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Abstract 

 

Background 

A common aim of health expenditure is to reduce unfair inequalities in health. Whilst previous 

research has attempted to estimate the total health effects of changes in health expenditure, 

little is known about how changes affect different groups in the population.  

 

Methods 

We propose a general framework for disaggregating the total health effects of changes in health 

expenditure by social groups. This can be performed indirectly when the estimate of the total 

health effect has first been disaggregated by a secondary factor (e.g. disease area) that can be 

linked to social characteristics. This is illustrated with an application to the English NHS. 

Evidence on the health effects of expenditure across 23 disease areas is combined with data on 

the distribution of disease-specific hospital utilisation by age, sex and area-level deprivation. 

 

Results 

We find that the health effects from NHS expenditure changes are produced largely through 

disease areas where individuals from more deprived areas account for a large share of 

healthcare utilisation, namely respiratory and neurological disease and mental health. We 

estimate that 26% of the total health effect from a change in expenditure would accrue to the 

fifth of the population living in the most deprived areas, compared with 14% to the fifth living 

in the least deprived areas.  

 

Conclusions 
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Our approach can be useful for evaluating the health inequality impacts of changing health 

budgets or funding alternative health programmes. However, it requires robust estimates of 

how health expenditure affects health outcomes. Our example analysis also relied on strong 

assumptions about the relationship between healthcare utilisation and health effects across 

population groups.  
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Introduction 

Two central objectives of publicly funding healthcare systems are to improve population health 

and to reduce health inequality. In England, for example, there is a legal obligation to consider 

reducing population health inequalities in determining which services to include within the 

National Health Service (NHS) [1]. Whilst many studies have examined the impact of 

healthcare expenditure on population health [2]–[7], less is known about the impact on health 

inequality.  

 

Conventional benefit incidence studies examine the average overall healthcare expenditure by 

sociodemographic group [8].  However, if policy makers wish to reduce health inequality, 

evidence on the distribution of the benefits of additional investment in healthcare (i.e. the 

changes in health outcome in each group as expenditure is altered) is required. These marginal 

benefits can be compared to investment in other programmes, such as education and social 

protection, or used to compare interventions within the health sector in terms of their impact 

on health inequality.   

 

We propose a method for estimating the relationship between a change in overall health 

expenditure and changes in the social distribution of healthy life expectancy. This approach 

can estimate effects for a variety of sociodemographic characteristics simultaneously and can 

enable an analysis of the effects of expenditure on multiple dimensions of health inequality. 

We demonstrate this method with an application to England, using the results of a study of the 

marginal productivity of the English National Health Service (NHS) [9]. 
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A further application is to use the estimated outputs in equity-informative cost-effectiveness 

analysis [10]. The health benefits accruing to different social groups from a new intervention 

can be compared against the social distribution of health benefits that would be expected as a 

result of general healthcare expenditure to determine whether the intervention would reduce 

health inequalities by more than existing services. The results from our method describe the 

social distribution of health opportunity costs of healthcare expenditure that can be used to 

inform healthcare decision making. 

 

Methods 

 

Overview 

We describe a general framework for estimating a social distribution of health effects from 

marginal changes in healthcare expenditure.  This framework uses the results of ‘marginal 

productivity studies’ that draw causal inferences about the relationship between health 

expenditure and health outcomes. Where the marginal productivity study does not directly 

estimate differences in marginal productivity between population groups, our framework 

shows how the estimated change in health from a given change in expenditure can be 

disaggregated indirectly.  We illustrate the framework through an application to the English 

NHS, using evidence from a marginal productivity study for England [9], [11]. The social 

groups in our example are based on age, sex and socio-economic characteristics, but the method 

can in principle be applied to other variables considered relevant to assessing unfair differences 

in health. We hereafter refer to the characteristics that delineate the population groups as 

‘equity-relevant’ variables.  

 

Analytical framework 



7 

 

The results of marginal productivity studies of healthcare expenditure describe the total health 

effect (ℎ") from a given change in expenditure.  Our framework addresses the question of how 

the health effects from the change in expenditure are distributed between equity-relevant social 

groups. We express this formally as the share of the total health effect that is received by each 

group (denoted 𝑝𝒙). Algebraically, the relationship between ℎ" and 𝑝𝒙 can be written as ℎ" =
∑ ℎ"𝑝𝒙𝒙 = ∑ ℎ𝒙𝒙 ,	where ℎ𝒙 is the outcome of interest, i.e. the health change for each equity-

relevant group 𝒙. 

