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Abstract

Stoichiometric models of metabolism, such as flux balance analysis (FBA), are classically applied to predicting steady state
rates - or fluxes - of metabolic reactions in genome-scale metabolic networks. Here we revisit the central assumption of FBA,
i.e. that intracellular metabolites are at steady state, and show that deviations from flux balance (i.e. flux imbalances) are
informative of some features of in vivo metabolite concentrations. Mathematically, the sensitivity of FBA to these flux
imbalances is captured by a native feature of linear optimization, the dual problem, and its corresponding variables, known
as shadow prices. First, using recently published data on chemostat growth of Saccharomyces cerevisae under different
nutrient limitations, we show that shadow prices anticorrelate with experimentally measured degrees of growth limitation
of intracellular metabolites. We next hypothesize that metabolites which are limiting for growth (and thus have very
negative shadow price) cannot vary dramatically in an uncontrolled way, and must respond rapidly to perturbations. Using a
collection of published datasets monitoring the time-dependent metabolomic response of Escherichia coli to carbon and
nitrogen perturbations, we test this hypothesis and find that metabolites with negative shadow price indeed show lower
temporal variation following a perturbation than metabolites with zero shadow price. Finally, we illustrate the broader
applicability of flux imbalance analysis to other constraint-based methods. In particular, we explore the biological
significance of shadow prices in a constraint-based method for integrating gene expression data with a stoichiometric
model. In this case, shadow prices point to metabolites that should rise or drop in concentration in order to increase
consistency between flux predictions and gene expression data. In general, these results suggest that the sensitivity of
metabolic optima to violations of the steady state constraints carries biologically significant information on the processes
that control intracellular metabolites in the cell.
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Introduction

Cells endure relentless variations in intra- and extra-cellular

conditions. These perturbations propagate through the cell’s

metabolic and regulatory networks, leading to a diverse range of

interdependent, transient responses in the abundance of metab-

olites, transcripts, and proteins [1–3]. In spite of these changing

conditions, cells must efficiently allocate molecular resources

through the metabolic network to guarantee homeostasis and

enable self-reproduction. Understanding how biochemical path-

ways and regulatory circuits work together to achieve this

robustness remains an open problem with major implications for

systems and synthetic biology [4–7].

One approach to this question is to use genome-scale,

constraint-based models of metabolism (such as flux balance

analysis, FBA [8–11]). These models rely predominantly on

reaction network stoichiometry to provide a scalable, largely

parameter-free method for linking individual reaction fluxes with

global cellular properties, such as growth. Importantly, constraint-

based models frequently assume that the cell has been optimized,

through selective pressure and evolution, towards some cellular

objective (frequently captured in the biomass flux). The major

drawbacks of constraint-based approaches (in contrast to mech-

anistic models of metabolism [12]) are the incapacity to predict

metabolite concentrations and the difficulty of making inferences

about the dynamics of the system, though recent efforts have made

important contributions in overcoming some of these limitations

[13,14].

Here, we show that some features of the behavior of

intracellular metabolites are shaped by the interplay between the

stoichiometric architecture of the metabolic network and the

nutrient limitations imposed by environmental conditions, as well

as the key role of metabolism as the conduit for allocating cellular

resources towards growth. This link between structure and

function of metabolism is hidden in a largely unappreciated aspect

of the solution to flux balance models, namely the dual solution to
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the associated linear programming (LP) problem [15]. Our

main results are threefold. First, we demonstrate how

sensitivities to each steady-state constraint in FBA (referred

to as shadow prices, and often automatically calculated when

solving an FBA problem [16–19]) correlate negatively with

experimentally quantified degrees of growth-limitation of a

metabolite. Second, we show how the growth-limitation of a

metabolite (as captured by its shadow price) provides a

window onto the temporal response of that metabolite

following an environmental perturbation. In particular, by

examining a number of time-dependent metabolomics data-

sets, we observe that metabolites which have large negative

shadow prices also exhibit little temporal variability following

a perturbation. Third, we examine the broad applicability of

shadow prices to other constraint-based approaches to

modeling metabolism. We show that, by studying the shadow

prices of a constraint-based model that incorporates high-

throughput gene expression data, we are able to predict

whether an intracellular metabolite accumulates or depletes.

Taken together, our results suggest that shadow prices and

‘‘flux imbalance analysis’’ may find quite useful application in

probing the behavior of metabolites using constraint-based

modeling.

Results

Shifting the Focus from Fluxes to Metabolites: Shadow
Prices

Flux balance analysis is a method for computing expected

reaction rates in complex metabolic networks, and has been

described in detail elsewhere [9,20]. The basic strategy of FBA is

to identify steady state metabolic rates (fluxes) that satisfy a set of

constraints, and maximize (or minimize) a given objective

function. The main constraints are usually (i) mass conservation

(or flux balance) at each metabolite node, due to the steady state

approximation, and (ii) a set of inequalities associated with

limitation of extracellular metabolites and empirical evaluations

of irreversibility. Key inequalities are usually imposed on exchange

reactions, i.e. source/sink reactions mediating the interaction

between a cell and its surrounding environment. A canonical

FBA calculation can be formally expressed as the following primal

LP problem:

Maximize Z~
Xn

j~1

cjvj ð1Þ

Subject to
Xn

j~1

Sijvj~bi Vi~1, . . . m ð2Þ

vLB
j ƒvjƒvUB

j Vj~1, . . . n ð3Þ

where S is the m (metabolites) by n (reactions) stoichiometric

matrix, v is the vector of metabolic fluxes, vLB is a vector of lower

bounds for all fluxes, vUB is a vector of upper bounds for all fluxes,

b is the vector of the rates of accumulation/depletion of each

metabolite, and c is the vector defining the contribution of

different fluxes to the objective function.

For intracellular reactions, the right-hand-side coefficients bi in

Eq. (2) are typically assumed to be zero, capturing the assumption

that all intracellular metabolites are at steady state. Our analysis is

essentially centered on exploring how the cell would respond to

deviations from null bi coefficients. Such a deviation implies a flux

imbalance at metabolite i, and hence its accumulation or

depletion. Importantly, this interpretation of Eq. (2) is not meant

as a substitute for the underlying kinetics of the system. Such a flux

imbalance may propagate through the metabolic network to

influence the optimal value of the objective function Z. How can

one quantify the sensitivity of the objective function to such flux

imbalances? What is the biological significance of these sensitiv-

ities?

In fact, every LP calculation can be reformulated in terms of a

complementary problem known as the dual problem [15],

whose variables (referred to as a shadow prices, li) specifically

capture the change in the value of the objective function upon a

unit change in the right-hand-side of a single constraint (bi). The

general formulation of the dual problem can be found in any

linear optimization textbook (e.g. [15]), and its specific

formulation for FBA is described in detail in the Methods

section. In practice, the shadow prices are typically provided in

parallel to the primal variables by any LP solver upon solving

Eqs. (1)–(3).

