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Abstract. Constructing a dialog system which can speak naturally with
a human is considered as a major challenge of artificial intelligence. End-
to-end dialog system is taken to be a primary research topic in the area of
conversational systems. Since an end-to-end dialog system is structured
based on learning a dialog policy from transactional dialogs in a defined
extent, therefore, useful datasets are required for evaluating the learning
procedures.

In this paper, different deep learning techniques are applied to the Dialog
bADI datasets [1]. On this dataset, the performance of the proposed
techniques is analyzed. The performance results demonstrate that all
the proposed techniques attain decent precisions on the Dialog bAbI
datasets. The best performance is obtained utilizing end-to-end memory
network with a unified weight tying scheme (UN2N).

Keywords: memory networks, deep learning, Dialog bAbI dataset

1 Introduction

Instructing machines that can converse like a human for real-world objectives
is possibly one of the crucial challenges in artificial intelligence. In order to
construct a meaningful conversation with human, the dialog system is required
to be qualified in the perception of natural language, constructing intelligent
decisions as well as producing proper replies [2—4]. Dialog systems, recognized as
interactive conversational agents, communicate with the human through natural
language in order to aid, supply information and amuse. They are utilized in
an extensive applications domain from technical support services to language
learning tools [5, 6].

Artificial intelligence techniques are viewed as the most efficient techniques
in recent decades [7—18]. For example, Fuzzy logic systems are broadly utilized
to model the systems characterizing vague and unreliable information [19-38]. In
artificial intelligence area [39,40], end-to-end dialog systems have been attained
interest because of the current progress of deep neural networks. In [41] a gated
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end-to-end trainable memory network is proposed which is learning in an end-to-
end procedure without the utilization of any extra supervision signal. In [1] the
original task is broken down into short tasks where they should be individually
learned by the agent, and also built in order to perform the original task. In
[42] a long short term memory (LSTM) model is suggested which learns in
order to interact with APIs on behalf of the user. In [43] a dynamic memory
network is introduced which contains tasks for part-of-speech classification as
well as question answering, also uses two gated recurrent units in order to carry
out inference. In [44] the memory network has been implemented which needed
supervision in every layer of the network. In [45] a set of four tasks in order
to test the capability of end-to-end dialog systems has been introduced which
focuses on the domain of movies entities. In [46] a word-based method to dialog
state tracking utilizing recurrent neural networks (RNNs) is proposed which
needs less feature engineering. Even though neural network models include a
tiny learning pipeline, they need a remarkable content of the training. Gated
recurrent network (GRU) and LSTM units permit RNNs to deal with the longer
texts needed for question answering. Additional advancements to be mentioned
as attention mechanisms, as well as memory networks, permit the network to
center around the most related facts.

In this paper, the applications of different types of memory networks are
studied on data from the Dialog bAbl. The performance results demonstrate
that all the proposed techniques attain decent precisions on the Dialog bAbI
datasets. The best performance is obtained utilizing UN2N. The remaining of the
article is organized as follows. In Section 2, different types of memory networks
are demonstrated and explained in details. Experimental results are given in
Section 3. Section 4 concludes the work.

2 Memory Networks

2.1 End-to-End Memory Network with Single Hop

The end-to-end Memory Network (N2N) with single hop has two stories em-
bedding g, 5, as well as a question embedding E, see Figure 1. Matrices dot
product are utilized in order to match each word in the story with each word
in the question which will cause the creation of the attention. By passing the
attention through a softmax layer they will change into the probability distri-
bution across the whole word from the story. Afterward, these probabilities are
implemented to the story embedding C' and the sum of that with the question
embedding B passes through a dense layer and the softmax prediction layer.

2.2 End-to-End Memory Network with Stacked Hops

The N2N architecture contains two major components: supporting memories
and final answer prediction [47]. Supporting memories consist of a set of input
and output memory represented by memory cells. In complicated tasks with
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Fig. 1. End-to-end memory network with single hop

the requirement of multiple supporting memories, the model can be developed
in order to contain more than one set of input-output memories by stacking a
number of memory layers. Each memory layer in the model is called hop, also
the input of the (x + 1) hop is the output of the x** hop:

~E+l sk ~K (1)

Each layer contains its own embedding matrices Z“,é“, utilized in order to
embed the inputs Z;.
The prediction of the answer to the question ¢, is carried out by

a = softmax(W(o" + a")) (2)

where @ is taken to be the predicted answer distribution, W (of size V x d) is
considered to be a parameter matrix for the model in order to learn, also x is
the total number of hops.

