discrete, continuous, multibody.

Constrains: Upper/Lower bounds, slew

rate, windup.

Other values to be change by the user

Documentation

Controllers Manager

Get methods

getname, getgains ...

Change control State

stop, start ...

Update all controller

Plot control’s information

Architecture Documentation

Each controller Documentation

From Robot to

Control’s Module

List of used controllers

among many available

Specified by

the Developer

In/Out signals

Lib list config File

Fig. 3. Architecture use from the users point of view

Section IV. This step is guaranteed by the controllers’ and

robot’s user. Each signal is stored in a map as a vector with

a corresponding label. The vector characteristics, length, and

order of data are defined by the architecture and controller’s

developer and should be properly documented.

Having the required signals in the state’s module, the de-

veloper implements the specific controller and adds the con-

troller’s descriptive information such as controller’s name,

used signals, and gain characteristics. The handler will permit

the final user to use but not to modify the controller shown

in Section V-A.

During the implementation procedure, the developers have

to add the descriptive characteristics needed by the user, and

define the interface to load the gains using the parser Section

III-A. With this in mind, the developer needs to provide the

configuration file which gives the user capability to tune the

controller variables like gains, limits, models etc.

Finally, the developer has to implement the documentation

including the controller’s characteristics and its uses and

limitations, in a clear way for the user. Additionally, it is

necessary to include the the paths to the new control library

and the path to the configuration file in the list of existing

controllers Lib list config File.

From the final user perspective, a brief description of the

architecture is presented in Fig. 3, where we highlight the

parts that are modified by the end user in red.

The final user has access to the architecture documentation

including the documentation of each controller, written by

the different developers. In addition, the user also has the

configuration files to tune the controller’s performance. The

control architecture has the controller’s manager interface,

which provides a set of methods to get information from

the controllers, methods to modify each control state, and a

method to update all the active controllers.

There are two modification the user needs to make. The

first one is the control selection file Lib list config

File, which contains the list of desired controllers. The

second modification is to write the robot’s data into the

given data container, following the signal’s requirements of

each control and the containers characteristics. This means

that, if the IMU data are organized as three vectors namely

angPos, angV el, LinAcc, the data are encapsulated in one

of the maps in RobotState as a single vector as the pair

[key,vector] (′imu′, [angPos, angV el, LinAcc]). This need

to be done for each of the signals used by the controllers in

agreement with the provided documentation.

III. COMMUNICATION INTERFACES

We have created a structure that is well documented and

includes examples. It is ready to be used and both users,

developers and control users, can start their integration using

the proposed architecture. However, it is the developer’s

responsibility to document their own controllers for the

final user. The documentation should clarify, how to use

the controller, when to apply it, and the controller’s gain

characteristics, etc.

In order to make use of the different controllers and

facilitate the integration and debugging, we use parser tools

to load control libraries and individual controller’s gains.

Additionally, debug tools for the developing, integration and

used phases are also required.

Even though these modules are standard, it is important

to remark them since they are a crucial part of the structure

and make possible a clear cooperation between colleagues.

A. Parser

The first communication tool is the parser, it is used to

load the control gains, initialization parameters and control

characteristics. In this architecture we used YAML files [18].

Using YAML files it is possible to load the controller’s

parameters using a text file. From the configuration point

of view, the variables included in the parser are the degrees

of freedom provided that the end-user has.

In this architecture, the parser has two applications: the

first one is to store the gains, limits, models and other

variables of each controller and that the final user might

modify. The second is to load specific controllers of a list

through a text interface. Furthermore, there is a YAML file

that contains a list of paths to the control libraries and config-

urations files. In this file, the variable loadControllers

lists the controllers that the end-user wants to load. A simple

example of this file is reproduced below.

l o a d C o n t r o l l e r s : [A t t i t u d e , ZmpIP]

Compl ian t :

l i b P a t h : / LIBPATH / l o c o m o t i o n / l i b f b k C t r l C o m p l i a n t . so

c o n f i g F i l e : / PROJECTPATH / c o n f i g s / c o m p l i a n t . yaml

ZmpIP :

l i b P a t h : / LIBPATH / l o c o m o t i o n / l i b f b k C t r l z m p i p . so

c o n f i g F i l e : / PROJECTPATH / c o n f i g s / zmpip . yaml

A t t i t u d e M P C C o n t r o l l e r :

l i b P a t h : / LIBPATH / l o c o m o t i o n / l i b f b k C t r l A t t i t u d e . so

c o n f i g F i l e : / PROJECTPATH / c o n f i g s / A t t i t u d e . yaml

B. Logger

The logger we include in the interface is the one given in

[5], the logger permit the display of warning and errors in

the code. This way the control developers and final users

have the information about possible code problems and

where to locate them. The logger is used as a debugging

tool and on each controller warnings and errors should be

present. It is the developers responsibility to include the

warnings and errors on the controller. This way, the final

user is able to detect and correct possible errors during

the control implementation and use. To keep the work flow

independent from external modules, the logger is embedded

in the structure and the XbotCore software is not required.