In analogy with the interpretation of shadow prices in

economics and in line with prior work on shadow prices in

constraint-based metabolic modeling [16–19], FBA’s shadow

prices estimate the value of each metabolite to the global

molecular budget of a growing cell (Figure 1). The interpreta-

tion of shadow prices is particularly interesting in the case of the

canonical FBA objective function, i.e. maximization of the

biomass flux (Z = vgrowth). In this case, a shadow price corre-

sponds to the change in the biomass flux when one of the

intracellular metabolites deviates from steady state. Importantly,

if a metabolite has a negative shadow price, this means that

allowing additional outflow from this metabolite (so that bi,0)

will increase the maximal value of the biomass flux, implying

that this metabolite is limiting for the biomass objective (Figure 1).

In the remainder of this article, we test the hypothesis that

shadow prices correlate with the magnitude of growth-limitation

of a metabolite using experimental data, and explore the

broader implications of shadow prices in modeling genome-scale

metabolism.

Author Summary

Cellular metabolism is composed of a complex network of
biochemical reactions that convert environmental nutri-
ents into biosynthetic building blocks and energetic
currency. Genome-scale mathematical models of metabol-
ic networks focus largely on trying to predict the rates – or
fluxes - of these reactions. By assuming that the
concentrations of intracellular metabolites are at steady-
state (flux balance), and invoking optimality, these
constraint-based methods for modeling metabolism have
offered abundant insight into how metabolic flux is routed
through the cell. Here we ask how cellular growth would
respond to deviations from steady state (flux imbalance) of
every possible intracellular metabolite. This question can
be addressed through a sensitivity analysis inherent to
linear optimization theory, known as duality. We show how
some features of metabolite concentrations, such as their
growth-limitation and their transient response, are cap-
tured by this sensitivity analysis. Our results suggest that,
in addition to predicting fluxes, stoichiometric models
offer a valuable route towards probing the metabolites
themselves and their relevance to growth dynamics.

Flux Imbalance Analysis
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Shadow Prices and Growth Limitation
To explore the connection between shadow prices and growth

limitation, we analyzed previously collected experimental data

studying the relationship between intracellular metabolite abun-

dances and growth-limitation in Saccharomyces cerevisae under

continuous culture [21]. For three different conditions (single

nutrient limitation on glucose, nitrogen, and phosphate), and two

auxotrophic mutants (leucine and uracil) the abundance of

intracellular metabolites was quantified for several different

dilution (growth) rates.

Boer and colleagues [21] showed that the growth limitation of a

metabolite could be quantified by measuring the change in

metabolite abundance at different, increasing growth rates. In

particular, metabolites with relatively low intracellular concentra-

tions which increased in abundance as growth rate increased were

found to be growth-limiting. In contrast, metabolites which relatively

high concentration and which decreased in concentration as growth

rate increased were described as ‘‘overflow’’ metabolites, and were

not growth-limiting. To understand why we may expect such

correlations, we can re-elaborate on the reasoning presented by

Boer and colleagues in [21]. As described in [21], we consider the

simplest case, where growth is limited by the concentration of a

single, growth-limiting nutrient M. The dependence of growth on

this metabolite can be described by the classical Monod equation:

m~
mmaxM

KzM

where K is the half-saturation constant, m is the growth rate, and

mmax is the maximum growth rate. As we derive in detail in

Supplementary Text S1, valuable intuition for the dependence of

m on M can be gained by considering the limiting cases M..K

and M,,K. In the first case, M is substantially larger than the

half-saturation constant K. Then, the growth rate is relatively

insensitive to changes in M, and it can be treated as non-growth-

limiting. By calculating the dependence of M on m in this limiting

case, one finds

d log
m

mmax

� �

d log M
&

K

M
&0

Thus, in this case, we would expect very small correlation between

log m and log M. As shown in [21] this correlation can even

become negative due to feedback inhibition (corresponding to

points below the horizontal red line in Figure 2). In the other

limiting case, where M is much smaller than K (and the growth

rate is very sensitive to M, so M is very growth-limiting)

d log
m

mmax

� �

d log M
&1

and we expect a positive correlation between m and M

(corresponding to points above the horizontal red line in

Figure 2). The extent of this correlation (together with its sign),

constitutes a metabolite-specific metric for growth limitation, and

corresponds to the abscissa in the graph of Figure 2. Furthermore,

this simple model is readily extendible to cases where many

metabolites may simultaneously be limiting for growth rate, as

shown in [21].

We compared the growth-limitation measurements for each

metabolite identified as significantly growth-limiting or non-

growth-limiting/overflow in [21], to the corresponding shadow

prices computed through FBA in silico experiments when

maximizing for biomass production in the yeast model iMM904

[22]. For all natural nutrient limitations, we found an antic-

orrelation between shadow prices and growth-limitation: growth-

limiting metabolites exhibit negative shadow prices, while non-

growth-limiting metabolites exhibit small or zero shadow prices

(Figure 2). Furthermore, for each individual nutrient condition, the

more negative a shadow price was, the more limiting the

corresponding metabolite was found to be in the original paper

[21]. Although there is little support that the correlation between

shadow prices and growth limitation is linear, we report both

Spearman (rank-based) and Pearson (linear) correlations. These

anticorrelations were strongest for nitrogen (Spearman r = 20.74,

p-value = 261025, Pearson r = 20.77, p-value = 161025) and

phosphate limitation (Spearman r = 20.66, p-value = 561025,

Pearson r = 20.50, p-value = 0.033), where there were substan-

tially more data points (12 and 17 metabolites experimentally

identified as significantly growth- or non-growth-limiting in [21],

respectively) than for glucose limitation (Spearman r = 20.59, p-

value = 0.008, Pearson r = 20.77, p-value = 161025, 7 metabolites).

In agreement with [21], the growth-limiting metabolites in each

condition reflect the corresponding nutrient limitation. In nitrogen

limitation, we found many candidate growth-limiting metabolites,

nearly all of which were amino acids. In glucose starvation, we

found N-acetyl-glucosamine-1-phosphate (a precursor for protein

glycosylation) and arginine to be among the most growth-limiting

metabolites (with the most negative shadow price). The main

outlier in glucose starvation was glutamate, which had a negative

shadow price (i.e. predicted to be growth-limiting) even though its

concentration was experimentally observed to fall with increasing

Figure 1. Shadow prices in FBA capture the sensitivity of
growth to flux imbalances. Consider the FBA problem with one
m e t a b o l i t e a n d t w o r e a c t i o n s , f o r m u l a t e d a s : max v2 ,
Subject to v1{v2~0; 0ƒv1ƒv1,max; 0ƒv2ƒv2,max. The solid red line
indicates the feasible solution space, and the red dot indicates the
optimal solution. When the flux balance condition is relaxed and the
outgoing flux from M is allowed to increase, the feasible space moves to
the right (dashed blue line) and the optimal solution increases. Since
the objective function increases as the right-hand-side of the flux
balance constraint decreases, the metabolite has a negative shadow
price. In general for intracellular metabolites, negative shadow prices
correspond to growth-limiting metabolites.
doi:10.1371/journal.pcbi.1003195.g001

Flux Imbalance Analysis
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growth rate. The authors of [21] attributed this peculiar behavior

of glutamate to the potential overabundance of nitrogen relative to

carbon in extremely carbon-limited environments. Perhaps most

interestingly, we found that the largest shadow prices occurred

under phosphate limitation (see Figure 2, green dots), in

agreement with the large growth-limitation (in comparison to

other conditions) reported in [21]. It will be interesting in the

future to investigate whether the apparent strength of growth-

limitation (as quantified by the magnitude of the shadow price)

plays a role in the extent to which these metabolites regulate the

rates of enzymatic reactions.

