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Figure 1: From a single image (col. 1), we estimate albedo and normal maps and illumination (col. 2-4); comparison multi-

view stereo result from several hundred images (col. 5); re-rendering of our shape with frontal/estimated lighting (col. 6-7).

Abstract

We show how to train a fully convolutional neural net-

work to perform inverse rendering from a single, uncon-

trolled image. The network takes an RGB image as input,

regresses albedo and normal maps from which we compute

lighting coefficients. Our network is trained using large un-

controlled image collections without ground truth. By in-

corporating a differentiable renderer, our network can learn

from self-supervision. Since the problem is ill-posed we

introduce additional supervision: 1. We learn a statistical

natural illumination prior, 2. Our key insight is to perform

offline multiview stereo (MVS) on images containing rich il-

lumination variation. From the MVS pose and depth maps,

we can cross project between overlapping views such that

Siamese training can be used to ensure consistent estima-

tion of photometric invariants. MVS depth also provides

direct coarse supervision for normal map estimation. We

believe this is the first attempt to use MVS supervision for

learning inverse rendering.

1. Introduction

Inverse rendering is the problem of estimating one or

more of illumination, reflectance properties and shape from

observed appearance (i.e. one or more images). In this pa-

per, we tackle the most challenging setting of this problem;

we seek to estimate all three quantities from only a sin-

gle, uncontrolled image. Specifically, we estimate a normal

map, diffuse albedo map and spherical harmonic lighting

coefficients. This subsumes two classical computer vision

problems: (uncalibrated) shape-from-shading and intrinsic

image decomposition.

Classical approaches [4,29] cast these problems in terms

of energy minimisation. Here, a data term measures the dif-

ference between the input image and the synthesised image

that arises from the estimated quantities. We approach the

problem as one of image to image translation and solve it

using a deep, fully convolutional neural network. However,

inverse rendering of uncontrolled, outdoor scenes is itself

an unsolved problem and so labels for supervised learning
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Figure 2: At inference time, our network regresses diffuse albedo and normal maps from a single, uncontrolled image and

then computes least squares optimal spherical harmonic lighting coefficients. At training time, we introduce self-supervision

via an appearance loss computed using a differentiable renderer and the estimated quantities.

are not available. Instead, we use the data term for self-

supervision via a differentiable renderer (see Fig. 2).

Single image inverse rendering is an inherently ambigu-

ous problem. For example, any image can be explained with

zero data error by setting the albedo map equal to the image,

the normal map to be planar and the illumination arbitrar-

ily such that the shading is unity everywhere. Hence, the

data term alone cannot be used to solve this problem. For

this reason, classical methods augment the data term with

generic [4] or object-class-specific [2] priors. Likewise,

we also exploit priors during learning (specifically a sta-

tistical prior on lighting and a smoothness prior on diffuse

albedo). However, our key insight that enables the CNN to

learn good performance is to introduce additional supervi-

sion provided by an offline multiview reconstruction.

While photometric vision has largely been confined to

restrictive lab settings, classical geometric methods are suf-

ficiently robust to provide multiview 3D shape reconstruc-

tions from large, unstructured datasets containing very rich

illumination variation [14, 17]. This is made possible by

local image descriptors that are largely invariant to illumi-

nation. However, these methods recover only geometric in-

formation and any recovered texture map has illumination

“baked in” and so is useless for relighting. We exploit the

robustness of geometric methods to varying illumination to

supervise our inverse rendering network. We apply a mul-

tiview stereo (MVS) pipeline to large sets of images of the

same scene. We select pairs of overlapping images with

different illumination, use the estimated relative pose and

depth maps to cross project photometric invariants between

views and use this for supervision via Siamese training. In

other words, geometry provides correspondence that allows

us to simulate varying illumination from a fixed viewpoint.

Finally, the depth maps from MVS provide coarse normal

map estimates that can be used for direct supervision of the

normal map estimation.

