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Here, we demonstrate the radiative polarization of high-energy electron beams in collisions with ultrashort

pulsed bichromatic laser fields. Employing a Boltzmann kinetic approach for the electron distribution allows

us to simulate the beam polarization over a wide range of parameters and determine the optimum conditions

for maximum radiative polarization. Those results are contrasted with a Monte Carlo algorithm where photon

emission and associated spin effects are treated fully quantum mechanically using spin-dependent photon

emission rates. The latter method includes realistic focusing laser fields, which allows us to simulate a near-term

experimentally feasible scenario of an 8 GeV electron beam scattering from a 1 PW laser pulse and provide a

measurement that would verify the ultrafast radiative polarization in high-intensity laser pulses that we predict.

Aspects of spin-dependent radiation reaction are also discussed, with spin polarization leading to a measurable

(5%) splitting of the energies of spin-up and spin-down electrons.

DOI: 10.1103/PhysRevA.100.061402

One of the driving forces in the development of petawatt

class laser systems [1–3] is related to novel laser-plasma

based accelerator concepts. Recent laser wakefield accelera-

tion experiments have demonstrated acceleration of electrons

up to 8 GeV energy in a single stage [4] and may enable

future novel TeV electron-positron colliders for high-energy

physics [5,6]. Spin-polarized beams are crucial for high-

energy collider applications, for instance in order to suppress

the standard-model background in searches for new physics

beyond the standard model [7,8]. Studying the dynamics of

spin-polarized electrons in a plasma wakefield is therefore

important [9–11]. Spin forces have been suggested to be im-

portant in both astrophysical systems and high-intensity laser-

plasma interactions [12]. With increasing interest in high-

intensity laser-plasma interactions, it is essential to understand

lepton spin effects on the overall plasma dynamics through

radiation reaction—because of the spin dependence in the

photon emission rates—and electron-positron pair generation

[13]. There has been notable recent interest in spin polariza-

tion of leptons in high-intensity laser interactions [14–16].

It is known that initially unpolarized lepton beams radia-

tively polarize in storage rings due to asymmetries in the

rates for synchrotron emission, the so-called Sokolov-Ternov

effect [17–19]. As a result, their projected spins end up being

predominantly antialigned with the magnetic field direction.

For most machines this is a slow process, with a timescale of

minutes or hours, scaling as T ∝ γ /χ3 [18,19], where χ =
√

e2 p · F 2 · p/m3 = γ |e|B/m2 ≪ 1 is the quantum nonlin-

earity parameter, with the field strength tensor F and electron

mass m, charge e, and four-momentum pμ with Lorentz factor

γ = p0/m [20].

*dseipt@umich.edu

We previously demonstrated that a similar spin polarization

can occur for electrons circulating at the magnetic nodes

of two colliding intense laser pulses [21], with polarization

timescales of few femtoseconds for laser intensities exceeding

5 × 1022 W/cm2. However, these orbits are unstable in gen-

eral [22]. By first accelerating electrons to high energy and

then colliding them with a laser pulse, it is possible to achieve

χ � 1 with current PW class high-intensity lasers operating

at intensities ∼1021 W/cm2 and study radiative spin polar-

ization in the strongly quantum regime. This laser-electron-

beam collider setup was used in seminal SLAC E-144 ex-

periments demonstrating nonlinear Compton scattering [23]

and electron-positron pair production [24] and has recently

been used to observe quantum radiation reaction [25,26]. In

Ref. [22], we discussed a polarization dependence of the

radiation reaction force, related to the fact that spin-down

electrons radiate more power than spin-up electrons.

In this Rapid Communication, we propose using bichro-

matic laser fields to polarize an electron beam and predict a

measurable modification of the resulting quantum radiation

reaction, Fig. 1. Spin-dependent radiation-reaction effects are

described in our model using (i) a kinetic approach where we

solve a Boltzmann equation for distribution functions of spin-

polarized electrons and (ii) a quasiclassical particle tracking

approach where electrons are pushed classically between pho-

ton emissions, and the emissions are treated fully quantum

mechanically using a Monte Carlo algorithm employing spin-

dependent photon emission rates. We determine optimum

parameters for maximum radiative polarization, and discuss

spin-dependent radiation reaction leading to a measurable

splitting of the mean electron energies.