We repeated the statistical analyses above for two ‘‘lumped’’

datasets containing data from (i) all three natural nutrient

limitation conditions (glucose, nitrogen, and phosphate limitation;

Spearman r = 20.87, p-value 261028, Pearson r = 20.69, p-

value = 861025) and (ii) all three nutrient limitation conditions,

together with auxotrophies (Spearman r = 20.70, p-val-

ue = 2610213, Pearson r = 20.28, p-value = 0.006). The results

also remained valid when we only considered cytosolic metabo-

lites, rather than metabolites from all compartments (see Table S1

and Dataset S1). Finally, we assessed whether the sign of a shadow

price (i.e. either zero or negative) could be used as a predictive

binary classifier for whether a metabolite is growth-limiting or

non-growth-limiting. To do so, we calculated the Matthews

Correlation Coefficient (MCC) [23], a standard measure for the

performance of a binary classifier. We found statistically significant

agreement between the sign of a shadow price and its classification

as growth-/non-growth-limiting, both when using metabolites

from all compartments (MCC 0.61, p-value = 561028) and only

cytosolic metabolites (MCC 0.81, p-value = 161027).

An important question in the above analysis, and in the

calculation of shadow prices in general, is whether the possible

alternative optima in the FBA optimization problem could give

rise to degenerate shadow prices, and hence ambiguity in the

comparison with experimental data. As described in detail in the

Methods, we addressed this issue by recalculating each shadow

Figure 2. Shadow prices anticorrelate with experimental measurements of growth limitation. Metabolites exhibiting
d log Mð Þ=d log mð Þw0 were experimentally determined to be growth-limiting. Growth-limitation d log Mð Þ=d log mð Þð Þ and shadow prices in FBA
are significantly anticorrelated under all nutrient limitations from [21]. To make the data more comparable across different nutrient limitations, the
data is plotted on a log scale. All points to the left of the grey bar have a shadow price of zero. All correlations for this data (calculated using a linear
scale, not the log scale depicted in the Figure) are reported in Table S1. Abbreviations: 6PDG, 6-phospho-d-gluconate; ADE, Adenosine; ALA, Alanine;
ARG, Arginine; ATP, ATP; CHO, Choline; CTP, CTP; CYD, Cytidine; CYT, Cytosine; DHAP, Dihydroxyacetone-Phosphate; DOG, Deoxyguanosine; DS7P, D-
sedoheptulose-7-phosphate; F16P, Fructose-1,6-bisphosphate; GLN, Glutamine; GLU, Glutamate; GUA, Guanosine; HIS, Histidine; INO, Inosine; LEU,
Leucine/isoleucine; LYS, Lysine; NAD, NAD+; NAG1P, N-acetyl-glucosamine-1-phosphate; NIC, Nicotinate; ORN, Ornithine; PHP, Phenylpyruvate; PYR,
Pyruvate; RIBP, Ribose-phosphate; SER, Serine; SUC, Sucrose; THR, Threonine; TRE, Trehalose; TRP, Tryptophan; UDPG, UDP-D-glucose; UTP, UTP. For
clarity, only cytosolic metabolites from the metabolic model are plotted.
doi:10.1371/journal.pcbi.1003195.g002

Flux Imbalance Analysis
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price in a brute force way, i.e. by solving two additional LP

problems where the right-hand-side of each steady-state constraint

(bi in Eq. (2)) is incremented/decremented by a small amount (as

explored before in a different context [24] and in detail in the

Methods). The shadow prices obtained from solving these two

problems correspond to manual (i.e. not obtained automatically

from the LP solver upon solving the primal) re-calculations of the

sensitivity of the objective function to deviations from each steady-

state constraint. We then compared the incremental shadow price,

decremental shadow price, and the shadow price obtained directly

from the LP solver, and found no instances of degeneracy in our

shadow price calculations.

Our results so far indicate, in line with our intuition and with

prior work on duality in FBA [17,18], that shadow prices may

serve as quantitative measures of the sensitivity of growth rate to

the abundance of an intracellular metabolite. In the next section,

we investigate whether this sensitivity has implications for the

transient dynamics of growth-limiting metabolites following a

perturbation.

Shadow Prices and Metabolic Dynamics
Given the metabolite-specific associations between shadow

prices and growth-limitation, we decided to investigate whether

shadow prices could also aid in understanding other features of

intracellular metabolites. In particular, we reasoned that if a

metabolite is truly growth-limiting, then its concentration in the

cell should be tightly controlled. If, in contrast, a growth-limiting

metabolite’s concentration is allowed to fluctuate or vary

uncontrollably, this temporal variability would eventually propa-

gate to growth rate and have potentially deleterious consequences.

Our reasoning was further bolstered by recent studies of the

metabolic response of Escherichia coli to sudden perturbations which

demonstrated that the growth rate of cells responds remarkably

quickly to changes in environmental conditions. In two experi-

ments [25,26], it was shown that a sudden change in substrate

availability in the environmental media led to a rapid change in

the growth rate. In [25], a pulse of glucose to a glucose-limited

chemostat culture of E. coli lead to a 3.7-fold increase in growth

rate less than a minute. Similar results were observed in [26] for

pulses of pyruvate and succinate.

Based on our reasoning and on the two studies in [25,26], we

hypothesized that growth-limiting metabolites (with very negative

shadow prices) should exhibit very little temporal variation in their

concentrations in response to perturbations. In contrast, metab-

olites exhibiting large temporal variation should not be growth-

limiting (and have small or zero shadow price). We tested this

prediction using multiple time-course metabolomics datasets for E.

coli for different glucose and nitrogen perturbations [27,28]. We

elected to use these datasets because they contained information

for a large number of metabolites (,70 unique compounds),

enabling us to obtain reasonable statistical power. For each

dataset, we calculated the temporal variation of a metabolite

across the time course following the perturbation, using the

coefficient of variation (CV, the standard deviation of the time

series, divided by its mean; see Methods for more details). Thus, a

very large temporal variation corresponded to a circumstance

when a metabolite’s concentration changed substantially following

a perturbation, and a small temporal variation indicated that a

metabolite’s concentration remained relatively constant post-

perturbation. After calculating the temporal variation for each

metabolite, we computed the metabolite shadow prices using FBA

(see Methods).