 

The distribution of marginal health effects (ℎ), ℎ*, … , ℎ𝒙) could be estimated directly within a 

marginal productivity analysis. Including an interaction term between health sector expenditure 

and an equity variable (i.e. area-level socioeconomic deprivation) in the statistical model that 

links expenditure to outcomes, or estimating separate models for each equity-relevant group, 

would yield separate health effects for each group. This would require data on equity-related 

characteristics at the level of the unit of analysis (e.g., by disease area and geography). No 

existing marginal productivity studies have so far estimated effects in terms of equity-relevant 

groups.  This could be due to the lack of information on the equity-relevant characteristics in 

the datasets used in marginal productivity analysis or the additional challenges posed by 

including interaction terms in statistical models estimating causal effects [12].      

 

Indirect estimation of the distribution of health effects is instead possible if the marginal 

productivity study reports health effects in terms of a secondary factor (𝑗) that can be linked to 

equity-relevant characteristics, such as healthcare facility type or disease area. The total 

marginal health effect can be defined as the sum of 𝐽 subsidiary effects (ℎ.), such that ℎ" =

∑ ℎ./ . Each ℎ. can then be split between equity-relevant groups (denoted ℎ𝒙.), which are then 
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summed over all the secondary groups to obtain the total health effect for each equity-relevant 

group: 

 

ℎ𝒙 =0 ℎ𝒙./
=0 ℎ.𝑝𝒙./

 

 

Where 𝑝𝒙. is the proportion of the health effect in category 𝑗 accruing to equity-relevant 

group	𝒙. The proportion of the overall health effect accruing to each group can then be obtained 

from the group-specific health effects and the total health effect via the formula 𝑝𝒙 = 1𝒙
12. 

 

The proportions 𝑝𝒙 provide the means to calculate the distribution of health effects for any 

given marginal change in healthcare expenditure (∆𝑐). The change in expenditure is first 

converted into the total health effect (ℎ"|∆6) using the marginal cost of producing one additional 

unit of health (𝑘). This summary measure of marginal productivity represents the rate at which 

health resources are converted into health at the margin. The group-specific effects (ℎ𝒙|∆6) are 

obtained by multiplying the total health effect by the respective proportion 𝑝𝒙: 

 

ℎ𝒙|∆6 = ∆𝑐 𝑘8 𝑝𝒙 = ℎ"|∆6𝑝𝒙 

 

A worked example demonstrating these calculations is provided in Appendix A (online 

appendix). 

 

Data and assumptions 
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Applying the framework described above requires a reliable and valid estimate of health system 

marginal productivity. A number of these studies have been conducted since 2015 [9], [13]–

[15], all of which employ an empirical strategy to exploit variation in health outcomes and 

health expenditure. This variation can be between geographical areas, over time or a 

combination of the two. Identifying the causal effect of health sector expenditure on health 

outcomes is, however, empirically challenging [16]. Reverse causality between outcomes and 

expenditure may be present, as historically poor health outcomes may lead to the allocation of 

extra health resources. An array of potentially unobservable environmental factors, with 

complex causal pathways, also determine health. For these reasons, studies investigating health 

system marginal productivity have adopted statistical methods that use instrumental variables 

to control for these unobserved factors.   

 

A further challenge is that mortality data are most readily available as the basis for establishing 

a causal effect, but the impacts of health expenditure are not restricted to risk of death and for 

some diseases (e.g. hearing or vision) may be almost entirely in terms of health-related quality 

of life (HRQL). Marginal productivity studies have therefore developed methods for adjusting 

their mortality-based results to reflect HRQL effects.   

 

To apply our framework, data linking the secondary factor to equity-relevant characteristics is 

needed. It is unlikely that data sources will able to validly allocate the health effects to equity-

relevant groups directly, requiring assumptions to be made when they are used.  For example, 

if the secondary factor is disease area, there is often evidence linking disease incidence or 

prevalence to equity-relevant characteristics. However, neither reflect differences in 

healthcare-seeking behaviour between social groups.  Allocating the health effects in each 

disease area using these data may therefore overestimate the share of health for any groups who 
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are less likely to utilise services. This can be seen in the treatment of hepatitis C patients in the 

UK, for example, where uptake of services is lower in minority ethnic groups and intravenous 

drug users [17].  

 

Information describing differences in healthcare utilisation in each disease area between 

equity-relevant groups does account for differences in uptake. However, simply using the 

distribution of utilisation to allocate the health effect assumes that each particular episode of 

care generates the same health benefit, regardless of the social characteristics of the recipient. 

For example, in the disease area of cancer using the socioeconomic distribution of surgical 

removal of tumours to describe the distribution of the health benefits from surgery would 

assume that every individual achieves equal benefit from undergoing surgery regardless of 

socioeconomic status. These assumptions can sometimes be relaxed, for example if there is 

evidence on the variation of health benefits from utilisation between groups. If a group with 

high socioeconomic status was found to yield greater benefits relative to lower groups then this 

can be used to weight its respective share of the health benefits.  

