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Versatile Reactive Bipedal Locomotion Planning Through

Hierarchical Optimization

Jiatao Ding1,2, Chengxu Zhou2,3, Zhao Guo1, Xiaohui Xiao1, Nikos Tsagarakis2

Abstract— When experiencing disturbances during locomo-
tion, human beings use several strategies to maintain bal-
ance, e.g. changing posture, modulating step frequency and
location. However, when it comes to the gait generation for
humanoid robots, modifying step time or body posture in real
time introduces nonlinearities in the walking dynamics, thus
increases the complexity of the planning. In this paper, we
propose a two-layer hierarchical optimization framework to
address this issue and provide the humanoids with the abilities
of step time and step location adjustment, Center of Mass
(CoM) height variation and angular momentum adaptation.
In the first layer, times and locations of consecutive two steps
are modulated online based on the current CoM state using
the Linear Inverted Pendulum Model. By introducing new
optimization variables to substitute the hyperbolic functions
of step time, the derivatives of the objective function and
feasibility constraints are analytically derived, thus reduces the
computational cost. Then, taking the generated horizontal CoM
trajectory, step times and step locations as inputs, CoM height
and angular momentum changes are optimized by the second-
layer nonlinear model predictive control. This whole procedure
will be repeated until the termination condition is met. The
improved recovery capability under external disturbances is
validated in simulation studies.

I. INTRODUCTION

The deployment of humanoid robots in real-world envi-

ronments requires locomotion control performance that can

demonstrate quick response to external disturbances and

uncertainties. In theory, humanoids can, like human beings,

make use of various balancing strategies, including ankle

strategy, hip strategy, stepping strategy and upper-body pos-

ture modulation, to keep balance while walking. Our goal in

this paper, is to develop a versatile and robust framework for

bipedal walking/balancing, which could integrate multiple

strategies in a unified way.

To avoid high computation burden caused by full-body dy-

namics optimization, simplified models have been proposed,

among which the Linear Inverted Pendulum Model (LIPM)

is widely used [1]. Based on the LIPM, feasible Center of

Mass (CoM) trajectories have been generated using preview

control [2], analytic solution [3] and other methods, which

manipulate the Zero Moment Point (ZMP) within the support

polygon. However, due to the limited size of the support

polygon, this type of tracking controllers can hardly handle
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larger disturbances. Thus, with considering the feasibility

constraints, the Model Predictive Control (MPC) framework

is proposed in [4] and then is extended in [5] to deal with

footstep adaption. Since then, using the stepping strategy,

robust walking has been realized, such as work in [6].

However, the lack of considering other balancing recovery

strategies, such as modifications of vertical CoM motion,

angular momentum and step time, limits the humanoids’

capabilities against large disturbances.

Research efforts were made for the vertical CoM motion to

achieve more robust walking [7]–[9]. Brasseur et al. [10] lim-

ited the nonlinear part of the dynamic feasibility constraints

between extreme values and proposed a linear MPC for

gait generation with time-varying height trajectory. In [11],

the constrained optimization problem was formulated as a

quadratically constrained Nonlinear MPC (NMPC) problem

and was solved fast by Sequential Quadratic Programming

(SQP). Besides, momentum optimization has attracted more

attention in recent years [12], [13]. Zhao et al. [14] proposed

a hybrid phase-space method to realize dynamic walking on

uneven terrain, based on centroidal momentum dynamics.

To further enhance the robustness, step location adjustment,

angular momentum change and vertical height variation were

combined together in a unified MPC framework in [15] and

[16], where the fixed height trajectories were used as an in-

puts. While variable vertical motion and angular momentum

change provide additional controllability for stable walking,

further improvements are still needed when facing larger

tracking errors caused by external disturbances.