The results of our analysis are shown in Figure 3. In agreement

with our expectations, shadow prices were found to be correlated

with temporal variation in the five perturbations we studied.

Metabolites with very large, negative shadow prices (and thus very

limiting for biomass production) showed little temporal variation.

Conversely, metabolites with the largest temporal variation were

found to have comparatively smaller shadow prices. We again

report both Spearman and Pearson correlations, although there is

no a priori reason to expect linear correlations. The correlations

were statistically significant for nitrogen upshift (Spearman

r = 0.26, p-value = 0.02, Pearson r = 0.22, p-value = 0.04), as well

as the 4 different carbon perturbations (glucose starvation,

Spearman r = 0.21, p-value = 0.05, Pearson r = 0.21, p-value =

0.045; acetate limitation, Spearman r = 0.37, p-value = 0.002,

Pearson r = 0.36, p-value = 0.002; succinate limitation, Spearman

r = 0.23, p-value = 0.04, Pearson r = 0.18, p-value = 0.08, and

glycerol limitation, Spearman r = 0.32, p-value = 0.007, Pearson

r = 0.33, p-value = 0.006). These correlations were further sub-

stantiated using non-parametric permutation tests, described in the

Methods, with results detailed in Table S2.

Despite these statistically significant correlations, a number of

outliers (i.e., metabolites with relatively large, negative shadow

prices and high temporal variation) appeared in our results.

Among the outliers under glucose limitation (Figure 3B), the most

notable were cyclic AMP (a signaling molecule) and acetyl-CoA.

More interestingly, in both acetate and glycerol limitation, a

repeated outlier was fructose 1,6-bisphosphate (FBP). This

metabolite was highlighted in one of the two papers from which

we obtained the time-series data [28]. As the authors showed

there, upon a sudden switch from glucose medium to either no

carbon, acetate, succinate, or glycerol, the concentration of FBP

dropped suddenly by 15- to 30-fold. This sudden drop in FBP,

coupled with its role as an allosteric activator of PEP carboxylase,

resulted in the buildup of PEP. This buildup enabled fast uptake of

glucose when it re-appears in the media, where it is used as a

phosphate donor for the import of glucose. Furthermore, FBP was

recently identified as a candidate ‘‘flux sensor,’’ i.e. a metabolite

whose concentration may change in linear proportion to the flux

through glycolysis, via its role as an activator of pyruvate kinase

[29]. Thus, the aberrant behavior of FBP (a negative shadow

price, but high temporal variation) may be related to its key role in

affecting E. coli’s response to glucose starvation and carbon

limitation through allosteric regulation.

To further corroborate our findings, we tested whether the

differential dynamic behavior of mutant knockout strains could be

captured through our analysis. We used additional metabolite time

series available for the wild type and two knockout strains

(DGOGAT and DGDH) of E. coli following nitrogen upshift in

[27]. We replicated these knockouts in silico, and calculated the

shadow prices. We performed two different analyses on this

dataset: first, we looked broadly at the changes in shadow prices

(from wild-type to knockout) for each of the two knockouts. As

illustrated in Figure 4, we found that for the DGOGAT strain, 22

metabolites showed a significant drop in shadow price, decreasing

by a magnitude greater than one (i.e. becoming more growth-

limiting). The most drastic changes were found for lipids and

precursors, like undecaprenyl phosphate, and UDP-D-glucoro-

nate, both of which showed a drop in shadow price of 1.29. In

contrast, the DGDH knockout featured no metabolites with a

substantial (greater than 0.1) drop in shadow price. This absence

of new growth-limiting metabolites in DGDH is consistent with the

observation in [27] that the GS/GOGAT pathway dominates

over GDH in nitrogen limitation. Interestingly, a subset of eight

metabolites, all corresponding to glycolipids, showed a substantial

increase in shadow price in DGDH (corresponding to a relaxation in

growth-limitation). Thus, while the ‘‘growth-limitation landscape’’

Flux Imbalance Analysis
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of the DGDH mutant, characterized by the most growth-limiting

metabolites in the model, seemed relatively similar to that of the

wild-type, the DGOGAT strain displayed substantially different

growth limitations.

Second, we tried to recapitulate the primary qualitative finding

of the knockout study from [27]: that glutamine exhibited a

substantial drop in temporal variation in DGOGAT in compar-

ison to the wild-type and DGDH strains (from a sudden increase

and then return to steady state in wild type and DGDH strains to

nearly no response in DGOGAT). When comparing the shadow

prices of glutamine across the different strains, the shadow price of

glutamine dropped from 0 to 20.08, in both DGDH and

DGOGAT. While the shadow prices of other metabolites tracked

in the knockout experiments changed as well, glutamine exhibited

the largest drop. Thus, despite the fact that an alternative pathway

for nitrogen assimilation was present in each knockout strain, the

knockout of either GDH or GOGAT led to an increase in growth-

limitation of glutamine. This drop in shadow price was in

qualitative agreement with the experimentally observed drop in

temporal variation in the knockout strains (from 0.85 in wild-type

to 0.78 in DGDH and 0.32 in DGOGAT).

Figure 3. Shadow prices correlate with temporal variation in metabolite abundance in E. coli. The height of each bar represents the
number of individual metabolites that fall within a bin. Boundaries between the blue and red regions in each panel correspond to the mean values of
shadow prices and temporal variation, respectively. We expect that metabolites with negative shadow prices should have small temporal variation,
while metabolites with large temporal variation should have small or zero shadow prices (gray regions). Furthermore, metabolites should not exhibit
large temporal variation if they have large negative shadow prices (red region). Bars tend not to fall in the red regions (as quantified statistically, see
reported p-values, Table S2) highlighting the capacity of shadow prices to capture features of metabolite dynamics. Subplots correspond to different
experimental conditions: (A) nitrogen upshift (B) glucose starvation, (C) acetate limitation, and (D) glycerol limitation.
doi:10.1371/journal.pcbi.1003195.g003

Figure 4. FBA shadow price analysis in knockout strains.
Changes in shadow price between the wild-type strain and two
knockout strains in E. coli following nitrogen upshift. In comparison to
the wild-type, only the DGOGAT contains any metabolites which are
substantially more growth-limiting.
doi:10.1371/journal.pcbi.1003195.g004
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Thus, the shadow prices associated with individual intracellular

metabolites provide information not only about the extent to

which each metabolite is limiting for growth, but also about its

overall temporal variation following a perturbation. Importantly,

in the current framework, shadow prices do not provide

quantitative predictions about the speed at which metabolites

respond, or the new steady-state concentrations they reach.