C. Documentation

To document the presented control structure and the de-

veloped controllers we are using Doxygen [19]. It provides

a clear and well documented tool that final-users and con-

troller’s developers require to use the system and document

the specific controllers. Since this framework aims to en-

rich cooperation between control developers and final users,

proper documentation is imperative. The documentation of

each controller clarifies it’s use conditions and working

scenarios. This way the final user can decide which control

to use and know which are the implementation requirements.

IV. SYSTEM STATES

As introduced in Section II, the framework encapsulates

the robot data in a predefined interface. This is done to

hide the controllers’ developments from the hardware and

software final user applications.

This generates a proper user-developer interaction since

both users know beforehand the way they should handle

input/output data. To encapsulate the data we implement

two modules, the robot, and the control states. The first

one centralizes the robot’s information including measured

data from encoders, IMU data, etc, as well as estimated

data from external modules. The second module centralizes

the controller’s references and efforts. The two modules

are decoupled such that the final user can consider the

controller’s information according to the particular needs.

A. Robot States

The robot state is a class that contains a set of get/set

methods. The data are stored in maps of vectors with the

corresponding string key identifier. Four different maps of

data are used through the code:

• measuredData: map of measured data as vectors.

• measurementTimeStamp: time stamp for measured

data, the key name should agree with the keys in

measuredData.

• estimatedData: map of estimated data as vectors.

• estimateTimeStamp: data time stamp correspond-

ing to the estimated data, the key name should agree

with those in estimatedData.

By organizing the data in a map, the developer can

ask directly for specific measures. To do so, the vector

characteristics and the key name should be well documented

by the controller’s developer. As a result of this, the final

user knows the input/output characteristics that they need to

consider for each of the loaded controls.

One of the advantages of using maps is that they can

be scaled according to the user requirements. When a new

vector of data is required, a new pair key,vector is added

to the particular map.

The robot states module informs users and developers

when a new key-vector couple is added and when wrong

access was required, i.e. a wrong size vector was added to a

particular map or reading a non existing [key, vector] pair.

This way the debug process during the control implementa-

tions is simplified. Additionally, the class has a print function

that shows the information contained in each map.

B. Control States

This module is similar to the robot’s state (see Section

IV-A). However, this one contains information such as ref-

erences and control efforts which are the controller’s output.

Given that this framework was developed for robotics

application we defined a set of containers for specific data.

So, both the user and developer know in advance where to

locate specific kind of signals with the corresponding set/get

methods. The predefined containers have the corresponding

errors and warning alerts already implemented to detect

wrong access. The containers are:

• taskSpaceReferencePose: Task space reference

pose.

• taskSpaceReferenceVel: Task space reference

vel.

• taskSpaceReferenceAcc: Task space reference

acc.

• jointSpaceReference: Joint space reference.

• otherReference: Other kind of signal.

As it can be seen, each map corresponds to a common

type of reference in robotics which is in general a well

defined size vector. The map otherReference contains

all additional references that the controllers might require

with no specific size. As an example, consider a reference of

m samples for a predictive controller. Well known variables

such as the Centre of mass, linear and angular momentum

have their own container and get/set methods. The print

function that shows the information contained in each map.

V. CONTROLLERS

To develop each of the controllers, and having the data

centralized as described above, we provide a common inter-

face to the controller’s developers. We defined two classes;

the first defines the set of capabilities each controller has

and the methods that create a communication bridge between

users and developers. This class is only used by developers.

The second class is the user’s interface that is used to apply

one or more of the existing controllers.

A. Feedback Controller

The abstract class feedbackController declares

a set of methods that has to be implemented by each

new feedback controller. The methods define the require-

ments and general information the controller should have,

providing a general interface to implement and share

the controllers. In addition, the feedbackController

class contains a type definition which is a pointer to

a feedbackController class and an external map

feedbackcontrollerPrototypes. Using this map,

the controller’s manager loads only the controllers the user

requires. Further details are found at Section V-B.

The methods contained in each controller can be divided

into control and documentation methods.

1) Documentation Methods: These are functions within

each controller to inform the user about the specific controller

characteristics. The given information includes input/output

signals names, keys on the robot and control states maps, the

controller’s name, and the controller’s state publisher. Addi-

tionally, There are functions to get and set the controller’s

name and the control/robot states; functions that check if the

control is enabled or paused, and which are the states used

by the control; and finally there are functions to provide

the control characteristics as gains and developer additional

information.