Changing the step time in real time is another effective

strategy that human commonly use while walking under

dynamic disturbances. Several works [17]–[19] modulated

the step time online by solving a large Nonlinear Program-

ming Problem (NLP), which requires heavy computation

load. Maximo et al. [20] adopted a mixed-integer Quadratic

Programming (QP) method for step duration optimization

but increased the computational complexity. To reduce time

cost, Hu et al. [21] proposed one sequential approach with

optimizing two walking steps, but only obtained the sub-

optimal results. Based on the Divergent Component of

Motion (DCM) dynamics, Khadiv et al. [22] linearized the

nonlinear term of step duration and then optimized the step

time by only solving a QP problem. Yet, this approach

focused on one step adjustment, which may make the planner

reject disturbance in a quite aggressive way. Furthermore,

Caron et al. [23] used timing adaptation to limit the swing

foot acceleration. Rather than optimization, Castano et al.

[24] proposed an analytic method to determine the future



step time based on current state and reference step locations.

Yet, this work also took into consideration one step adaption.

In [25], Ding et al. proposed another analytic method to

adjust step time and step locations, which just obtained the

feasible solution. Then, using instantaneous capture point

dynamics, another fast method for step time determination

was proposed in [26]. However, this approach is not effective

enough when the push forces are not along the desired

stepping direction.

In our previous work [27], based on the Inverted Pendulum

plus a Flywheel Model (IPFM), we proposed a robust NMPC

framework for bipedal gait generation which can deal with

reactive stepping, variable vertical CoM motion and angular

momentum adaptation simultaneously. In this paper, we aim

to take into account also the online step time modulation to

extend our gait generation framework.

For the sake of computational efficiency, the proposed

framework generates the optimal pattern in a hierarchical

manner by solving two optimization sub-problems iteratively.

Firstly, using the LIPM, the step times and step locations

of the current and next walking cycle are optimized simul-

taneously based on the current CoM state. By optimizing

the step time related variables (introduced in following

sections to substitute the hyperbolic functions of step time)

rather than step time directly, high computation efficiency

of the first NLP is achieved. Secondly, using the online-

regenerated step locations, step times and CoM trajectory as

inputs, the time-varying CoM height trajectory and upper-

body inclination are then obtained by utilizing the NMPC

framework proposed in [27]. Thus, the proposed hierarchical

optimization strategy can optimize step time, step location,

CoM height and upper-body inclination motions, based only

on the reference gait parameters. Furthermore, by deriving

the close-formed expressions of derivatives of the objective

functions and feasibility constraints, these two NLPs can be

solved online via SQP.

The rest of this paper is organized as follows. In Section

II, the overall procedure of the proposed framework is

introduced briefly. Then, in Section III, the first NLP for step

time and step location optimization using LIPM dynamics

is explained in detail. Then, a brief introduction of the

second NLP (the NMPC for optimizing CoM height and

upper-body inclination) is given in Section IV. In Section

V, the simulation results are discussed. Finally, we draw the

conclusions in Section VI.

II. FRAMEWORK OVERVIEW

The overall framework of the proposed walking pattern

generation approach is shown in Fig. 1. As can be seen

in Fig. 1, the two cascaded NLPs are solved iteratively

until satisfying the termination condition to obtain optimal

step time, step locations, CoM trajectories and upper-body

inclination angles.

Taking the reference step time and step locations as inputs,

the first NLP will modulate them in real time and generate

a nominal horizontal CoM trajectory, given the current robot

states. Then, they will be passed to the second NLP (an
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Fig. 1: Overview of the proposed framework.
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Fig. 2: LIPM motion in sagittal plane, cx(0) and cx(T ) represent the
initial and final CoM position relative to the current support center,
respectively, sx is the step length.

NMPC framework proposed in [27]). With integrating the

vertical CoM adaptation and upper-body inclination changes,

the NMPC, using the IPFM, would generate step commands

and reference trajectories for the humanoid robot.

This procedure is repeated until the CoM trajectories

generated by both NLPs eventually converge or the maxi-

mum iteration number is reached. Specifically, in this work,

we found in most cases only one loop is enough for the

algorithm to converge.