Hence, shadow price analysis should not be treated as a substitute

to explicit predictions from kinetics. While our results seem to hold

across different experiments in E. coli (i.e. different nutrient

limitations and genetic modifications, albeit in a noisy manner), its

general validity and mechanistic basis across different organisms

and types of perturbations will require further scrutiny and will be

an important aspect of future work. In particular, the availability

of specific mechanistic models for the metabolic response to

perturbations, coupled with higher temporal resolution data,

would allow one to obtain more precise estimates of temporal

variability, and hence better quantitative comparisons with

shadow prices.

Shadow Prices and Gene Expression Data
So far, we have corroborated the notion that shadow prices are

indicative of growth limitation, and demonstrated that shadow

prices are even more broadly related to metabolite dynamic

variability. As described above and in the Methods, shadow prices

are dependent on the underlying stoichiometric model, and the

specific environmental conditions. Correspondingly, in the analysis

shown up to now, we have explored the relevance of shadow prices

across different conditions (different nutrient limitations and

genetic modifications). There is, however, a third feature that

shadow prices crucially depend on, i.e. the specific objective

function used in the FBA optimization. Does the analysis of

shadow prices have a meaning and an application for stoichio-

metric problems with radically different objective functions, or is it

biologically interpretable only for the growth maximization

objective? To answer this question, we decided to explore the

significance of shadow prices in a recently proposed optimization

problem aimed at identifying genome-scale fluxes that minimize

the inconsistency relative to a given set of gene expression data.

This approach, pioneered with the GIMME algorithm [30], and

recently re-elaborated in the time-dependent TEAM method [31],

is a way of integrating gene expression data with stoichiometric

models of metabolism, in order to obtain better predictions and

understanding of cellular physiology. Instead of maximizing

growth, GIMME and TEAM minimize the conflict between gene

expression data and flux predictions using a penalty score (see

Methods). In particular, fluxes whose corresponding gene(s)

exhibit low expression are penalized (Figure 5A) in proportion to

how much lower the gene expression is, relative to a given gene-

specific threshold (see [31] and Methods). The cumulative penalty

obtained from all these costs (termed the Inconsistency Score, IS) is

minimized across the entire metabolic network [30,31]. This

problem can be solved again using linear programming, in analogy

to the FBA problem illustrated above:

Minimize IS~
Xn

j~1

cj vj

�� �� ð4Þ

Subject to
Xn

j~1

Sijvj~bi Vi~1, . . . m ð5Þ

vLB
j §vjƒvUB

j Vj~1, . . . n ð6Þ

vRMF §vRMF ,min ð7Þ

where c is a vector of reaction penalties, and the reaction flux vRMF

is a required metabolic functionality (RMF), some minimal, user-defined

metabolic behavior which the model must reproduce (for example,

growth at a minimal rate or the secretion of a metabolite). One of

Figure 5. In a constraint-based method that integrates gene
expression (GIMME/TEAM), shadow prices predict the direc-
tion of changes in metabolite abundance. (A) Schematic of the
GIMME/TEAM algorithm. Enzymes whose constituent genes show very
low expression (red) are penalized. Then, a flux distribution is identified
with the lowest total penalty (in this case, the alternative pathway with
high expression, colored in green). (B) Schematic of the interpretation
of shadow prices in TEAM. Consider a situation in which, at steady-state,
a reaction with low gene expression (red, high penalty) is inferred by
the model to carry a high flux, leading to a high penalty. When the
metabolite is allowed to deviate from steady-state by lowering the flux
through the highly penalized reaction, the penalty predicted by TEAM
falls. The shadow price lM for this metabolite, whose concentration is
predicted to be decreasing, is thus positive. (C) Shadow prices
predicted by TEAM and observed changes in metabolite abundance
are significantly negatively correlated. A threshold of h = 0.88 was used,
although other values of h yielded similar results (SI Figure S1). Changes
in metabolite abundance were calculated using measurements
between hours 10 and 11 in [33] where acetate was observed to be
secreted from the cell [32]. Expression data used as input to TEAM is
taken from hour 35 of [32]. Both time points correspond to the same
phase in the metabolic cycle of yeast, during the end of the oxidative
and beginning of the reductive/building phase.
doi:10.1371/journal.pcbi.1003195.g005
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the reasons the RMF constraint is imposed is to avoid the trivial

solution v = 0.

As depicted in Figure 5B, shadow prices in TEAM have a

different interpretation from shadow prices in FBA. A shadow

price in TEAM is defined as the change in the inconsistency score

IS when the steady-state constraint on one metabolite bi deviates from

zero. It is reasonable to assume that some portion of the

inconsistency between experimentally measured gene expres-

sion and TEAM’s flux predictions is the result of imposing the

steady state assumption in our model, while a metabolite may

be truly accumulating or depleting during certain time

intervals in the experiment. Allowing such a metabolite to

violate the flux balance condition (either accumulate or

deplete) should lower the inconsistency score. Then, if a

metabolite’s abundance is decreasing, we should expect the

shadow price to be positive (Shadow Price = negative change in

IS/negative change in abundance). Conversely, if the metab-

olite’s abundance is increasing, then we should expect the

shadow price to be negative (Shadow Price = negative change in

IS/positive change in abundance). As illustrated in Figure 5B,

TEAM’s shadow prices should thus be informative of the

direction of changes in metabolite abundance: metabolites

with positive (negative) shadow price are expected to decrease

(increase) in abundance.

To test whether TEAM’s shadow prices indeed could predict

changes in intracellular metabolite abundances, we re-analyzed a

transcriptomics [32] and metabolomics [33] dataset for the yeast

metabolic cycle, previously integrated in FBA using TEAM (see

[31]). Our analysis (see Methods for details) showed a significant

anticorrelation between TEAM’s shadow prices and experimen-

tally measured changes in metabolite abundance (Spearman

r = 20.41, p-value = 961026; Pearson r 20.31, p-val-

ue = 861024; Figure 5C). Notably, if we only consider those

metabolites for which TEAM reported a nonzero shadow price,

we correctly identify the direction of change (e.g. increase or

decrease) in 55 of 63 metabolites in the dataset. We used this data

in combination with the Matthews Correlation Coefficient (used

earlier to analyze data from Figure 2) as a measure of how well the

sign of TEAM’s shadow prices can be used to predict the

accumulation/depletion of a metabolite. We found that the sign of

the shadow price was indeed a good predictor of the direction of

change of a metabolite’s concentration (MCC 0.68, p-value

761028). Interestingly, among the incorrect predictions, many

were for amino acids (methionine, ornithine, proline). The failure

of TEAM’s shadow prices to predict changes in abundance for

these compounds suggests that inconsistency with gene-expression

data in pathways utilizing these metabolites may not be due to flux

imbalances, and may instead indicate that other regulatory

mechanisms are at play.

