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Abstract

System-level metabolic network models enable the computation of growth and metabolic

phenotypes from an organism’s genome. In particular, flux balance approaches have been

used to estimate the contribution of individual metabolic genes to organismal fitness, offer-

ing the opportunity to test whether such contributions carry information about the evolution-

ary pressure on the corresponding genes. Previous failure to identify the expected negative

correlation between such computed gene-loss cost and sequence-derived evolutionary

rates in Saccharomyces cerevisiae has been ascribed to a real biological gap between a

gene’s fitness contribution to an organism “here and now” and the same gene’s historical

importance as evidenced by its accumulated mutations over millions of years of evolution.

Here we show that this negative correlation does exist, and can be exposed by revisiting a

broadly employed assumption of flux balance models. In particular, we introduce a new met-

ric that we call “function-loss cost”, which estimates the cost of a gene loss event as the total

potential functional impairment caused by that loss. This new metric displays significant

negative correlation with evolutionary rate, across several thousand minimal environments.

We demonstrate that the improvement gained using function-loss cost over gene-loss cost

is explained by replacing the base assumption that isoenzymes provide unlimited capacity

for backup with the assumption that isoenzymes are completely non-redundant. We further

show that this change of the assumption regarding isoenzymes increases the recall of epi-

static interactions predicted by the flux balance model at the cost of a reduction in the preci-

sion of the predictions. In addition to suggesting that the gene-to-reaction mapping in

genome-scale flux balance models should be used with caution, our analysis provides new

evidence that evolutionary gene importance captures much more than strict essentiality.
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Introduction

Quantitatively assessing the contribution of each gene to the overall fitness of an organism is

an ongoing challenge in evolutionary and systems biology [1]. A classical, bioinformatics

estimate of this contribution has been the evolutionary rate of the gene in question, which is

based on genetic sequence conservation patterns amongst phylogenetically related genes [2–

5]. This evolutionary rate metric serves as a historical record, providing a retrospective

cumulative quantification of the importance of a gene. In contrast, systems biology methods

are able to specifically quantify, for each gene, its current contribution to overall organism

fitness by directly measuring [6,7] or estimating [8,9] the fitness defect caused by the

removal of that gene. The natural question arises of whether the current contribution of a

given gene to organism fitness, i.e. its dispensability, correlates with its historical impor-

tance. It is non-trivial whether such a relationship should exist, because the dispensability of

any one gene at any set time point may be influenced by many complex factors, including

the environmental condition(s) and its interactions with other genes within the genome,

whose effects cannot be discerned from evolutionary rate. This question has been previously

addressed in the model organism Saccharomyces cerevisiae (budding yeast) [10,11], for

which fitness defect scores upon gene deletion have been experimentally measured in a sys-

tematic and comprehensive way [6,7,12,13]. Interestingly, a significant negative correlation

between gene evolutionary rate and gene dispensability is detectable, although the signal is

weak (Spearman’s ρ approx. −0.2).

In addition to the high-throughput experimental techniques used to quantify gene dis-

pensability at the genome scale, constraint-based modeling techniques—such as flux bal-

ance analysis (FBA) [14]–may be used to efficiently generate such data in silico [15]. Flux

balance models have been shown to successfully recapitulate several experimental observa-

tions, including growth phenotypes under various environmental conditions and gene

essentiality in select lab conditions [16–18]. However, one of the puzzling failures of FBA

techniques has been precisely the lack of even moderate correlation between predicted gene

dispensability and evolutionary rate [11]. This lack of correlation has been ascribed to a

number of possible reasons, including lack of knowledge about the most relevant environ-

mental conditions to be used in simulations, and the complex condition-dependence of

gene essentiality [8,11,13].

Here we present an alternative metric for measuring gene dispensability using FBA, which

we call “function-loss cost” (Fig 1, light green arrows). As opposed to the standard “gene-loss

cost” (Fig 1, dark orange arrows), our new metric estimates the total cost of a gene’s deletion

by integrating the fitness costs of removing each enzymatic function associated with that gene

from the FBA model, even if alternative isoenzymes exist for a given reaction. This is in con-

trast to the standard assumption in FBA models that isoenzymes associated with the same

reaction act as completely redundant backups of each other. Using function-loss cost as our

measure of gene dispensability, we are able to observe a negative correlation between the

impact of gene deletion and gene evolutionary rate, that is significantly stronger than the same

correlation calculated using gene-loss cost (Fig 2).