 

The information linking the secondary factor with equity-relevant characteristics should 

describe how different social groups are affected by changes in health expenditure at the 

margin. Using the previous example, we would ideally want to know the distribution of 

additional (i.e. marginal) utilisation in each disease area following an increase in health 

expenditure. Trying to estimate this relationship between health expenditure and utilisation 

shares many of the complexities encountered during the analysis of health system marginal 

productivity, such as reverse causality. Using the distribution of average utilisation in the 

absence of information on marginal utilisation will assume that the former adequately 
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represents the latter. Empirical evidence on this topic is limited but indicates that the two 

distributions can differ [18]. 

 

Analysing inequalities  

Inequality in marginal health effects can be explored with respect to each equity characteristic 

included in the analysis.  There are numerous ways to summarise the extent of inequality in a 

distribution, and in general we desire those that encompass both the magnitude and direction 

of inequality (i.e. whether it favours the ‘worst-off’ or the ‘best-off’ and by how much). Where 

the equity-relevant characteristic divides the population into two groups, absolute and relative 

differences in health outcomes can be calculated directly. The same can be done for categorical 

variables if it is appropriate to consider specific pairwise comparisons. To compare across large 

numbers of groups or a continuous measure that can be ordered from ‘worst-off’ to ‘best-off’, 

a range of measures can be employed to summarise the differences (see Regidor [19] for an 

overview).  These include regression-based measures such as the slope index of inequality (SII) 

and the relative index of inequality (RII), respectively.  

 

The SII is the slope coefficient from a regression analysis, in which the health effect (ℎ𝒙) or 

the proportion of the health effect (𝑝𝒙) of an expenditure change is the dependent variable and 

the equity-characteristic of interest is the independent variable. The slope coefficient then 

describes the absolute difference in the share of health effects for a one-unit increase in the 

equity variable. To make this easy to interpret, it can be helpful to adjust the equity variable to 

achieve a 0-1 scaling.  This allows the SII to be interpreted as the difference between ‘best-off’ 

and ‘worst-off’ group. If, for example, SII is estimated using income rank as the equity-relevant 

variable, then an SII of -0.2 would mean that the proportion of the overall health effect accruing 

to individuals at the bottom of the income distribution is 0.2 higher than for those at the top of 
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the distribution. The RII is obtained by dividing the SII by the mean of the dependent variable. 

In the example using income rank, an RII of -1 implies that individuals in the lowest income 

group accrue double the health from a marginal change in expenditure as those in the top 

income group.  

 

It is also possible to calculate health effects in terms of a third variable not included in the 

marginal productivity or indirect analysis.  For example, a geographical distribution can be 

imputed using the sociodemographic characteristics of each region. If low socioeconomic 

status individuals gain a higher share of health effects, for example, then the regions in which 

more socioeconomically deprived individuals live should also exhibit a higher share. This can 

be expressed as an index that is greater than 1 when the proportion of the health effect accruing 

to an area is greater than its respective share of the overall population, and vice versa. This is 

described further in Appendix B (online appendix). 

 

Case study: Health effects of NHS spending in England 

Our example uses the results of a study of the marginal productivity of the English NHS [9]. 

The authors used cross-sectional data on healthcare expenditure and mortality across 152 

regional spending bodies (“Primary Care Trusts”) in England in 2008, broken down by 23 

broad disease areas (such as cancer or respiratory illness) called programme budgeting 

categories (PBCs). We use disease area as the secondary factor by which to link health effects 

to equity-relevant characteristics. An instrumental variables approach was used to account for 

endogeneity bias, and has been validated by similar results in subsequent studies [20], [21]. 

 

The econometric models estimated the elasticity of mortality with respect to healthcare 

expenditure: the percentage change in mortality given a 1% change in expenditure). Mortality 
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is measured in terms of years of life lost (YLL), the total number of life years lost in one year 

due to premature death for all diseases within a PBC. By combining the change in YLL across 

all disease areas from a given change in expenditure, the authors derived a marginal cost of 

£17,663 per life year. To account for gains to quality of life as well survival, further adjustments 

were made to obtain effects in terms of quality-adjusted life years (QALYs). The QALY is a 

measure of health that accounts for both health-related quality of life and survival by weighting 

the time spent alive according the individuals health state [22]. 

 

Health effects in terms of QALYs are estimated by applying the elasticities from the YLL 

equations to the “QALY burden” associated with each PBC (the annual total of QALYs lost in 

due to premature death and disability associated with all the diseases within a PBC). For 

example, a 1% change in NHS expenditure was estimated to yield a 1.6% change in years of 

life lost due to respiratory disease (PBC 11); applying this to the QALY burden of respiratory 

disease gives a change in QALYs of 17,981. This represents 29.7% of the overall change of 

60,600 QALYs across all PBCs. The distribution of these QALYs over PBCs, which 

correspond to the quantities ℎ. in our framework, are given in Table 1. An overview of the 

methods used by Claxton and colleagues can be found in Appendix C (online appendix). 