Using the same sensitivity analysis developed in [31] and

discussed in the Methods, we furthermore confirmed that the

shadow price results reported above were insensitive to changes

of the primary free parameter of TEAM, h (a measure for how

high to set each gene’s penalty threshold), within the range

h = 0.50–0.73 and h = 0.78–0.88. This range of thresholds is

substantially larger than the range of h’s found to accurately

recapitulate experimental data in our studies of Shewanella

oneidensis using TEAM (h = 0.65 to h = 0.72) [31], suggesting

our results here are robust to variations in h. Thus, our analysis

of flux imbalances in TEAM, a constraint-based approach

based on an objective function radically different from the

classical growth maximization of FBA, reveals that shadow

prices have useful applications beyond conventional flux

balance methods.

Discussion

Constraint-based stoichiometric models of metabolism have

become a widely used approach for characterizing and predicting

cellular metabolic states [10]. The notion that steady-state

constraints and a cell-level objective function provide an approx-

imate quantitative understanding of the behavior of a population

of cells has been subjected to experimental testing, and discussed at

length in the literature [8,11,34]. Yet, other more subtle aspects of

stoichiometric modeling, such as the potential power of shadow

prices, had not been directly tested. Nor had the idea of flux

imbalance been pursued as a link between the sensitivity analysis

of FBA and the dynamics of metabolite pools.

The results we have presented may seem at first glance

surprising. How can a steady state solution convey information

about the dynamical changes of metabolite pools? The answer is

that flux balance models are not simply steady state solutions to a

dynamical system. Rather, they use constraints and optimality to

predict how a cell should allocate its resources for maximal

efficiency, given the underlying network architecture. It would be

tempting to make the leap of inferring that the architecture itself

truly constrains the dynamics, independent of parameters and

regulation. Rather, we suggest that the stoichiometric architecture

may dictate how regulation should evolve to guarantee robustness

to temporary variations in the intracellular milieu. If the cell

cannot allow itself to accumulate or deplete certain metabolites,

without incurring a substantial penalty to growth, then the

response to variations in these metabolite pools should be swift.

This suggests that quick allosteric and post-translational metabo-

lite-induced regulatory feedback should control the stability of

these pools [35,36] and highlights the role the growth process itself

may play in providing immediate feedback on metabolite pools by

virtue of growth limitation [37]. Thus, we expect that an

important challenge for future work will be examining our

findings in light of newly reconstructed atlases of metabolic

regulatory mechanisms [36].

A subtle but potentially important aspect of shadow prices and

their biological interpretation in metabolic network models is the

fact that they are defined only over a certain range, as dictated by

the structure of the feasible space. These ranges capture how large

a perturbation can be before the genome-scale optimal flux

distribution changes sharply (i.e. by moving to a different corner of

the feasible space). In future research, it would be interesting to

directly assess the potential existence of such discontinuities in the

dynamical behavior of a perturbed metabolic network. In

addition, the magnitude of the range of validity of a shadow price

may be thought of as an additional tolerance metric for each

individual metabolite, conveying the scale beyond which its

response to a perturbation becomes unpredictable. Future models

may test whether the extent to which a metabolite is regulated

depends both on its shadow price, as well as this tolerance to large

perturbations.

The sensitivity of cells to variations in specific metabolite pools

suggests a novel, metabolite-centric route towards the computa-

tional prediction of drug targets, e.g. for selectively affecting

microbial pathogens or cancer cells. In addition to seeking enzyme

gene deletions as a way to impair specific metabolic pathways [38],

one could instead impair the regulatory mechanism stabilizing

metabolite pools to which growth is particularly sensitive. Notably,

the shadow prices automatically generated upon solving the FBA

problem would directly provide a prioritization list of the most

sensitive target metabolites. It will be interesting to relate the

metabolite-centric information obtained from shadow prices to

prior quantifications of the importance of metabolites based on
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their producibility upon gene deletions [39] and on the sum of

all incoming or outgoing fluxes around them [40]. Furthermore,

one could consider how lethal gene deletions/perturbations,

which often result in infeasible models for which shadow prices

are not immediately available, can be treated using our

framework.

Another prospect for future studies will be to evaluate

whether shadow prices may shed light on the interplay

between evolution, regulation, and the sub-optimal behavior

of cells. While most stoichiometric models still use maximi-

zation of growth as the central objective, a number of studies

have suggested specific applications of alternative objectives.

These include the Minimization Of Metabolic Adjustment

[41] (or its recent more robust variant, Minimization of

Metabolites Balance [42], based on metabolite turnovers

instead of fluxes) for describing the cellular phenotypes arising

upon genetic perturbations prior to further regulatory or

evolutionary optimization, and multi-objective Pareto optimal-

ity for studying how cells may sacrifice optimal growth in

favor of tradeoff solutions [43]. In the same spirit as our ad

hoc interpretation and analysis of TEAM’s shadow prices,

sensitivity of these optimization problems to their respective

constraints may offer further insights into the cellular response

to perturbations.

Additionally, upon availability of comprehensive data on

intracellular metabolite concentrations at multiple time steps,

one could envisage implementing stoichiometric models that use

explicit flux imbalances (rates of accumulation/depletion) as

inputs to the constraint-based model. For example, our shadow

price analysis with TEAM is readily extendible to cases where

the rate of accumulation/depletion is known for one subset of

metabolites, but unknown for another set (e.g. for metabolites for

which precise intracellular measurements are technically diffi-

cult). In such circumstances, for every metabolite for which

appropriate data is available, the right-hand-side of the

corresponding steady-state constraint (e.g. bi) could be adjusted

accordingly.

Finally, while the notion of flux imbalance analysis is not the

first to bridge between the worlds of stoichiometry and metabolic

dynamics [14,44], it is the first to use a genome-scale modeling

approach to make inferences about the qualitative response of

metabolite concentrations to a perturbation. We do not know the

mechanism which induces relatively fast changes in growth-

limiting metabolites, when compared to non-growth-limiting

metabolites. Indeed, an exciting prospect for future work will be

bridging our findings with well-established schools of metabolic

theory, including metabolic control analysis [44], biochemical

systems theory [45], and structural kinetic modeling [46,47].

Compellingly, the dual of the FBA problem has also been

suggested to constitute a window onto the thermodynamics of

biochemical networks, with potential implications for understand-

ing the energetics of metabolism [19]. Unifying these distinct

threads, which independently derive dynamic and energetic

meaning from the same mathematical framework, seems a

worthwhile direction for future efforts.