III. OPTIMIZATION OF STEP TIME AND STEP LOCATION

A. LIPM dynamics

For the LIPM with constant CoM height, during each

walking cycle, its dynamics described in support foot (the

local coordinate) is shown as follows [1],

c̈x = ω2cx, c̈y = ω2cy, ω =
√

g/Zc, (1)

where [cx, cy]
T denote the position of CoM relative to the

current support center (the fixed ZMP reference), Zc is the

fixed height of the LIPM, g and ω are the gravitational

acceleration and natural frequency, respectively.

Taking the sagittal motion (shown in Fig. 2) as an example,

the final CoM state of one walking cycle determined by (1)

could be solved analytically, given the current state, by

cx(T ) = cx(te) cosh(ω(T − te)) +
ċx(te)

ω
sinh(ω(T − te)),

ċx(T ) = cx(te)ω sinh(ω(T − te)) + ċx(te) cosh(ω(T − te)),
(2)

where te is the elapsed time of current step, T is the time pe-

riod of the walking cycle, [cx(te), ċx(te)]
T and [cx(T ), ċx(T )]

T

are the current and the final CoM state, respectively.

Here, we introduce new step-time related variables

tch = cosh(ω(T − te)),

tsh = sinh(ω(T − te)).
(3)



As a result, (2) becomes to

cx(T ) = cx(te)tch +
ċx(te)

ω
tsh,

ċx(T ) = cx(te)ωtsh + ċx(te)tch.
(4)

Since the two new variables defined in (3) decrease strictly

when the elapsed time te increases from 0 to T , this change

can simplify the constraints handling when solving the NLP.

Furthermore, from (4), it can be seen that the final state has

linear relationship with the new introduced variables tch and

tsh. Thus, the computational complexity is reduced and the

NLP problem can be solved very fast.

B. NLP Formulation

When the actual state diverges from the reference state due

to the external disturbances and uncertainties, it is necessary

to update the walking patterns to bring the robot back to

stable walking cycles. In this section, using the LIPM, the

first NLP in our framework is formulated to optimize the

step time and location simultaneously.

1) Objective Function: To drive robot to move from any

initial state to the stable state, here we not only track the final

CoM position and velocity references at the current step, but

also consider one following step to improve the robustness.

This strategy of planning future two-step will cover the

most balancing recovery cases, according to [28] and [29].

By minimizing the errors between actual and desired step

location, remaining step time, final CoM position and the

final CoM velocity, the objective function at time t during

the ith walking cycle is formulated as follows,

f(X) =
∑

U

σ
U

2
‖ U−Uref ‖2, (5)

where the optimization variable

X = [isx,
isy,

itch,
itsh,

i+1sx,
i+1sy,

i+1tch,
i+1tsh]

T

consists of the two consecutive steps’ positions (sx, sy) and

the step time related variables (tch, tsh) introduced in (3).

And

U ∈ {X, icx(T ),
icy(T ),

iċx(T ),
iċy(T ),

i+1cx(T ),
i+1cy(T )}

forms the cost terms of the objective function, which eval-

uates the tracking errors of the CoM final states in the next

two steps. Particularly, the final velocity of the (i+1)th cycle

is not included here to reduce the computational complexity.

σ
U

is the weight of the item in U, which is set to be greater

than zero so that Hessian matrix is positive-definite.

Notation {}ref denotes the reference of each cost term.

Specifically, the reference step parameters for the first step

are determined by both the current states and pre-defined ref-

erence parameters while the references for consecutive next

step are merely determined by the pre-defined parameters.

For example, the isref
x , i+1sref

x , itref
ch and i+1tref

ch are given by,
{

isref
x = i+1dref

x − idx,
i+1sref

x = i+2dref
x − i+1dref

x ,
itref

ch = cosh(ω(iT ref − te)),
i+1tref

ch = cosh(ω(i+1T ref)),
(6)

where idx represents the sagittal footstep location calculated

by adding the generated step length, i+1dref
x and i+2dref

x

represent the pre-defined sagittal foot locations calculated by

adding the reference step length, iT ref and i+1T ref represent

the pre-defined reference time duration of current step and

next one step, respectively.