1.1. Contribution

Deep learning has already shown good performance on

components of the inverse rendering problem. This includes

monocular depth estimation [11], depth and normal esti-

mation [10] and intrinsic image decomposition [30]. How-

ever, these works use supervised learning. For tasks where

ground truth does not exist, such approaches must either

train on synthetic data (in which case generalisation to the

real world is not guaranteed) or generate pseudo ground

truth using an existing method (in which case the network

is just learning to replicate the performance of the existing

method). Inverse rendering of outdoor, complex scenes is it-

self an unsolved problem and so reliable ground truth is not

available and supervised learning cannot be used. In this

context, we make the following contributions. To the best

of our knowledge, we are the first to exploit MVS supervi-

sion for learning inverse rendering. Second, we are the first

to tackle the most general version of the problem, consider-

ing arbitrary outdoor scenes and learning from real data, as

opposed to restricting to a single object class [46] or using

synthetic training data [53]. Third, we introduce a statistical

model of spherical harmonic lighting in natural scenes that

we use as a prior. Finally, the resulting network is the first

to inverse render all of shape, reflectance and lighting in the

wild and we perform the first evaluation in this setting.

2. Related work

Classical approaches Classical methods estimate intrin-

sic properties by fitting photometric or geometric models.

Most methods require multiple images. From multiview

images, a structure-from-motion/multiview stereo pipeline

enables recovery of dense mesh models [14, 24] though il-

lumination effects are baked into the texture. From images

with fixed viewpoint but varying illumination photometric

stereo can be applied. Variants consider statistical BRDF

models [3], the use of outdoor time-lapse images [29] and



spatially-varying BRDFs [18]. Attempts to combine ge-

ometric and photometric methods are limited. Haber et

al. [19] assume known geometry (which can be provided

by MVS) and inverse render reflectance and lighting from

community photo collections. Kim et al. [26] represents

the state-of-the-art and again uses an MVS initialisation

for joint optimisation of geometry, illumination and albedo.

Some methods consider a single image setting. Jeson et

al. [22] introduce a local-adaptive reflectance smoothness

constraint for intrinsic image decomposition on texture-free

input images which are acquired with a texture separation

algorithm. Barron et al. [4] present SIRFS, a classical

optimisation-based approach that recovers all of shape, il-

lumination and albedo using a sophisticated combination of

generic priors.

Deep depth prediction Direct estimation of shape alone

using deep neural networks has attracted a lot of attention.

Eigen et al. [10, 11] were the first to apply deep learning

in this context. Subsequently, performance gains were ob-

tained using improved architectures [28], post-processing

with classical CRF-based methods [36,50,51] and using or-

dinal relationships for objects within the scenes [8, 13, 34].

Zheng et al. [53] use synthetic images for training but

improve generalisation using a synthetic-to-real transform

GAN. However, all of this work requires supervision by

ground truth depth. An alternative branch of methods ex-

plore using self-supervision from augmented data. For

example, binocular stereo pairs can provide a supervi-

sory signal through consistency of cross projected images

[15, 16, 25]. Alternatively, video data can provide a simi-

lar source of supervision [48, 49, 54]. Some of other work

built from specific ways were proposed recently. Tulsiani

et al. [47] use multiview supervision in a ray tracing net-

work. While all these methods take single image input, Ji et

al. [23] tackle the MVS problem itself using deep learning.

Deep intrinsic image decomposition Intrinsic image de-

composition is a partial step towards inverse rendering. It

decomposes an image into reflectance (albedo) and shading

but does not separate shading into shape and illumination.

Even so, the lack of ground truth training data makes this

a hard problem to solve with deep learning. Recent work

either uses synthetic training data and supervised learning

[7, 12,20, 30, 39] or self-supervision/unsupervised learning.

Very recently, Li et al. [33] used uncontrolled time-lapse

images allowing them to combine an image reconstruction

loss with reflectance consistency between frames. This

work was further extended using photorealistic, synthetic

training data [32]. Ma et al. [38] also trained on time-lapse

sequences and introduced a new gradient constraint which

encourage better explanations for sharp changes caused by

shading or reflectance. Baslamisli et al. [5] applied a simi-

lar gradient constraint while they used supervised training.

Shelhamer et al. [43] propose a hybrid approach where a

CNN estimates a depth map which is used to constrain a

classical optimisation-based intrinsic image estimation.