 

Table 1: Change in quality-adjusted life years (QALYs) generated from a 1% change in NHS 

expenditure in England by disease area 

PBC # Disease area 

Health effect 

(QALYs) 

Proportion of total 

health effect 

 Total 60,660 1 

11 Respiratory 17,981 0.2964 
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7 Neurological 8,551 0.1410 

10 Circulatory 8,453 0.1394 

5 Mental health 7,469 0.1231 

4 Endocrine 4,749 0.0783 

13 Gastrointestinal 3,441 0.0567 

2 Cancers & tumours 2,064 0.0340 

15 Musculoskeletal 1,819 0.0300 

3 Blood disorders 1,712 0.0282 

1 Infectious diseases 1,229 0.0203 

9 Hearing 1,098 0.0181 

17 Genito Urinary 829 0.0137 

12 Dental 533 0.0088 

8 Vision 333 0.0055 

14 Skin 152 0.0025 

20 Poisoning 64 0.0011 

6 Learning disability 54 0.0009 

21 Healthy individuals 53 0.0009 

18+19 Maternity + Neonate 18 0.0003 

Source: Claxton et al [10] 

 

Health effects by social group 

The social characteristics used in this example are age, sex and socioeconomic status. The latter 

is defined by the Index of Multiple Deprivation (IMD), an area-based measure of 

socioeconomic deprivation. We estimate the proportion of the health effect accruing to each 

subgroup in two steps, starting with age and sex first, and then socioeconomic status separately.  

The age and sex proportions come from a subsequent publication by Claxton and colleagues , 
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in which the PBC-level effects are split by age and sex using disease incidence statistics for the 

UK, obtained from the World Health Organization’s Global Burden of Disease Study [23]. For 

example, it was calculated that 6.1% of the incident population in the respiratory disease PBC 

are 30-44 year old females, meaning that the health effect accruing to this group is estimated 

to be 17,981x0.061=1,097 QALYs. 

 

These health effects are then allocated to socioeconomic groups using the observed 

socioeconomic distribution of healthcare utilisation within each age, sex and disease area 

group. Summing over disease areas, we obtain the distribution of the overall health effect by 

age, sex and socioeconomic status. This process is summarised in Figure 1. Regional effects 

are also calculated by estimating weighting factors for each of the 326 local authorities (LAs) 

in England.  
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Figure 1: Influence diagram demonstrating how the health effects of a 1% change in healthcare 

expenditure for a single disease area are distributed by age, sex, socioeconomic status 

 

Note: NHS = National Health Service; QALY = quality-adjusted life year; PBC = programme 

budgeting category; GBD = Global Burden of Disease; ICD = International Classification of Disease 

 

Data and variables 

Hospital Episode Statistics (HES) is a database containing information on all NHS funded 

activity in public and private hospitals. Socioeconomic status is assigned to each individual in 

terms of the deprivation level of place of residence. HES provides a comprehensive and 

nationally representative dataset for our analysis with full coverage of all ICD codes. 

 

The primary unit of measurement in HES is the ‘consultant episode’; patients whose care is 

transferred between consultants during a single stay in hospital may have multiple episodes.  
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We use HES data from 2012/13, the most recent available at the time of the analysis. Whilst 

these data do not temporally align with those used by Claxton and colleagues (mortality data 

for 2008-10 and expenditure 2008/9), they provided an up-to-date estimate of socioeconomic 

distributions.  

 

The Index of Multiple Deprivation (IMD) is used as our measure of socioeconomic status. The 

IMD is a weighted index of 38 variables covering seven dimensions of deprivation 

(employment, income, education, health, crime, living environment, and housing/services) that 

is given to each of 32,482 geographical lower layer super output areas (LSOAs) in England. 

Each postcode belongs to an LSOA, giving each patient a deprivation score according to their 

postcode of residence. The 2004 version of the IMD is provided in HES for the financial year 

2013/14 [24], which gathers the LSOAs (and their populations) into quintiles (five equally 

sized groups) to obtain a five-level socioeconomic status variable. 

 

Disease is described by ICD codes included as diagnosis variables, of which up to twenty can 

be recorded for each episode. We convert the 4-digit codes to 3-digit codes, providing 1,562 

diagnostic categories that are mapped to the 23 PBCs. We relate an episode to an ICD code if 

the latter appear in any of the 20 diagnosis codes. Consequently, episodes with multiple 

diagnosis codes will be ‘counted’ multiple times.  

 

The HES inpatient dataset includes both day cases and overnight stays, encompassing a total 

of 19,578,568 unique episodes. We anticipated that the proportion of episodes with missing 

data would be small and primarily due to administrative or data entry errors. We therefore 

assumed that data are missing completely at random and removed observations with missing 
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age, sex or IMD quintile values from the sample, as well as those with no diagnosis codes. We 

further removed observations with sex unspecified.  