Furthermore, the usage of variables tch and tsh rather than

(T − te) helps to derive the close-form of the derivative of

objective function. For example, the cost term of tracking

error of the final CoM position during the current step (icx(T )

in U) is given by,

f(X)icx(T )
=‖icx(T )−

icref
x(T )‖

2 =‖cx(te)
itch+

ċx(te)

ω
itsh−

isref
x

2
‖2

=‖(A+B)TX− a‖2,
(7)

where the a denotes the constant isref
x /2, which is set to be

icref
x(T ), the A ∈ ℜ8 and B ∈ ℜ8 are the constant coefficient

matrices w.r.t variable itch and itsh, respectively, and are

given by
{

A = [0, 0, cx(te), 0, 0, 0, 0, 0]
T ,

B = [0, 0, 0, ċx(te)/ω, 0, 0, 0, 0]
T .

(8)

As a result, the first and second order derivatives of this

term are given analytically by
{

∇2
X
(f(X)icx(T )

) = 2(A+B)(A+B)T ,

∇
X
(f(X)icx(T )

) = 2(A+B)((A+B)TX− a).
(9)

Specifically, the cost terms of tracking error of the i+1cx(T )

and i+1cy(T ) are the 4th polynomial w.r.t corresponding op-

timization variables. However, the close-formed expressions

of their derivatives can also be computed in the same way.

Thus, this NLP can be solved fast by SQP.

2) Constraints: To guarantee the feasibility, this section

describes the constraints of step time, step location and CoM

state. All these constraints are expressed in quadratic forms,

similar with [27].

Constraints of step time: The step frequency is deter-

mined by the step time, which is limited by the physical

structure and actuation capability.

Firstly, given the lower boundary (Tmin) and upper bound-

ary (Tmax) of step time, we can easily derive the constraints

on variables tch and tsh by utilizing the monotony of hyper-

bolic functions. For example, the linear constraint of tch
{

cosh(ω(max(Tmin−te, 0)))≤
itch ≤cosh(ω(Tmax−te)),

cosh(ωTmin)≤ i+1tch≤cosh(ωTmax),
(10)

Additionally, following equality constraint should also be

satisfied for the two steps,

jt2ch −
jt2sh = 1, j ∈ {i, i+ 1}. (11)

Constraints of step location: Step locations, as the

optimization variables, should meet feasibility limitations,

such as maximal leg length, maximal joint velocities, self-

collision avoidance etc. At the present, we only limit the step

length and step width into a reasonable range. Taking the step



length for instance, the following constraints are introduced

for the next two steps,

jsmin
x ≤ sx≤

jsmax
x , j ∈ {i, i+ 1}, (12)

where smin
x and smax

x are the lower and upper boundaries of

step length. Same constraints are also applied to step width.

Constraints of CoM acceleration: With solving this

NLP, the robot’s state is expected to converge from the

current real state to the stable state. However, the cost term

about the CoM acceleration variation is not incorporated

into the objective function (5). Therefore, the generated

CoM trajectory may demand strong actuation capability that

goes beyond the physical limits. To avoid this, the CoM

acceleration is constrained as

c̈min
x ≤ c̈x(t+∆t)≤ c̈max

x , (13)

where ∆t is the sampling time interval, c̈x(t+∆t) denotes the

generated CoM acceleration at next sampling time, c̈min
x and

c̈max
x are the lower and upper boundary of CoM acceleration,

respectively, which are determined by the maximal joint

torques.

IV. NMPC FRAMEWORK EXPLOITING ANGULAR

MOMENTUM AND COM HEIGHT CHANGES

After determining the step parameters using the first

NLP, a NMPC approach is integrated to exploit the angular

momentum and CoM height adaptation. The NMPC has been

validated in our previous work [27], which is introduced

briefly in this section.