Deep inverse rendering To date, this topic has not re-

ceived much attention. One line of work simplifies the prob-

lem by restricting to a single object class, e.g. faces [46],

meaning that a statistical face model can constrain the ge-

ometry and reflectance estimates. This enables entirely self-

supervised training. Shu et al. [45] extend this idea with an

adversarial loss. Sengupta et al. [42] on the other hand, ini-

tialise with supervised training on synthetic data, and fine-

tuned their network in an unsupervised fashion on real im-

ages. Aittala et al. [1] restrict geometry to almost planar

objects and lighting to a flash in the viewing direction un-

der which assumptions they can obtain impressive results.

More general settings have been considered including nat-

ural illumination [31]. Kulkarni et al. [27] show how to

learn latent variables that correspond to extrinsic parame-

ters allowing image manipulation. The only prior work we

are aware of that tackles the full inverse rendering problem

requires direct supervision [21, 35, 37]. Hence, it is not ap-

plicable to scene-level inverse rendering, only objects, and

relies on synthetic data for training, limiting the ability of

the network to generalise to real images.

3. Preliminaries

We assume that a perspective camera observes a scene,
such that the projection from 3D world coordinates,
(u, v, w), to 2D image coordinates, (x, y), is given by:
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where λ is an arbitrary scale factor, R ∈ SO(3) a rotation

matrix, t ∈ R
3 a translation vector, f the focal length and

(cx, cy) the principal point.

The inverse rendered shape estimate could be repre-

sented in a number of ways. For example, many previous

methods estimate a viewer-centred depth map. However,

local reflectance, and hence appearance, is determined by

surface orientation, i.e. the local surface normal direction.

So, to render a depth map for self-supervision, we would

need to compute the surface normal. From a perspective

depth map w(x, y), the surface normal direction is:

n̄ =





−fwx(x, y)
−fwy(x, y)

(x− cx)wx(x, y) + (y − cy)wy(x, y) + w(x, y)





(2)

from which the unit length normal is given by: n =
n̄/‖n̄‖. The derivatives of the depth map in the image



plane, wx(x, y) and wy(x, y), can be approximated by fi-

nite differences. However, (2) requires knowledge of the

intrinsic camera parameters. This would severely restrict

the applicability of our method. For this reason, we choose

to estimate a surface normal map directly.

Although the surface normal can be represented by

a 3D vector, since ‖n‖ = 1 it has only two degrees

of freedom. So, our network estimates the two ele-

ments of the surface gradient at each pixel, wu(x, y) and

wv(x, y), and the transformation to a 3D surface normal

vector is computed by a fixed layer that calculates: n̄ =
[−wu(x, y),−wv(x, y), 1]

T . Note that we estimate the nor-

mal map in a viewer-centred coordinate system.

We assume that appearance can be approximated by

a local reflectance model under environment illumination.

Specifically we use a Lambertian diffuse model with order

2 spherical harmonic lighting. This means that RGB inten-

sity can be computed as

ilin(n,α,L) = diag(α)Lb(n), (3)

where L ∈ R
3×9 contains the spherical harmonic colour

illumination coefficients, α = [αr, αg, αb]
T is the colour

diffuse albedo and the order 2 basis is given by:

b(n) = [1, nx, ny, nz, 3n
2

z − 1, nxny, nxnz, nynz, n
2

x − n
2

y]
T
.

(4)

Our appearance model means that we neglect high fre-

quency illumination effects, cast shadows and interreflec-

tions. However, we found that in practice this model works

well for typical outdoor scenes. Finally, cameras apply a

nonlinear gamma transformation. We simulate this to pro-

duce our final predicted intensities: ipred = i
1/γ
lin , where we

assume a fixed γ = 2.2.

4. Architecture

Our inverse rendering network (see Fig. 2) is an image-

to-image network that regresses albedo and normal maps

from a single image and uses these to estimate lighting. We

describe these inference components in more detail here.

4.1. Trainable encoder­decoder

We implement a deep fully-convolutional neural network

with skip connections like the hourglass architecture [41].