 

Calculating the QALY distribution 

We counted the number of episodes associated with each IMD quintile group within 24,992 

subgroups (eight age groups, both sexes and 1,562 ICD codes).  These collapse into 368 

subgroups once ICD codes are mapped to the 23 PBCs. This is reduced to 320 subgroups as 

three PBCs are not allocated any health effects by Claxton and colleagues for reasons detailed 

in their report [9, p. 103]: Trauma and Injuries (PBC 16), Social Care (PBC 22) and General 

Medical Services (PBC 23). The count matrices are produced using Stata 12, with all 

subsequent analyses performed in R.  

 

The counts were converted into proportions to obtain the distribution of utilisation by 

socioeconomic status within each age, sex and PBC group. Each of the 320 distributions is 

used to split its respective health effect. One group, 0-5 males in the maternity programme 

(PBC 18), had no episodes associated with it. We assumed a flat socioeconomic distribution 

for this group (which accounts for less than 0.001 of the total health effect).  

 

In order to present the results and distributions by equally sized 5-year age groups we split the 

10- and 15-year age groups from the GBD study into 5-year bands, using the respective 

population proportions from the ONS [25]. For example, 70-79 year-old males were 

disaggregated into the 70-74 and 75-79 bands according to their general population 

proportions, which are 0.56 and 0.44, respectively.  

 

Analysing social inequalities  
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We analyse inequalities in the marginal health effects of healthcare expenditure changes by 

age, sex, socioeconomic status, PBC and region. Regional effects are calculated by estimating 

a weighting factor for each of the 326 local authorities (LAs) in England. The socioeconomic 

and sex distribution of each LA is used to predict its proportion of health opportunity costs: an 

LA will have a weighting factor greater than 1 when this proportion is greater than its respective 

share of the overall population and vice versa. 

 

SII and RII are calculated to measure inequalities in the distribution of health effects. A larger 

negative SII or RII value indicates a greater proportion of the overall health effect accrues to 

more deprived groups. 

 

Sensitivity analysis 

Three types of sensitivity analysis were conducted on the results. First, we re-estimated results 

using the distributions of unique patients within each PBCs instead of episodes. Using episode 

counts assumes that every episode within each age, sex, and ICD group is associated with an 

equal probability of generating a QALY regardless of socioeconomic group, whilst using 

patient counts assumes that each patient has an equal probability of generating a QALY 

regardless of how many healthcare episodes they receive. We associated a patient with an ICD 

code if it appeared in the diagnosis codes of any of their ten most coded episodes (i.e. those 

with the highest number of diagnosis codes entered). A second sensitivity analysis was 

conducted by repeating our analysis using HES episode counts from the preceding two years 

to test whether there were differences in inequality over time. 
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Whilst HES provides comprehensive coverage of inpatient secondary care utilisation by age, 

sex, socioeconomic status and disease, it may not be the most appropriate data source from 

which to estimate socioeconomic distributions for some disease areas where secondary care 

represents a small proportion of healthcare activity. We were unable to access fully comparable 

data outside secondary care, and so performed a third sensitivity analysis that compares the 

socioeconomic gradient for the disease areas targeted in the Quality and Outcomes Framework 

(QOF) dataset to a matched subset of disease areas from HES.  The QOF dataset [26] describes 

the prevalence of selected diseases in the practice population of general practitioners, which 

allows us to link socioeconomic variables by using the Attribution Dataset on GP Registered 

Populations to link to LSOA and to IMD.  A full description of this sensitivity analysis is 

reported in Appendix D (online appendix). 

 

Results 

 

Descriptive statistics 

Descriptive statistics for HES are reported in Table 2. In total, 119,569 (0.006%) observations 

were excluded from the sample. Another 51,344 were deleted as suspected duplicates, leaving 

a remaining sample size of 19,407,655 episodes covering a total patient population of 

8,882,110.   

 

Females accounted for a larger proportion of patients (56.1%) than males. A near-identical 

socioeconomic gradient in both episode and patient counts was found. The number of episodes 

attributed to each PBC and IMD quintile group are provided in Table A1. The ratio of episodes 

in the most deprived to least deprived groups ranged from 0.95 for cancers and tumours (PBC 

2) to 2.87 for neonates (PBC 19).  
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Main findings 

Table 3 demonstrates how the health benefits of a £50 million budget increase would be 

distributed between age, sex and socioeconomic subgroups using Claxton and colleagues’ 

estimate of marginal NHS productivity of one QALY per £12,937. Of the 3,865 QALYs 

generated from the increase, nearly twice as many accrued to the most deprived fifth (1,019) 

as to the least deprived (537), whilst 25% of the health accrued to those under 20. 