A. IPFM Dynamics

The LIPM, assuming a lumped mass body and the con-

stant CoM height, limits the robot’s performance undergoing

external perturbations. The IPFM, assuming a flywheel with

rotational inertia and allowing the 3D CoM motion, can be

used to model angular momentum change and vertical body

motion. The ZMP, that must be inside the robot’s support

polygon, of the IPFM can be calculated by

px = cw
x −

cw
z − dz

g + c̈w
z

c̈w
x −

L̇y

m(g + c̈w
z )

, L̇y = Iyθ̈p, (14)

py = cw
y −

cw
z − dz

g + c̈w
z

c̈w
y +

L̇x

m(g + c̈w
z )

, L̇x = Ixθ̈r, (15)

where [px, py, pz]
T ,[cw

x , c
w
y , c

w
z ]

T and [dx, dy, dz]
T denote the

global position of ZMP, CoM and supporting foot, respec-

tively, Lx and Ly, Ix and Iy, θr and θp denote angular

momentum, moment of inertia and flywheel rotation angle

about x- and y-axis, respectively, m is the overall mass.

B. NMPC Problem Formulation

1) Objective Function: At time t, the objective function

for the second NLP is defined as follows,

f =

Cx,Cy,Cz,Θr,Θp
∑

Q

{α
Q

2
‖ Q̇ ‖2 +

β
Q

2
‖ Q−Qref ‖2

+
γ

Q

2
‖

...
Q ‖2

}

+

Dx ,Dy ,Dz
∑

V

δ
V

2
‖ V −Vref ‖2,

(16)

TABLE I: Algorithm parameters for the first NLP

σ
icx(T )

5×106 σ
icy(T )

5×106

σ
isx

5×107 σ
isy

5×107

σ
itch

5×109 σ
itsh

5×109

σ
i+1cx(T )

1×102 σ
i+1cy(T )

1×102

σ
i+1sx

10 σ
i+1sy

10

σ
i+1tch

1×103 σ
i+1tsh

1×103

σiċx(T )
1×103 σiċy(T )

1×103

∆t[s] 0.05 g[m·s−2] 9.8

TABLE II: Parameters for constraints of the first NLP

Step location constraints Tmax
x [s] 2

smin
x [m] 0 CoM acceleartion constraints

smax
x [m] 0.6 c̈min

x [m·s−2] -13

smin
y [m] 0.2 c̈max

x [m·s−2] 13

smax
y [m] 0.6 c̈min

y [m·s−2] -12

Step constraints c̈max
y [m·s−2] 12

Tmin
x [s] 0.6 / /

where Q ∈ {Cx,Cy,Cz,Θr,Θp} represent the future tra-

jectories of CoM along x-, y- and z- axis, and the upper-

body inclination angle about x- and y- axis, respectively,

V ∈ {Dx,Dy,Dz} represent the future step locations during

the prediction horizon. Please refer to [27] for more details.

A major difference with [27] is that, instead of directly

setting support foot centers to be the reference horizontal

CoM trajectory (the Cref
x and Cref

y used in (16)), in this paper,

the nominal reference CoM trajectory is generated by the

first NLP. Besides, the reference step location (except step

height) and step time are also generated by the first NLP.

These features help to reduce the time cost of the NMPC

loop and as well improve the ZMP tracking performance,

which would be discussed in details in following sections.

2) Constraints: To guarantee the feasibility, we take into

account the constraints of ZMP movement (calculated by

(14) and (15)), footstep location, CoM vertical motion,

upper-body inclination and joint torques. Furthermore, these

constraints are expressed in quadratic forms. For more de-

tails, please refer to [27].

V. SIMULATION VALIDATIONS

In this section, we first validate the whole framework by

generating 3D walking pattern with variable step parameters,

using the physical specifications of the CogIMon humanoid

robot [30]. Then, we demonstrate the improved capability

for balance recovery with the step time modulation. The

simulation parameters for the first NLP are listed in Table I

and Table II and the parameters for the second NLP are the

same with [27].