Methods

The Dual Problem to FBA and Shadow Prices
We offer here a simple derivation of the dual problem to flux

balance analysis. We begin by posing the primal FBA problem

Maximize Z~cT v ð8Þ

Subject to Sv~0

vLB
§v§vLB

where c, v, vLB, and vUB are vectors of length n, and S is the m6n

stoichiometric matrix. For clarity and in contrast to the main text,

we have formulated the FBA problem in vector notation (including

inequalities, to be interpreted component-wise). We associate with

each set of constraints in the primal problem a single set of dual

variables. For the steady state constraints, we assign variables l (a

vector of length m, the shadow prices which we use throughout this

work), for the constraints on the lower bounds of each flux, we

assign variables q1 (a vector of length n), and for the constraints on

the upper bounds of each flux, we assign variables q2 (a vector of

length n). Then, following any standard text on linear optimization

(e.g. [15]) one can obtain from Eq. (8) the dual problem

Minimize q1
T vLBzq2

T vUB ð9Þ

Subject to cT~lT Szq1
Tzq2

T

q1ƒ0,q2§0

Alternate and Degenerate Shadow Prices
We implemented a number of measures to ensure that each

shadow price used in our calculations was accurate and

meaningful. In particular, we validated that the shadow prices

obtained directly from the LP solver could not take on different

values depending on whether a metabolite was accumulating or

depleting (i.e. that the shadow price was not degenerate, described

below). To do so, we used brute-force techniques to validate that

each shadow price reported by the solver was indeed the sensitivity

of the objective function to each steady-state metabolite constraint.

This process thus simultaneously helped ensure that our results

were robust to alternative dual optima.

In addition to the primal solution (optimal fluxes), the Gurobi

LP solver provides the corresponding dual solution to the FBA

problem. The dual solution contains (i) the shadow price value

relative to each metabolite steady-state constraint and (ii) the

upper (G+) and lower (G2) bounds for which these shadow prices

are valid. These bounds indicate the maximum that the right hand

side of each constraint may be perturbed while still maintaining

the validity of each shadow price. First, we ensured that any

calculated shadow prices had non-zero ranges of validity

(range = G+2G2). Any shadow prices which did not exhibit a

minimal range erange = 1026 were discarded. Other tested values of

erange in the range 1023 to 1026 led to qualitatively identical

results.

Second, we ensured that alternate optimal solutions [48] did not

impact the dual solution. Prior work has reported that degenerate

solutions can lead to differences between the incremental shadow

price l+ (the change in the objective function when the right-hand-

side of a constraint is increased) and the decremental shadow price

l2 (the change in the objective function when the right-hand-side

of a constraint is decreased) [24]. To ensure that this did not affect

our shadow price calculations, we manually re-calculated the
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incremental and decremental shadow price for each metabolite for

which we had experimental concentration data (indexed by itest) in

the model using a perturbation procedure. This calculation was

implemented by solving the two following optimization problems,

in which the steady state constraint is positively or negatively

violated at each individual metabolite:

max Zhigh,i~vgrowth ð10Þ

Subject to Sv~b,

vLBƒvƒvUB

b~
0 i=itest

p:Gi
z i~itest

�

maxZlow,i~vgrowth ð11Þ

Subject to Sv~b,

vLBƒvƒvUB

b~
0 i=itest

p:Gi
{ i~itest

�

Here, the parameter p modulates how large we allow a steady-state

constraint to be violated, while remaining in the range [Gi
{, Gi

z]

(where the Gi are those defined above with reference to the range

of each shadow price). Thus, 0,p,1. We used p = 0.2, although

other choices of p yielded identical results (we tried p = 0.5 and

p = 0.9). Upon solving the above optimization problems, the

incremental and decremental shadow prices can be computed as

the changes in the objective relative to the changes in the right-

hand side terms, i.e., respectively:

lz
i ~

Zhigh,i{Z

p:Gi
z ð12Þ

l{
i ~

ZLow,i{Z

p:Gi
{ ð13Þ

where Z is the solution to the regular FBA problem (i.e. the one

without perturbations of the right-hand sides). We then ensured

that the shadow price obtained from the solver deviated from lz
i

and l{
i less than the error tolerance of the solver. In many cases,

one of Gi
{ or Gi

z was equal to zero (i.e. the shadow price was

only valid when perturbing in one direction). In these cases, we

only manually calculated the shadow price corresponding to the

valid direction. It is important to note that lz
i and l{

i are

obtained through brute-force re-calculation of the shadow prices

obtained directly from the solver. While they are laborious, they

enable us to ensure that degenerate solutions do not adversely

affect our results.

In order to facilitate the implementation of degeneracy checking

of shadow prices, we have provided the pseudocode below:

CHECK_DEGENERACY(S,LowerBound,UpperBound,Ob-

jective)

1 # Run FBA and obtain four outputs: the optimal flux vector, the

shadow prices for each metabolite, the incremental range over which each

shadow price is valid, the decremental range over which each shadow price is

valid, and the optimal value

2 [Flux SP SPUpRange SPDownRange OptVal] = Run_
FBA(S, LowerBound,UpperBound,Objective, RHSConstraints)

3 p = 0.5 # p can take value between 0 and 1

4 # For every metabolite, check for degeneracy in the shadow price of the

metabolite by changing one of the steady-state constraints from zero to a non-

zero value within the range of validity

5 for i = 1…number of metabolites

6 if SPUpRange(i) .0: # if we can perturb up

7 RHSConstraintsPlus = RHSConstraints # Use a tempo-

rary variable

8 RHSConstraintsPlus(i) = SPUpRange(i)*p # Change one

constraint

9 # NEXT: Solve FBA with new constraint (incremental shadow

price)

10 [FluxPlus SPPlus SPUpRangePlus SPDownRangePlus

OptValPlus] = Run_FBA(S, LowerBound,UpperBound,Objective,

RHSConstraintsPlus)

11 end #end if

12 if SPDownRange(i) ,0: # if we can perturb down

13 RHSConstraintsMinus = RHSConstraints;

14 RHSConstraintsMinus(i) = SPDownRange(i)*p;

15 # NEXT: Solve FBA with new constraint (decremental

shadow price)

16 [FluxMinus SPMinus SPUpRangeMinus SPDown-

RangeMinus OptValMinus] = Run_FBA(S, LowerBound,Upper-

Bound,Objective, RHSConstraintsMinus)

17 end # end if

18 # Compare manually calculated shadow prices (if they exist) to

solver’s

19 SPPlus(i) = (OptValPlus – OptVal)/SPPlusRange(i)*p

20 SPMinus(i) = (OptValMinus – OptVal)/SPMinusRan-

ge(i)*p

21 if |SPPlus(i) – SP(i)|.tolerance OR |SPMinus(i) –

SP(i)|.tolerance

22 return ERROR # There is a degenerate shadow price

23 end #end if

24 end # end for

Software for the Solution of the FBA Primal Problem
In this work, all optimization problems were solved using the

Gurobi optimization software [49] with an academic license. In all

FBA problems, the objective was the wild-type biomass reaction in

the most recent Escherichia coli metabolic model [50]. The yeast

model iMM904 [22] was used for all growth limitation and TEAM

simulations, with media formulations matching those described in

the original publications.

Calculation of Temporal Variation in Escherichia coli
For all simulations relating to E. coli, we used the metabolic

network reconstruction iJO1366 [50]. Growth medium composi-

tions for all experiments simulated with the model were obtained

from the corresponding experiment references. In all cases, the

medium was based on the minimal salts medium [51] with 10 mM

ammonium. For experiments from [28], we removed glucose from

the media formulations and replaced it with the appropriate

limiting carbon source.
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In order to calculate temporal variation of metabolite, we use

the coefficient of variation (CV):

CV~
s

m

where s is the standard deviation of the measurements and m is the

mean. For all experiments from both publications, we calculated

temporal variation using time points up to 30 minutes following

perturbation.