 

Table 2: Descriptive statistics for Hospital Episode Statistics 2012/13 

Variable Patients % Sample Episodes % Sample 

Total 8,882,110 100% 19,407,655 100% 

Age 

    
0-4 999,334 11.3% 1,463,253 7.5% 

5-14 363,592 4.1% 564,144 2.9% 

15-29 1,183,033 13.3% 2,141,345 11.0% 

30-44 1,427,015 16.1% 2,642,378 13.6% 

45-59 1,520,374 17.1% 3,297,482 17.0% 

60-69 1,204,898 13.6% 2,983,189 15.4% 

70-79 1,143,281 12.9% 3,201,919 16.5% 

80+ 1,040,583 11.7% 3,113,945 16.0% 

Gender 

    
Male 3,896,899 43.9% 8,826,364 45.5% 

Female 4,985,211 56.1% 10,581,291 54.5% 

IMD 

    
1 (most deprived) 2,090,295 23.5% 4,530,436 23.3% 

2 1,799,620 20.3% 3,998,631 20.6% 

3 1,804,243 20.3% 4,018,339 20.7% 
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Variable Patients % Sample Episodes % Sample 

4 1,641,355 18.5% 3,571,730 18.4% 

5 (least deprived) 1,546,597 17.4% 3,288,519 16.9% 

Note: IMD = index of multiple deprivation 

 

The distribution of health effects by deprivation quintile group is given in Figure 2. The most 

deprived fifth bore 26.4% of the overall health effect, compared to 13.9% for the most deprived 

fifth. This disparity is summarised with a SII of -0.15 and an RII of -0.77. For each IMD quintile 

group, females had a greater share of the health effect. However, the relative differences 

between deprivation groups were greater for men, with a RII of -0.80, compared to -0.75 for 

women.   

 

The socioeconomic gradient was most pronounced in younger age bands; a large social gradient 

is clear from birth until the 40-44 band. RII values were consistently around -1.0 up to this age, 

indicating that the changes in health for the most deprived group is twice the magnitude of 

those for least deprived group. Thereafter disparities reduce to a minimal level: RII for the 85+ 

group is -0.06. 

 

Table 3: Distribution of quality-adjusted life years by age and index of multiple deprivation 

(IMD) quintile group for a £50m change in the English National Health Service budget 

      IMD Quintile Group     

Age band 1 2 3 4 5 Total 

0-4 105 81 79 51 46 362 

5-9 44 36 36 25 24 165 

10-14 43 35 35 24 24 161 

15-19 74 59 58 37 32 260 
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20-24 82 65 64 41 35 287 

25-29 83 66 65 42 35 291 

30-34 48 39 38 24 20 169 

35-39 46 37 36 23 19 160 

40-44 51 41 41 25 21 180 

45-49 74 62 61 43 37 277 

50-54 66 55 55 39 33 249 

55-59 58 48 48 34 29 216 

60-64 58 51 51 45 38 243 

65-69 54 47 48 42 35 225 

70-74 47 43 43 41 36 210 

75-79 39 36 36 34 30 174 

80-84 24 24 24 25 23 121 

85+ 24 23 23 24 22 116 

Female 541 461 456 337 291 2,086 

Male 478 387 386 282 246 1,779 

Total 1,019 847 843 620 537 3,865 

Note:  

1. IMD1=most deprived, IMD5=least deprived 

2. An estimate of one QALY per £12,937 from Claxton et al. (2015) is used to predict the expected number 

of QALYs (£50m/£12,937 = 3,865). 
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Figure 2: Socioeconomic distribution of health effects from healthcare expenditure changes for 

English population 

 

Notes:  

1. IMD = index of multiple deprivation (1 = most deprived group, 5 = least deprived) 

2. The differences in QALY effects between sexes should be treated with caution. This is because the larger 

effects for women reflect their levels of healthcare utilisation rather than any systematic differences in 

the healthcare services being affected by expenditure changes 

 

Inequality within Programme Budgeting Categories 

Table 4 shows the contribution of the each PBC to overall inequality in health effects. The 

respiratory programme, within which nearly 30% of health effects accrue, exhibits average 

levels of inequality, with an RII of -0.86. Mental health is one of the most unequal programmes 

with a RII of -1.28, and cancer the only pro-rich programme, with a RII of 0.08. 

 

Inequality within regions 

The regional weighting factors for English LAs are shown in Figure 3. LAs in the south and 

south east generally have a proportion of health effects relative to their population size, with 
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city-based authorities exhibiting larger shares: many London boroughs, as well as Manchester, 

Birmingham and Liverpool, have estimated weighting factors above 1.15, reflecting a higher 

share of disadvantaged areas. 

 

Sensitivity Analysis 

Results from all sensitivity analyses are reported in Table 5. The use of unique patient counts 

reduced socioeconomic inequality in the health effects of healthcare expenditure, with RII 

falling from -0.771 to -0.702. Negligible differences were found when using the HES datasets 

from 2011 or 2012, with the socioeconomic distribution of effects over IMD quintile groups 

staying consistent over time. 