Furthermore, we find that our new treatment of isoenzymes in the model can also be infor-

mative in the study of genetic interactions, or epistasis [19]. The ability of FBA to predict the

experimentally observed epistatic interaction [20] between any two metabolic gene deletions is

changed when treating isoenzymes in this new way, with an increase in the true positive rate

but also an increase in the false positive rate. Thus, function-loss cost provides novel insight

about enzyme gene dispensability, while simultaneously suggesting that some standard

assumptions used in genome scale modeling may not be universally applicable.
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Results

Gene-loss cost and evolutionary rate correlate weakly in minimal

environments

In prior work, it was established that gene-loss cost, as estimated by flux balance genome-scale

models of metabolism, correlates poorly with gene evolutionary rate [11]. These prior

Fig 1. Comparison of the gene dispensability metrics: function-loss cost and gene-loss cost. Each toy scenario

(A–C) represents a possible gene-to-reaction mapping configuration in its simplest form. Gene-loss cost (orange arrows,

top row) propagates gene deletions “downwards” through logic gates to determine which reaction(s) are removed from

the network, which in turn determine model fitness predictions. Function-loss cost (green arrows, bottom row)

conceptually reverses this process, first calculating the fitness cost of removing each reaction in the network and then

propagating these costs “upwards” to all associated genes, whereby they are summed together. For enzyme complexes

(A), gene-loss cost and function-loss cost are identical and are equal to the fitness cost of the associated reaction’s

removal. For isoenzymes (B), the gene-loss cost is zero in all cases (because either gene will satisfy the logic gate’s

requirement that at least one enzyme is present), however the function-loss cost is as in scenario (A). For multi-function

enzymes (C), the gene-loss cost is determined by the cost of removal of all reactions that are dependent on that gene

according to the gene-to-reaction mapping, while function-loss cost is equal to the total summed cost of all its associated

reactions’ removal cost.

doi:10.1371/journal.pone.0170164.g001
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calculations had been performed for a large number (approx. 104) of randomly generated com-

binations of environmentally available metabolites, and using different variants of the FBA

objective function (including the standard maximization of biomass production flux [14] and

the minimization of metabolic adjustment upon gene deletion [21]). We started by revisiting

these results, using a recently updated stoichiometric reconstruction [22,23], a different strat-

egy for choosing a large number of environmental conditions, and independently computed

evolutionary rates.

In particular, to impose environmental constraints in our FBA calculations, we generated

1,632 minimal media, each containing a nitrogen and a carbon source, in all possible combina-

tions (see Materials and Methods for details and [24] for use of a similar strategy). Gene-loss

Fig 2. Frequency distributions of (Spearman’s rank) correlation between gene evolutionary rate and gene deletion impact scores.

Frequency distributions of gene dispensability and evolutionary rate correlations. Gene evolutionary rate was calculated per gene as the average

ranked dN/dS (Ka/Ks) ratio between the S. cerevisiae gene and its ortholog in five related yeast species. A gene’s deletion impact score was

predicted with FBA using gene-loss cost (dark orange distributions) and function-loss cost (light green distributions). Rows show distributions for:

(A) all genes, (B) all genes except isoenzymes, (C) isoenzymes only, and (D) only multi-functional enzymes that are not isoenzymes.

doi:10.1371/journal.pone.0170164.g002
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costs were calculated across all metabolic enzyme genes and environments, using the standard

FBA protocol for gene knockouts (see Material and Methods and [25]). Evolutionary rates for

S. cerevisiae metabolic genes were calculated using a modified version of dN/dS from orthologs

in five related species spanning a phylogenetic timetable of roughly 10–100 million years (see

Materials and Methods and [26]). Our results (Fig 2A, dark orange distribution) show that

gene-loss costs weakly anticorrelate with gene evolutionary rate (Spearman’s ρ ranging

between −0.28 and −0.03). This anticorrelation is both markedly stronger and closer to experi-

mental results as compared to the FBA calculations in [11].

Notably, in contrast to FBA calculations previously used for this type of analysis, we limit

each minimal environment to a single source of carbon and a single source of nitrogen. At the

model level, such minimal media strictly enforce a kind of metabolic resource scarcity. In the

absence of this scarcity, the FBA model can reroute metabolic fluxes to use alternate resources

at zero cost, masking the effect of blocking individual pathways with a deletion. We also took

advantage of these minimal environments to test whether or not a particular carbon or nitro-

gen substrate significantly influenced the anticorrelation between gene evolutionary rate and

gene-loss cost. However, we do not observe that any one specific carbon or nitrogen source

produces significantly stronger correlations than the other sources (p = 0.07, Wilcoxon rank-

sum test adjusted for multiple comparisons). The strongest average anticorrelation for an indi-

vidual carbon or nitrogen source is ρ = −0.21 for pyruvate which has a standard deviation of

0.03, compared to a mean of ρ = −0.19 and standard deviation of 0.04 across all combinations

of carbon and nitrogen sources.