For multi-GeV electrons colliding with a high-power laser

pulse the emission of gamma photons can be described as non-

linear Compton scattering using strong-field QED in the Furry

picture [13,27]. The quantum-radiation dominated regime is
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up electrons

down electrons

FIG. 1. Electrons propagating through a bichromatic laser pulse

perform spin flips dominantly in certain phases ϕ of the field:

Electrons initially polarized along the +y direction (yellow trajec-

tories) flip their spin to down (trajectory colored purple) dominantly

when By > 0, and this is where 1ω and 2ω add constructively (blue

contours). The opposite spin flip dominantly happens when By < 0

where the 1ω and 2ω components of the laser are out of phase

(orange contours). Therefore χ is larger for ↑↓-flips and many more

of those flips happen than the ↓↑-flips, causing a polarization of the

beam.

reached for normalized laser amplitude a0 = eE/mω ≫ 1

and χ ∼ 1. The short photon formation length implies that

quantum emissions can be described as incoherent events

in a locally constant field approximation (LCFA). Hence,

LCFA photon emission rates are customarily employed in

simulations [28–36], but see also [37–40].

In a laser pulse, the magnetic field oscillates, and so in con-

trast with the case of a static magnetic field, the polarization

built up in one half-cycle is mostly lost during the following

half-cycle. In Ref. [41] we investigated an laser-electron-

beam collider scenario, where an asymmetry between the two

half-cycles is introduced by using ultrashort subcycle laser

pulses. In that case, however, only a very small degree of

polarization could be achieved due to the short interaction

duration. A similar effect had been predicted due to electron

self-interaction [42]. In Ref. [41] we also showed the agree-

ment between the LCFA and full QED S-matrix calculations

for spin-polarization effects. In the scheme proposed here, the

addition of a 2ω component to the laser breaks the symmetry

and allows for net radiative polarization of the beam without

the necessity of subcycle pulses.

For electrons in an external field the canonical choice

for the spin quantization axis is the spacelike ax-

ial four-vector field ζ = ζ (x, p) = f̃ · p/(p · f̃ 2 · p)1/2 = (u ·
ζRF, ζRF + u(u · ζRF )/[γ (1 + γ )] [19,43], where ζRF points

along the magnetic field in the rest frame of the electron,

and with f̃ the dual of the normalized field strength tensor

f = eF/m. During the emission of a photon the electron spin

will be projected onto a quantum eigenstate, with spin pro-

jection eigenvalue ±1 along the local value of ζ [14,19]. Be-

tween emissions, the electrons are assumed to follow classical

trajectories, with four-velocity u = (γ , u) = p/m governed

by the Lorentz force equation, du/dτ = f · u [spin-gradient

(Stern-Gerlach) forces are negligible here [22,44]], and the

precession of the spin vector expectation value S governed

by the Thomas—Bargman-Michel-Telegdi (T-BMT) equation

[45], dS/dτ = ge

2
f · S + ge−2

2
(S · f .u) u, with gyromagnetic

ratio ge, and with initial conditions S = ±ζ .

While the spin described above is a property of an indi-

vidual electron, the polarization is a property of the whole

beam [19], which can be defined as the ensemble average

S = 〈SRF
y 〉 ≈ 〈Sy〉 for the scattering scenario discussed in this

Rapid Communication.

Assuming the bichromatic laser field is a plane wave

propagating along the negative z axis and polarized along the x

axis, then the magnetic field, ζRF, and ζ all have nonvanishing

y components only. We can therefore define two distributions,

ns, s = ±1, of electrons with spins projected on the y axis. The

evolution of the distributions ns and transitions between spin

states, n+1 ↔ n−1, may be described by Boltzmann equations

with transitions due to radiation emission described by means

of a collisionlike integrodifferential operator [46,47].