Permutation Test to Evaluate Significance of Correlation
between Shadow Prices and Temporal Variation

In the main text, we show that metabolites with large negative

shadow prices exhibit little temporal variation, and metabolites

with large temporal variation should exhibit small (or zero) shadow

price. To further corroborate the significance of the antic-

orrelation between shadow prices and temporal variation

illustrated in Figure 3, we completed a nonparametric permutation

test.

For each experiment, the vector of shadow prices (l) and vector

of temporal variation (CV) of each metabolite were calculated.

Then, the mean temporal variation (mT) and mean shadow price

(mS) for the experiment were determined using l and CV,

respectively. We then computed the number of metabolites,

poriginal, which exhibited a shadow price more negative than mS and

a temporal variation larger than mT. These metabolites served as a

proxy for the number of ‘‘incorrect’’ assignments made by our

model.

We generated 105 random permutations of l and CV. For each

permutation i, we calculated pi, the total number of metabolites

satisfying the two criteria described above (exhibited a shadow

price more negative than mS and a temporal variation larger than

mT). Then, we identified the proportion of permutations for which

pi,poriginal (i.e. the permuted data exhibited fewer incorrect

predictions than the real data), reported in Table S2. We repeated

these tests using medians instead of means, with data reported in

Table S2.

Calculation of the Penalty Vector c for TEAM
The penalty vector c quantifies the modeler’s expectation that a

reaction is metabolically active (that is, that it carries flux) to an

extent that depends on the expression of its constituent genes. The

c vector is calculated by assigning a penalty to each gene in the

metabolic model, and then propagating these penalties to the

reactions using the Boolean gene-to-reaction mapping provided in

the model iMM904 [22]. The higher the value of the penalty ci for

reaction i, the higher our confidence that the reaction is inactive.

In contrast, reactions with c = 0 are expected to be active and carry

flux. Importantly, each element of c is calculated using experi-

mental measurements of gene expression.

First, we describe how we assign a penalty to each gene g in the

metabolic model. Gene penalties are determined by comparing

the expression value of a gene with a predefined threshold. For

each gene g, we created a cumulative distribution function (CDF)

of all expression measurements for that gene (using all gene

expression data reported in [32]). Then, for a chosen percentile h
(in Figure 5C, we use h = .88), we use the CDF to calculate (for

each gene) the expression value corresponding to that percentile.

This was the gene’s penalty threshold xg. For the purposes of this

article, the primary difference between TEAM [31] and GIMME

(an algorithm upon which TEAM is based, see [30]) is that TEAM

assigns unique penalty thresholds to each gene in the metabolic

model, while GIMME assigns a common penalty threshold to each

gene. In [31], we showed that these gene-specific thresholds

substantially increase the accuracy of the algorithm.

Once the gene expression penalty thresholds have been

calculated, the penalty for each gene g, pg, is calculated:

pg~
xg{EXPg if xgwEXPg

0 otherwise

�

where EXPg is the expression of gene g. Thus, if a gene’s expression

is above the penalty threshold xg, that gene is assigned no penalty.

In contrast, if its expression is found to be below the threshold,

then its penalty is equal to the difference between the two. As

described in [31], we used the gene-to-reaction matrix provided in

the metabolic model to map the vector of gene penalties p to a

vector of reaction penalties c.

Calculation of RMF Flux in TEAM
An essential part of TEAM’s formulation is a user-defined

required metabolic functionality (RMF). The RMF is a metabolic

behavior (such as growth or the secretion of a metabolite) that

TEAM must reproduce. It was observed in [32] that the

population of yeast secreted acetate at the end of the oxidative

portion of the metabolic cycle. We recreated in silico the

environmental conditions of the experiments. We decided to use

acetate secretion as our RMF flux. To do so, we first used FBA to

identify the maximal amount of acetate that could be secreted by

solving the optimization problem

maxvRMF ~vacetate ð14Þ

Subject to Sv~0

vLBƒvƒvUB

Then, the minimal RMF flux vRMF,min was set to some proportion p

of this maximal secretion rate. We used p = 0.3, although other

values of p yielded qualitatively similar results.

Comparing Time Points between Metabolomics and
Transcriptomics Data in TEAM

Because the metabolomics and transcriptomics measurements

were obtained from two distinct experiments in which the periods

of the cycles were significantly different (,8 hours vs. ,12 hours,

respectively), we used dissolved oxygen measurements (DO) (which

the authors of [32] repeatedly cited as representative of the

population’s location in the cycle) to align timepoints from the two

datasets. The experiments were otherwise comparable in terms of

conditions and phenomena observed. All metabolomics data is

represented in Figure 5C as fold changes.

Calculation of Shadow Prices and TEAM Sensitivity
Analysis

In order to validate whether the results using TEAM were

dependent on our choice of penalty threshold h, we applied a

sensitivity analysis identical to the one described in [31]. We

calculated the Spearman correlation for all possible percentile

thresholds h from h~1% to h~99% for the same expression and

metabolomics time points as those in Figure 5C.

As shown in Figure S1, we found a large range of thresholds for

which we obtained high accuracy and a significant correlation,
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confirming that our results were not highly sensitive to choice of

penalty threshold.

Supporting Information

Dataset S1 Supporting Data. Contains data associated with

the figures.

(XLSX)

Figure S1 TEAM’s shadow prices are predictive of
metabolomics measurements for a large range of
penalty thresholds. We evaluated the sensitivity of the

predictive power of TEAM’s shadow prices to the particular

choice of penalty threshold h. We calculated the Spearman

correlation between shadow prices and observed changes in

metabolite abundance for h = 1% to h = 99% . Expression data

(hour 35 of [32]) and metabolomics data (changes in abundance

between hours 10 and 11 in [33]) are identical to those in

Figure 5C. For a large part of parameter space we observe

significant correlations (p-value,0.05, corresponding to points

below dashed line in bottom panel).

(TIF)

Table S1 Correlations between shadow prices and
measures of growth-limitation from [21]. For lumped

datasets (e.g. ‘‘All Conditions’’) we use non-normalized shadow

prices (as in the main part of Figure 1). Note that in the top set of

correlations, many metabolites (e.g. ATP) exist in several

compartments, and the shadow prices in each compartment were

used in the statistical test. While in most cases the shadow prices

across compartments were identical, there were several instances

where this was not the case (see Dataset S1 for data).

(DOCX)

Table S2 Results of permutation testing of shadow
prices and temporal variation. For all experimental

conditions, fewer than 5% of permuted shadow prices exhibited

fewer incorrect predictions than the true shadow prices.

(DOCX)

Text S1 Supporting Text. Contains additional details for the

calculations presented in the text.

(DOCX)
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