 

The inequality in health effects when using prevalence rates from QOF was fractionally smaller 

than when using utilisation statistics from HES. For the 37% of health effects covered by the 

diseases in the QOF data, RII is -0.905 when using QOF, compared with 0.922 when using 

HES. 

 

Table 4: Inequality in quality-adjusted life year (QALY) effects by Programme Budgeting 

Category (PBC) 

PBC 

QALY 

proportion 

QALYs from £50m 

spend increase 

SII RII 

Total 1 3865 -0.1542 -0.77 

Respiratory 0.297 1146 -0.0509 -0.86 

Neurological 0.141 545 -0.0218 -0.77 

Circulation 0.139 539 -0.0152 -0.54 

Mental health 0.123 476 -0.0315 -1.28 
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Endocrine 0.078 303 -0.0129 -0.82 

Gastrointestinal 0.057 219 -0.0071 -0.63 

Cancers & tumours 0.034 132 0.0005 0.08 

Musculoskeletal 0.030 116 -0.0021 -0.35 

Blood disorders 0.028 109 -0.0047 -0.83 

Infectious diseases 0.020 78 -0.0029 -0.72 

Hearing 0.018 70 -0.0014 -0.40 

Genito Urinary 0.014 53 -0.0015 -0.56 

Dental 0.009 34 -0.0013 -0.74 

Vision 0.005 21 -0.0004 -0.36 

Skin 0.003 10 -0.0002 -0.45 

Poisoning 0.001 4 -0.0002 -0.85 

Learning disability 0.001 3 -0.0002 -1.11 

Healthy individuals 0.001 3 -0.0003 -1.60 

Maternity + Neonate 0.001 2 -0.0001 -1.31 

 Notes:  

1. SII = slope index of inequality; RII = relative index of inequality 

2. SII and RII measure inequalities in health effects within each PBC 
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Figure 3: Health effect weighting factors for English local authorities 

 

Note: Weights greater than 1 indicate that health opportunity costs are greater than the expected share based on 

population alone 

 

 

 

Table 5: Summary of sensitivity analysis around the socioeconomic distribution of health 

effects from healthcare expenditure: (i) previous years’ HES episode counts, (ii) HES patient 

counts (iii) QOF prevalence data 

 IMD Quintile Group Inequality 

Data source 1 2 3 4 5 SII RII 

Complete analysis        

Episodes 2012/13 0.2636 0.2193 0.2180 0.1603 0.1388 -0.1542 -0.7711 

Episodes 2011/12 0.2641 0.2194 0.2178 0.1606 0.1383 -0.1552 -0.7761 
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Episodes 2010/11 0.2651 0.2188 0.2184 0.1598 0.1378 -0.1568 -0.7842 

Patients 2012/13 0.2601 0.2161 0.2138 0.1643 0.1457 -0.1403 -0.7015 

QOF subset analysis        

Episodes 2012/13 0.1045 0.0829 0.0811 0.0565 0.0488 -0.0689 -0.9216 

QOF 2013/14 0.1066 0.0848 0.0703 0.0616 0.0505 -0.0677 -0.9051 

Notes:  

1. IMD = Index of multiple deprivation; HES = Hospital episode statistics; QOF = Quality and Outcomes 

Framework; SII = Slope index of inequality; RII = Relative index of inequality 

2. IMD1 = most deprived, IMD5 = most deprived 

3. Episodes and patient counts estimated using secondary care data; QOF prevalence from primary care 

4. The QOF subset analysis includes only health effects attributable to diseases covered by the QOF dataset 

(approximately 37% of the total health effect). As a result these rows sum to approximately 0.37 rather 

than 1. 

 

Discussion 

 

Main findings 

Our analysis shows how the health effects of changes in government health expenditure can be 

disaggregated by equity-relevant social groups. Applying our framework to the results of a 

study of the English NHS, we found that expenditure changes imposed greater health impacts 

on the most socioeconomically deprived and were concentrated in younger age groups. The 

results support the conclusions of both Asaria et al. [27] and Barr et al. [28] that increases in 

NHS funding during the 2000s [29] likely contributed to a reduction in socioeconomic health 

inequalities. 

 

Our case study results are underpinned by evidence produced by Claxton and colleagues on the 

relationship between local health expenditure and mortality, which they combined with other 
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data to estimate the marginal effects of NHS expenditure on population QALYs. A full list of 

these assumptions underpinning their results is given in Table 32 of their report [9, p. 83], upon 

which critiques and responses have subsequently been published [30]–[32]. When the 

plausibility of these assumptions was tested against expert clinical judgement, the results 

suggested that they are likely to be on the conservative side and will have led to an 

underestimate of marginal productivity (or an overestimate of the cost-per-QALY at the 

margin) [33]. Subsequent analysis of English data using different statistical models has also 

yielded consistent results over time [20], [21], and support the estimates used in our case study 

as being genuine causal effects. Sensitivity analyses suggest that our analysis is robust to quirks 

in healthcare utilisation specific to 2013, to the use of secondary care utilisation data rather 

than prevalence data or primary care utilisation data, and that our findings reflect consistent 

socioeconomic patterns by disease.  