2) Control Methods: This set of virtual or pure virtual

functions generalize the controller’s implementation. These

methods should be implemented by the user according to

the specific control structure. The control methods permit

to change the state to be paused or to resume the controller,

enable or disable it; functions that initialize the controller and

as principal function, there is update() which is called at

each sampling to run the controller.

Implemented APIs

Documentation

setName("name"), getName(), plot()

addUsedControlState("stateName")

addUsedRobotState("stateName")

isUsingRobotState("stateName")

isUsingControlState("stateName")

getUsedControlState() getGains()

Control

enable(), disable(), pause() and resume()

initialize(),loadGains("fileName"),update()

TABLE I

IMPLEMENTES APIS IN THE FEEDBACKCONTROLLER

This module defines each controller interface and is com-

mon to all of the available ones, the implemented APIs are

listed in Table. I. The variables to which each controller refer,

are those related to the robotStates in Section IV-A

and controlStates in Section IV-B. Additional variables

should be defined as internal variables or in the configuration

file to which the user has access.

B. Feedback Control Manager

The main functionality of the proposed software structure

lies on this module. Here the user from different areas can

call and apply different controllers in an easy and clear way.

This class is the interface to the controllers and is where

the user defines how to handle them. Some capabilities are:

decide which of the available controllers should be loaded,

activated or paused; change the controller’s execution order,

which is useful in case of prioritization or cascade control

strategies; deactivate all the controllers that use a particular

signal, which is useful during failures.

Through this class the final user can decide to use one or

more controllers in a few steps as:

1) Define the control to be loaded in a configuration file.

2) write the input/output information using Section IV-A

and Section IV-B.

3) execute the update method provided by the class.

4) use the control effort stored in the control states

Section IV-B according to the specific application.

To have a wide range functionalities, additional features

have been considered. This way we got a flexible use of

different controllers while keeping the code of the users

clean. These functionalities also minimize the code integra-

tion effort. The additional functionalities that were included

are:

• enable(), disable(), pause(),

resume()

This set of functions will modify the state of all the

controls that were loaded. This can be used for example

during emergency stopping conditions, initialization

and stop phases, etc.

• isEnable("controlName")

isPaused("controlName")

These functions check the state of the specific

controller. These function are not only informative, but

might prevent that two incompatible controllers are

used at the same time.

• pauseAllUsingRobotState("Name")

pauseAllUsingControlState("Name")

These functions pause all controllers that are using

a specific signal either from the robot state or the

control state. This can be helpful in case of a damaged

sensor, or when other programs will use a particular

end effector.

• resumeAllUsingRobotState("Name")

resumeAllUsingControlState("Name"

These functions activate all controllers that are using a

specific signal either from the robot or control state.

This is useful during recovery phases, initializing

phases, and modules activation.

• getControllersNames()

Gives the user a vector of data containing the names

of all the controllers that were loaded by the user

independently of the controller’s states

• setExecutionOrder("stringVector")

By default, the execution order is the same as the

one specified in the config file that defines which

control should be loaded (Fig. 3. However, through

this function, it is possible to modify the execution

order while the robot is active. This way priorities and

cascade behaviors can be adjusted to provide different

capabilities and performances.

This way the user can decide within the same module

whether to use one or more controllers, pause them accord-

ing to the module or robot state, and activate them when

required. This can be done without the necessity of additional

initialization or communication with external modules since

the control capabilities will be embedded on the user’s loop.

Given that the idea of the present software structure is

to centralize the feedback control developments, each user

will have access to one or many controllers at the same

time. However, it is desired to avoid an extended compilation

while loading the controllers. Therefore, a map that links to

the stand alone library of each controller is used during the

initialization, loading only the required controllers and avoid-

ing having a single library with several not used controllers.

To this aim, each controller is compiled as an independent

library but they are handled by the provided architecture. To

permit this behavior, there is a shared map within the con-

trollers’ structure, mapping feedback controllers’ prototypes.