A. 3D Walking with Variant Step Parameters

With the step parameters listed in Table III, the 3D walking

pattern was generated. In this section, the reference step time

is 0.8 s, and the relative CoM height reference (w.r.t support

foot) is 1.02 m.



TABLE III: Step parameters for 3D walking

Parameters
steps

1 2-4 5 6 7-

step length (sx[m]) 0 0.3 0.1 0.6 0.3

step width (sy[m]) 0.2 0.4 0.2 0.6 0.4

step height (sz[m]) 0 0.1 0.1 -0.1 -0.1
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Fig. 3: Generated CoM trajectory, ZMP trajectory and footstep
locations for 3D walking.

As can be seen in Fig. 3, the feasible 3D gait as well as

the smooth CoM height trajectory was successfully generated

by the proposed framework. That is to say, the time-varying

vertical CoM motion was generated without strictly follow-

ing the pre-defined reference trajectory when walking on

the uneven terrain. Furthermore, the upper-body also rotated

slightly to maintain balance, as shown in Fig. 4.

Seen from Fig. 5, the generated ZMP trajectory remained

within the supporting polygon even when walking from the

5th step to the 6th with severe change of step parameters as

listed in Table III. When walking back with constant step pa-

rameters, the ZMP trajectory stayed near the support center,

which is different from our previous work [27], where the

ZMP trajectory diverged to the edge of the support polygon.

Thus, this work improves the ZMP tracking performance and
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Fig. 4: Body inclination angles for 3D walking.
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Fig. 5: Horizontal CoM trajectory, ZMP trajectory and footstep
locations for 3D walking.

TABLE IV: Online-regenerated step parameters under external push
(sref

x = 0.3 m, sref
y = 0.4 m T

ref
= 0.8 s)

Parameters
steps

2 3 4 5

sx[m]
[27] 0.298 0.523 0.081 0.300

this work 0.302 0.298 0.300 0.300

sy[m]
[27] 0.414 0.530 0.525 0.401

this work 0.400 0.387 0.399 0.399

T [s]
[27] 0.800 0.800 0.800 0.800

this work 0.800 0.762 0.800 0.800

enhances the walking stability. This is because that, in this

paper, the reference CoM trajectory for the NMPC is defined

by the nominal CoM trajectory generated by the first NLP,

rather than as the support center as done in previous work.

B. Balance Recovery from External Pushes

In this section, we compare the recovery capability of this

work (with step time adjustment) with that of our previous

work (without step time adjustment) under external push

when tracking the same step locations. The external forces

along x- axis and y- axis applied to the robot at 2 s, and

lasted for 0.5 s.

Under the same external force (forward 160 N, lateral 120
N), the optimized step parameters are listed in Table IV.

Moreover, other results such as horizontal CoM and ZMP

trajectories, body inclinations and CoM heights are compared

in Fig. 6-8.

The reference step length and width were 0.3 m and 0.4 m,

and the reference step cycle was 0.8 s for both strategies. As

can be seen in Table IV, when using the proposed framework

in this paper, the step time is updated in real time. When the

external push was applied, the step time was decreased to

0.762 s to keep balance. As a result, smaller changes of

step length and step width were needed. Without step time

adjustment, the step length and step width changed to be

0.523 m and 0.530 m, which resulted in a severer variation

when compared with 0.298 m and 0.387 m in this work. This

phenomenon can also be seen from Fig. 6, meaning that,

when walking in the narrow space where the step location

adjustment is limited, the proposed framework will take more

advantage because it can turn to modulate the step time to

compensate for disturbances.

Again, as seen in Fig. 6, when the robot returned back to

the normal gait, the ZMP trajectory generated by the previous

work [27] diverged from the support center to the edge of

the support edge. However, in this work, the ZMP trajectory

stayed closer to the support center, which helps to enhance

the stability.