 

In the same way that the results of an analysis of marginal productivity can be used to estimate 

the health opportunity cost of health system investment decisions, the results derived from our 

framework can similarly be used to provide a distribution of health opportunity costs between 

equity-relevant groups. This is of particular use in “distributional” cost-effectiveness analyses 

that look at the differences in costs and effects by social group [10], [34], [35]. The metric of 

interest in this type of analysis is the distribution of net health benefit: the health benefits of a 

new technology minus the health opportunity costs of forgoing investment in other 

interventions. The adoption of a single intervention can usually be considered marginal 

(relative to the full set of resources) and will therefore not affect the marginal productivity of 

the health system. This means that the estimates generated by our approach can be employed 

in all subsequent economic evaluations that impose costs on the health sector budget. This is 

consistent with the way in which health opportunity costs are currently incorporated into the 
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approaches of agencies such as National Institute for Health and Care Excellence in England 

[36]. 

 

Limitations and assumptions 

The framework proposed in this paper is needed due to the absence of health system marginal 

productivity studies that directly estimate health effects by social groups. Indirectly estimating 

this distribution requires us to combine the results of available marginal productivity studies 

with data on the social distribution of healthcare use.  

 

The validity of the results is reliant on the quality of the original marginal productivity study. 

Analysis of marginal productivity presents a range of challenges with regards to estimating 

causal effects, namely availability of good quality data, endogeneity bias in the statistical 

model, and time lags between expenditure and health outcome. While broader application of 

this framework is limited by the availability of good quality studies that estimate the marginal 

productivity of healthcare expenditure, suitable estimates are increasingly available [13]–[15], 

[20]. 

 

Using healthcare utilisation data to disaggregate health effects assumes the health impact of 

one episode of healthcare is uniform across social groups. Although empirical work suggests 

that the health outcomes from healthcare are generally better for less deprived groups [37], 

little work has been conducted on the direct link between healthcare inputs and health outputs 

by socioeconomic group. Those in more deprived areas may be more likely seek care only 

when more severely ill and could therefore have a higher capacity to benefit from treatment, 

although treatment effectiveness may itself be reduced if patients present later. Furthermore, 

more affluent groups may be more effective at producing health from any given input of public 
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sector resource, due to lesser co-morbidity and greater ability to invest additional time and 

resources in recovery, care coordination and prevention. To the extent that the latter effect 

dominates, our results may overestimate the gradient in health effects. 

 

Methods for fully characterising the uncertainty are not covered in this paper. Uncertainty over 

the proportions that characterise the social distributions of healthcare utilisation must also be 

combined with uncertainty around the health effect proportions from the marginal productivity 

analysis. In principle this could be propagated through all analytic steps via Monte Carlo 

simulation, but were not incorporated in our case study. 

 

How representative the secondary factor is for capturing the impact of expenditure on outcomes 

requires consideration.  We use secondary care utilisation data, and whilst many diseases are 

treated in secondary care, some disease areas or conditions are principally treated in primary 

care, such as asthma, or in specialist facilities, such as schizophrenia or other mental health 

conditions. We could not obtain primary care utilisation data that could test this hypothesis in 

our case study, although using primary care data from QOF indicates that results were largely 

comparable to secondary care utilisation. However, these prevalence data do not account for 

patterns of utilisation and would not capture the additional health benefits that sicker patients 

in more deprived groups obtain from multiple visits to primary care, for example.  

   

Implications and further research 

An important application of our results is their use in health technology assessment. The 

numbers in Table 3 are interpretable as the distribution of health opportunity costs that result 

from not funding £50 million worth of alternative health services. This distribution can help to 

inform decision-makers on what impact future interventions have on health inequality. This 
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could be through informal consideration or a distributional cost-effectiveness model [10], [34], 

in which our estimates can be combined with an equivalent distribution of health benefits 

generated by an intervention [38].  

 

There is scope to improve our estimates by using better data with which to estimate the 

socioeconomic distributions of healthcare utilisation. For example, other datasets such as the 

Clinical Practice Research Datalink and the Mental Health Minimum Dataset could provide 

socioeconomic distributions of relevant conditions by age and sex in primary care and specialist 

mental health centres, respectively. Future research should also investigate the differences in 

health benefit achieved from receiving healthcare, which our analysis has assumed is the same 

for all socioeconomic groups. Lastly, similar analyses should be conducted for social care 

expenditure, as a comparison between the marginal effects of expenditures of health and social 

care can help inform resource allocation priorities with respect to health inequalities. 

 

The framework demonstrated in this study provides additional evidence to decision makers on 

the distributional effects of health expenditure compared to traditional benefit incidence studies 

and can contribute towards the reduction of unfair population health inequalities. 
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