For electrons colliding with a plane-wave laser pulse, the

light-front momentum p+ = p0 + pz is conserved under the

classical Lorentz equation, with their dynamics solely deter-

mined by quantum radiation reaction effects [48]. We can

thus write the kinetic equations for the distribution functions,

ns(p+, ϕ), in the one-dimensional (1D) approximation as

∂ns

∂ϕ
=

∑

s′

[

∫ ∞

0

dk+ns′
(q+)

dR
s′
ζ sζ

dk+ (q+) − ns
R

sζ s′
ζ

]

, (1)

with laser phase ϕ = ω(t + z) and q+ = p+ + k+. The spin-

dependent probability per unit laser phase for photon emis-

sion, i.e., the LCFA photon emission rate, appearing in the

collision operator in (1) is given by [41]

dR
sζ sζ ′

dk+ = −
αm2

ω(p+)2

[

(1 + sζ sζ ′ )Ai1(z)

+ (g + sζ sζ ′ )
2Ai′(z)

z

+
(

sζ t + sζ ′
t

1 − t

)

Ai(z)
√

z

]

. (2)

Here sζ (sζ ′) denotes the value of the electron spin pro-

jection along the magnetic field in the instantaneous elec-

tron rest frame before (after) the photon emission, e.g.,

ζ = f̃ · p/(p · f̃ 2 · p)1/2 with p as the instantaneous electron

four-momentum prior to photon emission, and χp = (p · f 2 ·
p)1/2/m4. In Eq. (1) s

(′)
ζ = s(′) sgn(By).

The argument of the Airy functions, its derivative and

integral Ai1(z) =
∫ ∞

z
dx Ai(x) is z = {t/[χp(1 − t )]}2/3, with

the normalized light-front momentum of the emitted pho-

ton t = k+/p+ ∈ (0, 1), and g = 1 + t2/(2 − 2t ). For typical

high-energy electron-beam laser collisions ζ agrees with the

local second binormal Frenet-Serret vector up to terms (tr f̃ ·
f )2/m4χ2 ≪ 1 ensuring that sζ is a constant of motion in a

constant crossed field, which is required for the applicability

of the spin-dependent LCFA rates (2) in simulation codes

[41,49,50].

The 1D approximation holds when p⊥ ≪ p+, the trans-

verse quiver amplitude of electrons in the field a0/γω is

much smaller than the laser spot size w0 [29,46], and that ζ

is not precessing under the T-BMT equation. These kinetic

equations were validated for the case of a uniform static
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FIG. 2. Kinetic equation solution for a 7.8 GeV electron beam

[4] colliding with a laser with a0 = 10.8, c2 = 0.7, 109 fs FWHM

duration, χ0 = 1. Evolution of n+1, n−1, and S as a function of laser

phase from top to bottom. n+1 means the spin is aligned along the

+y axis. The shape of the magnetic field By is shown as a thin gray

curve in the lower plot.

magnetic field by comparison with Sokolov-Ternov rate equa-

tions [18,51].

The bichromatic field used to solve Eq. (1) is char-

acterized by the function ψ (ϕ) = [cos ϕ + c2 cos(2ϕ +
�ϕ)] cos2(ϕ/4NL )�(2πNL − |ϕ|), where ϕ = ω(t + z) is the

phase of the fundamental light, fundamental frequency ω =
1.55 eV, the relative phase �ϕ = 0 is chosen for maximum

asymmetry, and NL is the number of laser cycles. Note that

by this definition, the fraction of the total pulse energy in

the second harmonic is c2
2/(1 + c2

2 ). The nonzero field com-

ponents are By = −Ex = E0ψ (ϕ), with χ0 = ep+
0 E0/m3 =

(p+
0 ω/m2)a0. The number of cycles and field strength are

related to the pulse duration, TFWHM[fs] = 2.43NLλ[μm], and

laser power P[TW] ≃ 0.0429a2
0 (1 + c2

2 )(w0/λ)2.

Solutions of the kinetic equation as a function of laser

phase ϕ are shown in Fig. 2 for n+1(0) = n−1(0). The distribu-

tions n±1 in (a) and (b) show the energy loss due to quantum

radiation reaction effects, with the blue curves representing

the mean values. The blue curve in (c) depicts the buildup

of the polarization of the electrons, reaching a final value of

−7.9%.