We use a single encoder and separate deconvolution de-

coders for albedo and normal prediction. Albedo maps have

3 channel RGB output, normal maps have two channels for

the surface gradient which is converted to a normal map as

described above. Both convolutional subnet and deconvolu-

tional subnet contain 15 layers and the activation functions

are ReLUs. Adam Optimiser is used in training.

4.2. Implicit lighting prediction

In order to estimate illumination parameters, one option

would be to use a fully connected branch from the output

of our decoder and train our network to predict it directly.

However, fully connected layers require very large numbers

of parameters and, in fact, lighting can be inferred from the

input image and estimated albedo and normal maps, making

its explicit prediction redundant. An additional advantage is

that the architecture remains fully convolutional and so can

process images of any size at inference time.

Consider an input image comprising K pixels. We invert

the nonlinear gamma and stack the linearised RGB values

to form the matrix I ∈ R
3×K . We similarly stack the esti-

mated albedo map to form A ∈ R
3×K , the estimated sur-

face normals to form N ∈ R
3×K and define B(N) ∈ R

9×K

by applying (4) to each normal vector. We can now rewrite

(3) for the whole image as:

I = A⊙ LB(N), (5)

where ⊙ is the Hadamard (element-wise) product. We can

now solve for the spherical harmonic illumination coeffi-

cients in a least squares sense, using the whole image. This

can be done using any method, so long as the computation

is differentiable such that losses dependent on the estimated

illumination can have their gradients backpropagated into

the inverse rendering network. For example, the solution

using the pseudoinverse is given by: L = (I ⊘A)B(N)+,

where ⊘ denotes element-wise division and B(N)+ is the

pseudoinverse of B(N). Fig. 2 shows the inferred shading,

I⊘A, and a visualisation of the estimated lighting.

5. Supervision

As shown in Fig. 2, we use a data term (the error between

predicted and observed appearance) for self-supervision.

However, inverse rendering using only a data term is ill-

posed (an infinite set of solutions can yield zero data er-

ror) and so we use additional sources of supervision, all of

which are essential for good performance. We describe all

sources of supervision in this section.

5.1. Self­supervision via differentiable rendering

Given estimated normal and albedo maps and spherical

harmonic illumination coefficients, we compute a predicted

image using (3). This local illumination model is straight-

forward to differentiate. Self-supervision is provided by the

error between the predicted, ipred, and observed, iobs, inten-

sities. We compute this error in LAB space as this provides

perceptually more convincing results:

ℓappearance = ‖LAB(ipred)− LAB(iobs)‖, (6)

where LAB performs the colour space transformation.

5.2. Natural illumination model and prior

The spherical harmonic lighting model in (3) enables ef-

ficient representation of complex lighting. However, even
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Figure 3: Statistical illumination model. The central image

shows the mean illumination. The two diagonals and the

vertical show the first 3 principal components.

within this low dimensional space, not all possible illumina-

tion environments are natural. The space of natural illumi-

nation possesses statistical regularities [9]. We can use this

knowledge to constrain the space of possible illumination

and enforce a prior on the illumination parameters. To do

this, we build a statistical illumination model (see Fig. 3) us-

ing a dataset of 79 HDR spherical panoramic images taken

outdoors. For each environment, we compute the spheri-

cal harmonic coefficients, Li ∈ R
3×9. Since the overall

intensity scale is arbitrary, we also normalise each lighting

matrix to unit norm, ‖Li‖Fro = 1, to avoid ambiguity with

the albedo scale. Our illumination model in (5) uses sur-

face normals in a viewer-centred coordinate system. So, the

dataset must be augmented to account for possible rotations

of the environment relative to the viewer. Since the rotation

around the vertical (v) axis is arbitrary, we rotate the light-

ing coefficients by angles between 0 and 2π in increments

of π/18. In addition, to account for camera pitch or roll,

we additionally augment with rotations about the u and w
axes in the range (−π/6, π/6). This gives us a dataset of

139,356 environments. We then build a statistical model,

such that any illumination can be approximated as:

vec(L) = Pdiag(σ1, . . . , σD)α+ vec(L̄). (7)

where P ∈ R
27×D contains the principal components,

σ2
1 , . . . , σ

2
D are the corresponding eigenvalues, L̄ ∈ R

3×9 is

the mean lighting coefficients and α ∈ R
D is the paramet-

ric representation of L. We use D = 18 dimensions. Under

the assumption that the original data is Gaussian distributed

then the parameters are normally distributed: α ∼ N (0, I).
When we compute lighting, we do so within the subspace

of the statistical model. In addition, we introduce a prior

loss on the estimated lighting vector: ℓlighting = ‖α‖2.