The N2N architecture with three hop operations is shown in Figure 2. The
hard max operations within each layer are substituted with a continuous weight-
ing from the softmax.

The method takes a discrete set of inputs Z1, ..., Z,, which are stored in the
memory, a question ¢, also outputs a reply a. The model can write all £ to the
memory up to a fixed buffer size, also it obtains a continuous demonstration for
Z and q. Afterward, the continuous demonstration is processed with multiple
hops in order to generate a. This permits backpropagation of the error signal
through multiple memory accesses back to the input while training.
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2.3 Gated End-to-End Memory Network

The gated end-to-end memory network (GN2N) is able to dynamically condi-
tioning the memory reading operation on the controller state @" at every hop,
see Figure 3. In GN2N; (1) is reformulated as below [48],

TH(a") = o(WET" + b5 (3)
@™t = 6" O T (a") + 4" © (1 — T(a")) (4)

where Wf and b" are taken to be the hop-specific parameter matrix and bias
term for the s hop respectively. T%(%) is the transform gate for the x*" hop.
® is the Hadamard product.

2.4 End-to-End Memory Networks with Unified Weight Tying

In [47], two kinds of weight tying are proposed for N2N, namely adjacent and
layer-wise. Layer-wise approach portions the input and output embedding ma-
trices across various hops (i.e., Al = A2 = ... = A% and C' = C? = ... = C*%).
Adjacent approach portions the output embeddlng for a given layer Wlth the
corresponding input embedding (i.e., A*T! = C*). Furthermore, the matrix 1%
which predicts the answer, as well as the question embedding matrix B are
developed as WT =C% and B = A!. In [48], a dynamic mechanism is des,1gned
which permits the model to choose the proper kind of weight tying on the basis
of the input. Therefore, the embedding matrices are developed dynamically for
every instance which makes UN2N more efficient compared with N2N and GN2N
where the same embedding matrices are implemented for each input. In UN2N
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Fig. 3. Gated end-to-end memory network

a gating vector Z, described in (8), is used in order to develop the embedding
matrices, g”“, 5’”, E, and W. The embedding matrices are influenced by the
information transported by Z related to the input question @° and the context
sentences in the story my. Therefore,

A= AP0 z4C o (1-3) (5)

Ctl =Croi+C o (1-3) (6)

where © is taken to be the column element-wise multiplication operation, also
C**1 is the unconstrained embedding matrix. In (5) and (6), the large value of
Z leads UN2N towards the layer-wise approach and the small value of Z leads
UN2N towards the adjacent approach.

In UN2N, at first, the story is encoded by reading the memory one step at a
time with a gated recurrent unit (GRU) as below,

hey1 = GRU (g, hy) (7)

such that t is considered to be the recurrent time step, also m; is taken to be
the context sentence in the story at time ¢. Afterward, the following relation is
defined,

5 = oW [“} b (8)

where hp is the last hidden state of the GRU which presents the story, Wg is
considered as a weight matrix, b; is bias, ¢ is taken to be the sigmoid function
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added for updating the connection between memory hops as below,

also, is the concatenation of @ and hp. A linear mapping G € R?*? is

@t =6" 4+ (G e (1 - 2)a" (9)

3 Experiments and Results

3.1 Experiment Setup

In this section, an extensive range of parameter settings along with data set
configurations are utilized in order to validate the proposed techniques in this

paper.

3.2 Task explanations

The tasks in the dataset are divided into 5 groups where each group focus on a
special objective.

Task 1: Issuing API calls The chatbot asks questions in order to fill the
missing areas, and finally produces a valid corresponding API call. The questions
asked by the bot is for collecting information in order to make the prediction
possible.

Task 2: Updating API calls In this part users update their requests.
The chatbot asks from users if they have finished their updates, then chatbot
generates updated API call.