The developer should enable the prototype and include it in

the YAML configuration file referred to in Section III-A. The

prototype is created internally by the code of each controller

using different naming such as:

e x t e r n ”C”

F e e d b a c k C o n t r o l l e r∗ feedbackExampleMaker ()

r e t u r n new Cont ro lExample () ;

} }
c l a s s dummyExample {

p u b l i c : dummyExample () {
f e e d b a c k C o n t r o l l e r P r o t o t y p e s . i n s e r t ({” M y C o n t r o l l e r ”

, feedbackExampleMaker }) ;

} } ;

dummyExample localDummyExample ;

}

Once the user loads the desired controllers which are

given in a YAML file, the system will link the pre-compile

controllers that are listed. See Section III-A

VI. CENTRAL MODULE

Given that the presented structure can be extended for

other applications rather than controllers, i.e, walking al-

gorithms, an additional level of centralization was added

to Ctrl-MORE. With the new abstraction layer, the central

module is able to handle the individual managers such like

locomotionManager, feedbackControlManager,

etc.

This module provides unique robot and control states

handlers to be used for all the different modules in a defined

order by the final user. For example, executing first the

locomotion algorithms and then the feedback controllers to

obtain modified references. In addition, it provides the access

to the individual manager configurations so that the user

modifies the different manager’s members states. The module

gives permission to configure all control loops independently

but updating all control and robot states at once.

A. User case example

As an example of the versatility of Ctrl-MORE, we imple-

mented the attitude controller in [16] as one of the feedback

controllers. This controller was ported to the presented

structure implementing the feedbackController class.

Below we show an example of the final user code when

implementing the attitude controller. It shows that the code

is robot independent and the migrations from robot to robot

is transparent, since it depends only on the data encapsula-

tion, config files names and required control signals. This

controller was implemented in three different robots using

the same attitude controller with a slight change in the way

IMU data and pelvis reference are considered.

\%Load c o n t r o l l e r s

fbkMngr=new Locomotion : : Locomotor (” f d b k C o n f F i l e s ”) ;

fbkMngr−> m f e e d b a c k C o n t r o l l e r s −>(” A t t i t u d e ”) ;

%E n c a p s u l a t e Data i n t h e r o b o t S t a t e }
imu map [” i m u l i n k ”]−>(R p e l v i s a b s , LnAcc , AngVel) ;

VectorXd imuda ta (9) ;

imudata<<AngPos , AngVel , LnAcc ;

m r o b o t S t a t e . s e t M e a s u r e d D a t a (” imu ” , imudata , 0) ;

\%Apply c o n t r o l l e r

f b k C o n t r o l l e r s M n g r−>u p d a t e (m r o b o t S t a t e , &m c o n t r o l S t a t e) ;

P e l v i s O = m c o n t r o l S t a t e . g e t P e l v i s O r i e n t a t i o n () ;

VII. CONCLUSIONS AND FUTURE WORK

Ctrl-MORE allows both user and developers to actively

cooperate towards more stable and capable robots. Through

the use of the present structure, it is possible that a final

user can have access to several controllers without developer

supervision. As a result of this, the developments can be

shared externally to a specific lab or project. From the user

point of view, this tool allows easy access and interaction

with different control strategies that might cooperate with

locomotion or manipulation modules to generate more stable

gaits and increase the robot’s capabilities.

On the other hand, the use that developers might make of

this structure depends on their desire to share and integrate

their controllers with other users. This is because it implies

a compromise of a well documented and proper implemen-

tation of all methods in Section V-A, which are not required

for the control itself, but allow users to understand and

properly use the controllers. This implies additional effort

from the developer’s point of view which in many cases is

not necessary nor desired.

In Ctrl-MORE the use of paths is spread since it is required

to load not only the gains files, which are modified by

the user, but it required to locate the lib paths. This can

generate errors and we are working towards developing an

automatically linking system, reducing the complexity of the

integration procedure. To provide a general tool, during the

development of Ctrl-MORE’s architecture we implemented

different controllers in different robots, identifying needs and

requirement towards a more general tool. However, possible

modifications and additional capabilities are welcome, to

create a general purpose tool for developers and user of

different areas.

As mentioned in Section VI, Ctrl-MORE can be extended

to another gait, such as locomotion. For this aim, it would be

necessary to extend the manager class to include additional

communication protocols. Recently, we have been working in

the development of a locomotion control manager, to provide

a tool that fills the requirements according to the lab expertise

in bipedal locomotion. For this aim, we are considering

the standardization and encapsulation of information like

foothold characteristics and transition characteristics. We

also consider trajectory handles to cope with CoM, CoP,

ZMP trajectories etc. Additionally, we are defining commu-

nication protocols to generate a general interface to process

different walking algorithms. These protocols should be

global for the different controllers, similar to the update()

in the feedback controllers.