5.3. Multiview stereo supervision

A pipeline comprising structure-from-motion followed

by multiview stereo (which we refer to simply as MVS) en-

ables both camera poses and dense 3D scene models to be

estimated from large, uncontrolled image sets. Of particular

importance to us, these pipelines are relatively insensitive to

illumination variation between images in the dataset since

they rely on matching local image features that are them-

selves illumination insensitive. We emphasise that MVS is

run offline prior to training and that at inference time our

network uses only single images of novel scenes. We use

the MVS output for three sources of supervision.

Cross-projection We use the MVS poses and depth maps

to establish correspondence between views, allowing us to

cross-project quantities between overlapping images. Given

an estimated depth map, w(x, y), in view i and camera ma-

trices for views i and j, a pixel (x, y) can be cross-projected

to location (x′, y′) in view j via:
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In practice, we perform the cross-projection in the re-

verse direction, computing non-integer pixel locations in the

source view for each pixel in the target view. We can then

use bilinear interpolation of the source image to compute

quantities for each pixel in the target image. Since the MVS

depth maps contain holes, any pixels that cross project to a

missing pixel are not assigned a value. Similarly, any target

pixels that project outside the image bounds of the source

are not assigned a value.

Direct normal map supervision The per-view depth

maps provided by MVS can be used to estimate normal

maps, albeit that they are typically coarse and incomplete

(see Fig. 1, column 5). We compute guide normal maps

from the depth maps and intrinsic camera parameters esti-

mated by MVS using (2). The guide normal maps are used

for direct supervision by computing a loss that measures the

angular difference between the guide, nguide, and estimated,

nest, surface normals: ℓNM = arccos(nguide · nest).

Albedo consistency loss Diffuse albedo is an intrinsic

quantity. Hence, we expect that albedo estimates of the

same scene point from two overlapping images should be

the same, even if the illumination varies between views.

Hence, we automatically select pairs of images that over-

lap (defined as having similar camera locations and similar
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centres of mass of their backprojected depth maps). We dis-

card pairs that do not contain illumination variation (where

cross-projected appearance is too similar). Then, we train

our network in a Siamese fashion on these pairs and use the

cross projection described above to compute an albedo con-

sistency loss: ℓalbedo = ‖LAB(Ai)− LAB(sAj)‖
2

fro
, where

Ai, Aj ∈ R
3×K are the estimated albedo maps in the ith

and jth images respectively, where Aj has been cross pro-

jected to view i, for the K pixels in which image i has a

defined depth value. The scalar s is the value that min-

imises the loss and accounts for the fact that there is an

overall scale ambiguity between images. Again, we com-

pute albedo consistency loss in LAB space. The albedo

consistency loss is visualised by the blue arrows in Fig. 4.

Cross-rendering loss For improved stability, we also use

a mixed cross-projection/appearance loss, ℓcross-rend. We use

the cross-projected albedo above in conjunction with the es-

timated normals and illumination to render a new image and

measure the appearance error in the same way as (6). This

loss is visualised by the green arrows in Fig. 4.

5.4. Albedo priors

Finally, we also employ two additional prior losses on

the albedo. This helps resolve ambiguities between shading

and albedo. First, we introduce an albedo smoothness prior,

ℓalbedo-smooth. Rather than uniformly applying smoothness

penalty, we apply a pixel-wise varying weighted penalty ac-

cording to chromaticities of the input image. So the stronger

smoothness penalties are only enforced on neighbouring

pixels with closer chromaticities. The loss itself is the L1

distance between adjacent pixels.