In Fig. 3 we show a parameter scan of the achievable

degree of polarization as a function of χ0 and c2. It shows that

χ0 > 0.5 is required to acquire some significant polarization

for T = 161 fs. For larger values of χ0 > 1.5 it saturates for

c2 ≃ 0.7 at about S ≈ −17%. Note that S ≈ 0 for a one-

color laser pulse (c2 = 0) for all χ0. The survey plot has

been calculated for mγ = 5 GeV electrons interacting with

a 161 fs laser pulse. As long as the change of polarization

per laser cycle is small, a scaling relation can be found:

For fixed χ0 and c2, the same polarization degree will be

0.5 1.0 1.5 2.0 2.5 3.0
χ0

0.0

0.5

1.0

1.5

2.0

c 2
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0
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FIG. 3. Achievable degree of electron polarization as a function

of χ0 and bichromaticity parameter c2. Calculations have been per-

formed for 5 GeV electrons colliding with a 161 fs laser pulse, i.e.,

a0(χ0 = 1) = 16.5.

achieved for constant values of T/p+, which has been verified

numerically.

In order to describe the electron polarization beyond the

1D plane-wave approximation, we extended the accepted qua-

siclassical model of high-intensity laser matter interactions

[27,28,30–34,36] to include the spin degree of freedom. In this

model, electrons follow classical trajectories between quan-

tum events, at which point emission is treated stochastically

using a Monte Carlo algorithm employing the spin-dependent

rates, Eq. (2). For the classical propagation, we solve the

covariant Lorentz force and T-BMT equations using a fourth-

order Runge-Kutta solver for uμ and Sμ, respectively.

Our Monte Carlo algorithm generalizes that presented in

[30,52], to explicitly include the spin of the electrons. It

works as follows: (i) Assign a final optical depth τem to each

particle at the beginning of the simulation and directly after

each emission. (ii) At each time step after the classical push,

project the spin four-vector onto the local spin quantization

direction sζ = −S · ζ and reduce the remaining optical depth

by
∑

s′ R
sζ s′

ωu+�τ . (iii) A photon is emitted when optical

depth reaches zero. Draw a random number r1 ∈ [0, 1] uni-

formly. If r1 � R
sζ ,s

′=−1/
∑

s′ R
sζ s′

the electron will go to a

spin-down state, s′ = −1, and s′ = +1 (up) otherwise. (iv)

Sample the normalized energy of the emitted photon from

the distribution dR
sζ s′

/dt using inverse transform sampling.

(v) Electron recoil is assigned via p
′ = (1 − t )p [36] (see also

[53]), and the new spin four-vector is determined by S′
μ = s′ζ ′

μ

where the new electron momentum p′ is used for calculating

ζ ′. The Monte Carlo code has been verified against solutions

of the kinetic equation, and predicts the same degree of spin

polarization, e.g., S = −7.9%, for the case of Fig. 2.

The Monte Carlo approach allows simulation of realis-

tic three-dimensional (3D) scattering scenarios with focused

beams. We describe the laser as the superposition of two

Gaussian beams in the paraxial approximation for the 1ω and

2ω frequency components with the same focal spot size, w0 =
8 μm, and pulse duration, T = 109 fs, a0 = 10.8, and c2 =
0.7, adding up to 0.75 PW laser power. The two components

have different Rayleigh ranges and Gouy phase, which means

the 1ω and 2ω components will only be in phase close to

the focal plane. The phase shift at the 1ω Rayleigh range is
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FIG. 4. Phase-space distributions of scattered electrons (a)–(d) show a correlation of electron momenta and their spin polarization: Low-

energy electrons are stronger polarized. The final energy distributions for up and down electrons (e) show the effect of spin-dependent radiation

reaction: Down electrons lost more energy than spin-up electrons on average. Lower right: Polarization of postselected electrons with γ < γ⋆

(left axis) and their relative fraction (right axis).

�ϕ ≃ 0.32. This sets a lower limit on the focal spot size in

principle.