As expected, the required body inclination and vertical

motion were also reduced dramatically, as shown in Fig. 7

and Fig. 8.

Further analysis reveals that, the integration of step time

adjustment can reject larger external pushes. As listed in

Table V, the previous work [27] could only reject 180 N

forward force and 150 N lateral force, while this work can

withstand 390 N forward force and 310 N lateral force.
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C. Computation Efficiency

In this paper, by introducing the step time related variable

for the first NLP, the close-formed derivatives of the objective

function and constraints can be computed easily. As a result,

the NLP can be solved fast by SQP, which is also used for

solving the NPMC in [27].

To solve these two NLPs, the C++ optimization library

QuadProg++, available under GNU General Public License,

is used. Depending on the initial conditions, the time cost

of each loop will vary much. However, the time cost of

the first NLP is less than 60 us on a 3.0 GHz quad-core

CPU. Since the reference horizontal CoM trajectory and the

reference step locations for the second NMPC are already

calculated by the first-layer NLP, the prediction horizon of

TABLE V: Maximal external forces the robot can reject
with/without step time change

Force
Strategy

previous work [27] this work

Forward force [N] 180 390
Lateral force [N] 150 310

the NMPC was reduced to be 1.05 s. Additionally, since the

nominal CoM state serves as the warm-start, the maximal

number of the SQP loop for the NMPC was reduced to

be 2. As the result, the time cost of the second NMPC is

reduced to be less than 5.5 ms. That is to say, compared with

[27], the framework proposed here dramatically enhances

the capability of balance recovery with almost no increasing

the computation burden. Most importantly, the time cost for

the whole-algorithm here is less than 6 ms, thus meets the

requirement for hardware application.

VI. CONCLUSION

In this paper, we proposed a versatile and robust frame-

work for walking pattern generation. Using the hierarchical

optimization approach, the framework can exploit the step

location and step time adjustment, angular momentum adap-

tation and vertical height variation in an unified way.

For step location and step time optimization, the LIPM

is used. Tracking the reference step parameters and CoM

state, the objective function is established. By substituting the

optimal variables, we derive the close-formed expressions of

NLP and solved it by SQP. By integrating the previously

proposed NMPC in one loop, the robot achieved higher

adaptability under 3D terrain and improved capability for

balance recovery from external disturbances.
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bipedal walking control based on divergent component of motion,”
IEEE Transactions on Robotics, vol. 31, no. 2, pp. 355–368, 2015.

[8] Y. Liu, P. M. Wensing, J. P. Schmiedeler, and D. E. Orin, “Terrain-
blind humanoid walking based on a 3-d actuated dual-slip model,”
IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 1073–1080,
2016.

[9] S. Caron and A. Kheddar, “Dynamic walking over rough terrains by
nonlinear predictive control of the floating-base inverted pendulum,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2017, pp. 5017–5024.

[10] C. Brasseur, A. Sherikov, C. Collette, D. Dimitrov, and P.-B. Wieber,
“A robust linear mpc approach to online generation of 3d biped
walking motion,” in IEEE-RAS International Conference on Humanoid

Robots, 2015, pp. 595–601.

[11] K. Van Heerden, “Real-time variable center of mass height trajectory
planning for humanoids robots,” IEEE Robotics and Automation

Letters, vol. 2, no. 1, pp. 135–142, 2017.

[12] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in IEEE-RAS Interna-

tional Conference on Humanoid Robots, 2014, pp. 295–302.

[13] G. Wiedebach, S. Bertrand, T. Wu, L. Fiorio, S. McCrory, R. Griffin,
F. Nori, and J. Pratt, “Walking on partial footholds including line
contacts with the humanoid robot atlas,” in IEEE-RAS International

Conference on Humanoid Robots, 2016, pp. 1312–1319.

[14] Y. Zhao, B. R. Fernandez, and L. Sentis, “Robust optimal planning
and control of non-periodic bipedal locomotion with a centroidal
momentum model,” The International Journal of Robotics Research,
vol. 36, no. 11, pp. 1211–1242, 2017.