Second, during the self-supervised phase of training, we

also introduce a pseudo supervision loss to prevent conver-

gence to trivial solutions. After the pretraining process (see

Section 6), our model learns plausible albedo predictions

using MVS normals. To prevent subsequent training diverg-

ing too far from this, we encourage albedo predictions to

remain close to the pretrained albedo predictions.

6. Training

We train our network to minimise: ℓ = w1ℓappearance +
w2ℓNM + w3ℓalbedo + w4ℓcross-rend + w5ℓalbedo-smooth +
w6ℓalbedo-pseudoSup.

Datasets We train using the MegaDepth [34] dataset.

This contains dense depth maps and camera calibration pa-

rameters estimated from crawled Flickr images. The pre-

processed images have arbitrary shapes and orientations.

For ease of training, we crop square images and resize to

a fixed size. We choose our crops to maximise the num-

ber of pixels with defined depth values. Where possible, we

crop multiple images from each image, achieving augmen-
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Figure 5: Qualitative results for IIW. Second column to forth column are reflectance predictions from [33], [40] and ours.

The last three columns are corresponding shading predictions.

tation as well as standardisation. We create mini-batches

with overlap between all pairs of images in the mini-batch

and sufficient illumination variation (correlation coefficient

of intensity histograms significantly different from 1). Fi-

nally, before inputting an image to our network, we detect

and mask the sky region using PSPNet [52]. This is because

the albedo map and normal map in sky area are meaingless

and it severely influences illumination estimation.

Training strategy We found that for convergence to a

good solution it is important to include a pre-training phase.

During this phase, the surface normals used for illumina-

tion estimation and for the appearance-based losses are the

MVS normal maps. This means that the surface normal

prediction decoder is only learning from the direct super-

vision loss, i.e. it is learning to replicate the MVS normals.

After this initial phase, we switch to full self-supervision

where the predicted appearance is computed entirely from

estimated quantities. Note that this pre-taining step is not

using pseudo albedo supervisions.

7. Evaluation

There are no existing benchmarks for inverse rendering

in the wild. So, we evaluate our method on an intrinsic im-

age benchmark and devise our own benchmark for inverse

rendering. Finally, we show a relighting application.

Evaluation on IIW The standard benchmark for intrin-

sic image decomposition is Intrinsic Images in the Wild [6]

(IIW) which is almost exclusively indoor scenes. Since our

training regime requires large multiview image datasets, we

are restricted to using scene-tagged images crawled from

the web, which are usually outdoors. In addition, our illumi-

nation model is learnt on outdoor, natural environments. For

these reasons, we cannot perform training or fine-tuning on

indoor benchmarks. Moreover, our network is not trained

specifically for the task of intrinsic image estimation and

Methods Training data WHDR

Nestmeyer [40] (CNN) IIW 19.5

Zhou et al. [55] IIW 19.9

Fan et al. [12] IIW 14.5

DI [39] Sintel+MIT 37.3

Shi et al. [44] ShapeNet 59.4

Li et al. [33] BigTime 20.3

Ours MegaDepth 21.4

Table 1: Evaluation results on IIW benchmark using

WHDR percentage (lower is better). The second column

shows which dataset on which the networks were trained.

our shading predictions are limited by the fact that we use

an explicit local illumination model (so cannot predict cast

shadows). Nevertheless, we test our network on this bench-

mark directly without fine-tuning. We follow the suggestion

in [40] and rescale albedo predictions to the range (0.5, 1)
before evaluation. Quantitative results are shown in Tab. 1

and some qualitative visual comparison in Fig. 5. Despite

the limitations described above, we achieve the second best

performance of the methods not trained on the IIW data.