REFERENCES

[1] S. Jorg, J. Tully, and A. A. Schaffer, “The hardware abstraction layer
- supporting control design by tackling the complexity of humanoid
robot hardware,” in 2014 IEEE International Conference on Robotics

and Automation (ICRA), May 2014, pp. 6427–6433.
[2] T. Murray, B. Pham, and P. Pirjanian, “Hardware abstraction layer

(hal) for a robot,” Mar. 20 2008, uS Patent App. 11/945,893. [Online].
Available: https://www.google.ch/patents/US20080071423

[3] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: Yet another robot plat-
form,” International Journal of Advanced Robotics Systems, special

issue on Software Development and Integration in Robotics, vol. 3,
no. 1, 2006.

[4] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[5] L. Muratore, A. Laurenzi, E. M. Hoffman, A. Rocchi, D. G. Caldwell,
and N. G. Tsagarakis, “Xbotcore: A real-time cross-robot software
platform,” in 2017 First IEEE International Conference on Robotic

Computing (IRC), April 2017, pp. 77–80.
[6] N. Tsagarakis, S. Morfey, G. Medrano-Cerda, Z. Li, and D. Caldwell,

“Compliant humanoid coman: Optimal joint stiffness tuning for modal
frequency control,” in IEEE International Conference on Robotics and

Automation (ICRA), 2013, pp. 665–670.
[7] N. G. Tsagarakis, D. G. Caldwell, F. Negrello, W. Choi, L. Baccelliere,

V. Loc, J. Noorden, L. Muratore, A. Margan, A. Cardellino et al.,
“Walk-man: A high-performance humanoid platform for realistic en-
vironments,” Journal of Field Robotics, 2016.

[8] S. Kohlbrecher, A. Stumpf, A. Romay, P. Schillinger, O. von
Stryk, and D. C. Conner, “A comprehensive software framework for
complex locomotion and manipulation tasks applicable to different
types of humanoid robots,” Frontiers in Robotics and AI, vol. 3,
p. 31, 2016.

[9] P. Fankhauser, C. D. Bellicoso, C. Gehring, R. Dub, A. Gawel, and
M. Hutter, “Free gait - an architecture for the versatile control of
legged robots,” in 2016 IEEE-RAS 16th International Conference on

Humanoid Robots (Humanoids), Nov 2016, pp. 1052–1058.
[10] C. Zhou, X. Wang, Z. Li, and N. Tsagarakis, “Overview of Gait

Synthesis for the Humanoid COMAN,” Journal of Bionic Engineering,
vol. 14, no. 1, pp. 15–25, 2017.

[11] J. A. Castano, Z. Li, C. Zhou, N. Tsagarakis, and D. Caldwell,
“Dynamic and reactive walking for humanoid robots based on foot
placement control,” International Journal of Humanoid Robotics,
vol. 0, no. 0, p. 1550041, 2015.

[12] C. Zhou, Z. Li, X. Wang, N. Tsagarakis, and D. Caldwell, “Stabiliza-
tion of Bipedal Walking Based on Compliance Control,” Autonomous

Robots, vol. 40, pp. 1041–1057, 2016.
[13] A. Rocchi, E. M. Hoffman, D. G. Caldwell, and N. G. Tsagarakis,

“Opensot: A whole-body control library for the compliant humanoid
robot coman,” in 2015 IEEE International Conference on Robotics

and Automation (ICRA), May 2015, pp. 6248–6253.
[14] C. Zhou, C. Fang, X. Wang, Z. Li, and N. Tsagarakis, “A Generic

Optimization-based Framework for Reactive Collision Avoidance in
Bipedal Locomotion,” in IEEE Conference on Automation Science and

Engineering, Fort Worth, TX, USA, August 2016, pp. 1026–1033.
[15] P. Kryczka, P. Kormushev, N. G. Tsagarakis, and D. G. Caldwell, “On-

line regeneration of bipedal walking gait pattern optimizing footstep
placement and timing,” in Intelligent Robots and Systems (IROS), 2015

IEEE/RSJ International Conference on, Sept 2015, pp. 3352–3357.
[16] J. A. Castano, C. Zhou, Z. Li, and N. Tsagarakis, “Robust model

predictive control for humanoids standing balancing,” in 2016 Interna-

tional Conference on Advanced Robotics and Mechatronics (ICARM),
Aug 2016, pp. 147–152.

[17] J. Castano, C. Zhou, P. Kryczka, and N. Tsagarakis, “MPC Strategy
for Dynamic Stabilization of Preplanned Walking Gaits,” in IEEE-

RAS International Conference on Humanoid Robots, Birmingham,
UK, November 15-17 2017, pp. 618–623.

[18] I. d. N. Oren Ben-Kiki, Clark Evans, YAML Aint Markup Language

(YAMLtm) Version 1.2, 3rd ed., oct 2009, retrieved 09/2016.
[19] D. van Heesch, doxygen, Manual for version 1.5.3.