[15] J. Lack, “Integrating the effects of angular momentum and changing
center of mass height in bipedal locomotion planning,” in IEEE-RAS

International Conference on Humanoid Robots, 2015, pp. 651–656.

[16] M. Shafiee-Ashtiani, A. Yousefi-Koma, and M. Shariat-Panahi, “Ro-
bust bipedal locomotion control based on model predictive control and
divergent component of motion,” in IEEE International Conference on

Robotics and Automation, 2017, pp. 3505–3510.

[17] Z. Aftab, T. Robert, and P.-B. Wieber, “Ankle, hip and stepping strate-
gies for humanoid balance recovery with a single model predictive
control scheme,” in IEEE-RAS International Conference on Humanoid

Robots, 2012, pp. 159–164.

[18] C. Zhou, X. Wang, Z. Li, and N. Tsagarakis, “Overview of Gait
Synthesis for the Humanoid COMAN,” Journal of Bionic Engineering,
vol. 14, no. 1, pp. 15–25, 2017.

[19] P. Kryczka, P. Kormushev, N. G. Tsagarakis, and D. G. Caldwell,
“Online regeneration of bipedal walking gait pattern optimizing foot-
step placement and timing,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2015, pp. 3352–3357.

[20] M. R. Maximo, C. H. Ribeiro, and R. J. Afonso, “Mixed-integer
programming for automatic walking step duration,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2016, pp.
5399–5404.

[21] W. Hu, I. Chatzinikolaidis, K. Yuan, and Z. Li, “Comparison study
of nonlinear optimization of step durations and foot placement for
dynamic walking,” arXiv preprint arXiv:1805.02155, 2018.

[22] M. Khadiv, A. Herzog, S. A. A. Moosavian, and L. Righetti, “A robust
walking controller based on online step location and duration opti-
mization for bipedal locomotion,” arXiv preprint arXiv:1704.01271,
2017.

[23] S. Caron and Q.-C. Pham, “When to make a step? tackling the timing
problem in multi-contact locomotion by topp-mpc,” in IEEE-RAS

International Conference on Humanoid Robotics, 2017, pp. 522–528.

[24] J. A. Castano, Z. Li, C. Zhou, N. Tsagarakis, and D. Caldwell,
“Dynamic and reactive walking for humanoid robots based on foot
placement control,” International Journal of Humanoid Robotics,
vol. 13, no. 02, p. 1550041, 2016.

[25] J. Ding, Y. Wang, M. Yang, and X. Xiao, “Walking stabilization control
for humanoid robots on unknown slope based on walking sequences

adjustment,” Journal of Intelligent & Robotic Systems, vol. 90, no.
3-4, pp. 323–338, 2018.

[26] R. J. Griffin, G. Wiedebach, S. Bertrand, A. Leonessa, and J. Pratt,
“Walking stabilization using step timing and location adjustment on
the humanoid robot, atlas,” arXiv preprint arXiv:1703.00477, 2017.

[27] J. Ding, C. Zhou, S. Xin, X. Xiao, and N. Tsagarakis, “Nonlin-
ear model predictive control for robust bipedal locomotion explor-
ing com height and angular momentum changes,” arXiv preprint

arXiv:1902.06770, 2019.
[28] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt,

“Capturability-based analysis and control of legged locomotion, part 1:
Theory and application to three simple gait models,” The International

Journal of Robotics Research, vol. 31, no. 9, pp. 1094–1113, 2012.
[29] P. Zaytsev, S. J. Hasaneini, and A. Ruina, “Two steps is enough: no

need to plan far ahead for walking balance,” in IEEE International

Conference on Robotics and Automation, 2015, pp. 6295–6300.
[30] C. Zhou and N. Tsagarakis, “On the Comprehensive Kinematics

Analysis of a Humanoid Parallel Ankle Mechanism,” ASME Journal

of Mechanisms and Robotics, 2018.