Evaluation on MegaDepth We evaluate inverse render-

ing using unobserved scenes from the MegaDepth dataset

[34]. We evaluate normal estimation performance directly

using the MVS geometry. We evaluate albedo estimation

using a state-of-the-art multiview inverse rendering algo-

rithm [26]. Given the output from their pipeline, we per-

form rasterisation to generate albedo ground truth for ev-

ery input image. Note that both sources of “ground truth”

here are themselves only estimations, e.g. the albedo ground

truth contains ambient occlusion baked in. The colour bal-

ance of the estimated albedo is arbitrary, so we compute

per-channel optimal scalings prior to computing errors. We

use three metrics - MSE, LMSE and DSSIM, which are

commonly used for evaluating albedo predictions. To eval-
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Figure 6: Inverse Rendering Results.

Reflectances Normals

Methods MSE LMSE DSSIM Mean Median

Li et al. [34] - - - 50.6 50.4

Godard et al. [16] - - - 79.2 79.6

Nestmeyer et al. [40] 0.0204 0.0735 0.241 - -

Li et al. [33] 0.0171 0.0637 0.208 - -

SIRFS [4] 0.0383 0.222 0.270 50.6 48.5

Ours 0.0170 0.0718 0.201 37.7 34.8

Table 2: Quantitative inverse rendering results. Reflectance

(albedo) errors are measured against multiview inverse ren-

dering result [26] and normals against MVS results.

Input Relit 1 Relit 2

Figure 7: Relighting results from predicted albedo and nor-

mal maps (see Fig. 1, row 3). The novel lighting is shown

in the upper left corner.

uate normal predictions, we use angular errors. The cor-

rectness of illumination predictions could be inferred by the

other two, so we do not perform explicit evaluations on it.

The quantitative evaluations are shown in Tab. 2. For depth

prediction methods, we first compute the optimal scaling

onto the ground truth geometry, then differentiate to com-

pute surface normals. These methods can only be evaluated

on normal prediction. Intrinsic image methods can only be

evaluated on albedo prediction. We can see that our net-

work performs best in normal prediction and also the best in

MSE and DSSIM. Qualitative example results can be seen

in Fig. 6.

Relighting Finally, as an example application we show

that our inverse rendering result is sufficiently stable for re-

alistic relighting. A scene from Fig. 1 is relit in Fig. 7 with

two novel illuminations. Both show realistic shading and

overall colour balance.

8. Conclusions

We have shown for the first time that the task of in-

verse rendering can be learnt from real world images in un-

controlled conditions. Our results show that “shape-from-

shading” in the wild is possible and are far superior to clas-

sical methods. It is interesting to ponder how this feat is

achieved. We believe the reason this is possible is because

of the large range of cues that the deep network can ex-

ploit, for example shading, texture, ambient occlusion, per-

haps even high level semantic concepts learnt from the di-

verse data. For example, once a region is recognised as a

“window”, the possible shape and configuration is much re-

stricted. Recognising a scene as a man-made building sug-

gests the presence of many parallel and orthogonal planes.

These sort of cues would be extremely difficult to exploit in

hand-crafted solutions.

There are many promising ways in which this work can

be extended. First, our modelling assumptions could be

relaxed, for example using more general reflectance mod-

els and estimating global illumination effects such as shad-

owing. Second, our network could be combined with a

depth prediction network. Either the two networks could

be applied independently and then the depth and normal

maps merged, or a unified network could be trained in

which the normals computed from the depth map are used

to compute the losses we use in this paper. Third, our

network could benefit from losses used in training in-

trinsic image decomposition networks. For example, if

we added the timelapse dataset of [33] to our training,

we could incorporate their reflectance consistency loss to

improve our albedo map estimates. Our code, trained

model and inverse rendering benchmark data is available

at https://github.com/YeeU/InverseRenderNet.
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Garrido, Florian Bernard, Patrick Pérez, and Christian

Theobalt. Mofa: Model-based deep convolutional face au-

toencoder for unsupervised monocular reconstruction. In

The IEEE International Conference on Computer Vision

(ICCV), volume 2, page 5, 2017.

[47] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Ji-

tendra Malik. Multi-view supervision for single-view recon-

struction via differentiable ray consistency. In CVPR, vol-

ume 1, page 3, 2017.

[48] Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia

Schmid, Rahul Sukthankar, and Katerina Fragkiadaki. Sfm-

net: Learning of structure and motion from video. arXiv

preprint arXiv:1704.07804, 2017.
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