Task 3: Demonstrating options The chatbot provides options to users
utilizing the corresponding API call.

Task 4: Generating additional information User can ask for the phone
number and address and the bot should use the knowledge bases facts correctly
in order to reply.

Task 5: Organizing entire dialogs Tasks 1-4 are combined in order to
generate entire dialogs.

For evaluating the capability of the techniques in order to deal with out-of-
vocabulary (OOV) items a set of test data is used which contains entities different
from the training set. Task 6 is the Dialog state tracking 2 task (DSTC-2) [49]
with real dialogs, and only has one setup.

3.3 Experimental Results

Efficiency results on Dialog bAbI tasks are demonstrated in Table 1, with seven
techniques which are among the most important techniques, namely rule-based
systems, TF-IDF, nearest neighbor, supervised embedding, N2N, GN2N, and
UN2N. As is shown in Table 1, the rule-based system has a high performance
on tasks 1-5. However, its performance reduces when dealing with DSTC-2 task.
TF-IDF match has poor performance compared with other methods on both the
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Table 1. The accuracy results of rule-based systems, TF-IDF, nearest neighbor, su-
pervised embedding, N2N, GN2N, and UN2N methods

TF-IDFMatch
Rule- Nearest -match match
Task ] no Neighbor
Systems type type
S-Emb N2N GN2N | UN2N S-Emb N2N GN2N | UN2N
1. Issuing API calls 100.0 5.6 224 55.1 100.0 | 99.9 100.0 | 100.0 83.2 100.0 | 100.0 100.0
2. Updating API calls 100.0 34 16.4 68.3 68.4 100.0 100.0 | 100.0 68.4 98.3 100.0 100.0
3. Displaying options 100.0 8.0 8.0 58.8 64.9 74.9 749 749 64.9 74.9 749 74.9
4. Generating additional information 100.0 9.5 17.8 28.6 57.2 59.5 572 572 57.2 100.0 100.0 100.0
5. Organizing entire dialogs 100.0 4.6 8.1 57.1 75.4 96.1 96.3 99.2 76.2 93.4 98.0 99.4
Average 100.0 6.2 145 53.6 732 86.1 85.7 86.3 70.0 93.3 94.6 99.4
1. (OOV) Issuing API calls 100.0 5.8 224 44.1 60.0 723 824 83.0 67.2 96.5 100.0 100.0
2.(00V) Updating API calls 100.0 3.5 16.8 68.3 68.3 78.9 78.9 78.9 68.3 94.5 942 94.5
3.(0O0V) Displaying options 100.0 83 83 588 65.0 744 753 752 65.0 752 751 753
4. (00V) Generating additional information 100.0 8.8 17.2 28.6 57.0 57.6 57.0 570 571 100.0 100.0 100.0
5.(00V) Organizing entire dialogs 100.0 4.6 9.0 484 58.2 65.5 66.7 67.8 64.4 7.7 794 79.5
Average 100.0 6.4 14.7 49.6 61.7 69.7 72.1 72.4 64.4 88.8 89.7 89.8
6. Dialog state tracking 2 333 1.6 1.6 219 226 41.1 47.4 424 221 41.0 48.7 429

simulated tasks 1-5 and on the real data of task 6. The performance of the TF-
IDF match with match type features considerably increases but is still behind
the nearest neighbor technique. Supervised embedding has higher performance
compared with TF-IDF match and nearest neighbor technique. In task 1, su-
pervised embedding is fully successful but its performance reduces in task 2-5,
even with match type features. GN2N and UN2N models outperform the other
methods in DSTC-2 task and Dialog bAbI tasks respectively.

4 Conclusion

End-to-end learning scheme is suitable for constructing the dialog system be-
cause of its simplicity in training as well as effectiveness in model updating. In
this paper, the applications of various memory networks are studied on data
from the Dialog bAbI. The performance results demonstrate that all the pro-
posed techniques attain decent precisions on the Dialog bAbI datasets. The best
performance is obtained utilizing UN2N. In order to evaluate the true perfor-
mance of the proposed methods, extra experimentations are required utilizing
wide non-synthetic data set.
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