We use the Monte Carlo algorithm to simulate the collision

of this laser with a 7.8 GeV electron beam with 5% energy

spread, 0.1 mrad angular divergence, and 2.4 μm beam size,

i.e., χ0 = 1 [4]. For scattering from a focused beam, each

electron has Sy ≈ ±1 and it is straightforward to define the

two fractions of electrons with spin up and down by Sy ≷
0. The polarization degree of the beam is calculated as an

ensemble average S = 〈Sy〉.
For this 3D simulation, the final degree of polarization of

the whole beam reaches S = −6.6 ± 0.4%, which is slightly

lower than the prediction for the 1D plane-wave case. The

statistical uncertainty is due to the finite number of 3 × 105

simulated electrons. Figure 4 shows phase spaces p+-px (a)

and p+-py (b) of the final electrons, as well as the correspond-

ing differential polarization degrees (b),(d). For the latter, the

degree of polarization is calculated independently for each bin

with at least 20 electrons. These show that the polarization is

not uniform over phase space.

Figure 4(e) shows the energy spectra for electrons with

Sy ≷ 0, showing that there is a 6.6% excess of down electrons,

yielding the stated polarization degree. Figure 4 also shows

that the mean energy of the down electrons (blue vertical

line) is lower than the mean energy of the up electrons (red

vertical line) with a relative difference of about 5.4%. The

difference in the mean energy of up and down electrons shows

that radiation reaction effects are spin dependent. For χ ∼ 1,

spin-down electrons radiate about 30% more power than the

up electrons [17].

For an estimate of the spin-dependent radiation reaction,

we describe the electron dynamics by the leading term of

the quantum corrected Landau-Lifshitz equation for each

fraction separately [47,54,55], yielding d�
dϕ

≃ 4αω
3m

a2(ϕ)[(gd −
gu)γ̄ 2 − (gd + gu)γ̄ �], to linear order in the energy splitting

� = γu − γd , with spin-dependent Gaunt factors gs [22]. The

difference in emitted power ∝gd − gu > 0 is partially can-

celed by the second term in the square brackets, yielding an

equilibrium solution �/γ̄ ≃ (gd − gu)/(gd + gu) ∼ 0.1 for

χ ∼ 1.

The phase-space distributions in Figs. 4(a)–4(d) indicate

that the observed degree of polarization can be increased

significantly by postselecting some electrons [see Fig. 4(f)]. If

only low-energy electrons are selected with γ < 2800 (40%

of all electrons), for instance by using a magnetic spectrome-

ter, then their polarization degree is increased to S = −20%.

A similar yet less pronounced enhancement can be achieved

by restricting |py| to small values.

We have shown that it is possible to spin polarize high-

energy electron beams using intense bichromatic laser pulses.

We used both a kinetic approach with a linear Boltzmann

equation as well as a quasiclassical Monte Carlo approach. A

parameter scan revealed that a beam polarization of around

17% can be achieved for c2 ≃ 0.7 and χ � 2. We found

phase-space correlations of the electron polarization which al-

low one to apply phase-space cuts for increasing the measured

polarization. We discuss spin-dependent radiation reaction

leading to a 5% mean energy splitting between up and down

electrons. In Ref. [15], the generation of positrons with polar-

ization degrees of up to 60% was proposed by exploiting the

spin asymmetry in the strong-field pair-production process.

The proposed electron-beam polarization could be realized

experimentally with present-day technology in an all-optical

setup: Multi-GeV electron beams (up to 8 GeV) have been

demonstrated using laser wakefield accelerators [4]. Simi-

larly, one could realize this experiment with a PW laser at

a conventional accelerator facility, for instance at SLAC or

XFEL [56]. The petawatt class laser pulse required needs

to be frequency doubled, and the required technology for

generating the 2ω light is second harmonic generation in a

nonlinear crystal (having typically 50% energy efficiency).

Growth of crystals large enough to be compatible with PW

061402-4
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lasers has been developed [57]. The polarization of the GeV

electron beam could be measured using (nonlinear) Compton

scattering [19,58,59], with [59] anticipating an accuracy of

0.3% from multi-GeV electrons in a single shot.

Note added. Recently, Ref. [15] appeared on the arXiv, the

subject of which is similar to our own.
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