A newly defined function-loss cost has stronger anticorrelation with

evolutionary rate

Given the weakness of the correlation observed between FBA-computed gene-loss cost and

gene evolutionary rate, we asked ourselves whether any step in the FBA calculation could

potentially distort the estimation of the cost of gene deletion. We ended up focusing our atten-

tion on the gene-to-reaction mapping, which, in the FBA knockout calculation, translates the

deletion of a gene into the corresponding flux constraints that block (potentially multiple)

reactions associated with that gene (Fig 1). This mapping, expressed using simple Boolean

logic, plays a particularly important role for reactions that are catalyzed by multiple enzymes

(isoenzymes) or by enzyme protein complexes (Fig 1). For two isoenzymes catalyzing the same

reaction, for example, deletion of one the two enzymes has no effect on the corresponding flux

in a traditional FBA knockout calculation, because the other enzyme is assumed to provide full

backup functionality (Fig 1B). However, abundant experimental evidence suggests that this

backup effect is often limited, or condition-dependent [27–29]. The cumulative effect of this

discrepancy in genome scale calculations could be quite significant, given that more than one

third of the metabolic enzymes in S. cerevisiae are members of isoenzyme sets (and thus would

end up incurring no cost whatsoever under standard FBA knockout calculations). We thus

hypothesize that fixing this oversimplification in the assessment of gene-loss cost could have a

non-negligible effect on the above-mentioned correlation estimate.

In defining a new score for the functional cost incurred upon gene deletions, we also

wanted to take into account the fact that multi-functional enzymes (i.e., enzymes that catalyze

more multiple distinct reactions, Fig 1C) may be under more evolutionary pressure to main-

tain their function(s) than genes performing only a single function, especially if all such func-

tions are essential.

These considerations led us to define a new metric predicting the impact of gene deletions

in genome-scale models. In particular, we define the function-loss cost of a gene as the sum of

Gene Deletion Costs Anticorrelate with Their Evolutionary Rates
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all costs incurred by removing each individual reaction catalyzed by the gene from the network

(see also Materials and Methods and Fig 1), with the assumption of zero backup capacity by

isoenzymes. The distribution of the newly introduced function-loss cost is substantially differ-

ent from the distribution of gene-loss cost computed before (S1 and S2 Figs). Notably, for any

gene that does not belong to the set of isoenzymes or to the set of multi-functional enzymes,

the function-loss cost is identical to the gene-loss cost.

Interestingly, using our new function-loss cost metric as the measure of gene dispensabil-

ity, we obtain a significantly stronger negative correlation between this measure and gene

evolutionary rate than using gene-loss cost (Fig 2A, Wilcoxon signed-rank test p = 2 x

10−240). In fact, the mean anticorrelation between these data (ρ = −0.27) is even stronger

than the anticorrelation observed between gene evolutionary rate and experimentally-mea-

sured gene essentialities, even though strict gene essentiality prediction accuracy obtained

using function-loss cost is reduced relative to the accuracy obtained using gene-loss cost

(odds ratio drops from 30 to 7). Note that the distribution of correlations between function-

loss costs and evolutionary rates across different environments is similar in shape and with

a similarly narrow standard deviation to the distribution previously obtained for gene-loss

cost, indicating the recovery of anticorrelation obtained with the function-loss cost is not

strongly dependent on nutrient choice.

Isoenzymes play a special role in determining the anticorrelation with

evolutionary rate

As a next step in our analysis, we set out to examine the contributions from isoenzymes and

multi-functional enzymes to the improved negative correlations. Recalculating the correlation

distributions using only the isoenzymes (Fig 2C) shows much weaker correlations between

gene-loss cost and evolutionary rate than the same correlations calculated using the whole gene

set (Fig 2A). For function-loss cost, restricting to isoenzymes has comparatively little effect.

Conversely, for the correlation distributions excluding the isoenzymes (Fig 2B), the distribution

using the gene-loss cost is significantly more negative than when using all genes in the model

(Wilcoxon’s signed-rank test p = 3 x 10−241). When the correlation distributions are recalculated

using only the subset of genes in the model which are multifunctional and are not isoenzymes

(Fig 2D) we observe that the function-loss cost correlations are significantly weaker than gene-

loss cost (Wilcoxon’s signed-rank test p = 1 x 10−198). From these observations we can conclude

that it is the treatment of isoenzymes that is the cause of the stronger anticorrelation with evolu-

tionary rate seen when using function-loss cost compared with gene-loss cost.

As a further investigation of whether the improvement gained from function-loss cost is due

to a better accounting of isoenzyme deletion cost, we recomputed the impact of gene deletion

in two variant “hybrid-loss cost” ways. First, we computed the gene deletion impact using the

gene-loss score for all genes except the multi-functional enzyme genes, for which we use the

new function-loss score (we will refer to this schema as hybrid-loss cost 1). Conversely, in a sep-

arate calculation (hybrid-loss score 2), we computed the gene deletion impact using the gene-

loss score for all genes except the isoenzyme-associated genes, for which we use the new func-

tional-loss score. We find that hybrid-loss score 2 displays a negative correlation very similar to

the one observed with the full function-loss score (whereas hybrid-loss score 1 displays a nega-

tive correlation similar to gene-loss cost) (S3 Fig). Taken together with the results from Fig 2,

this indicates that incorrectly accounting for the effect of isoenzyme deletion has a prominent

role in the capacity to discern the relationship between the impact of gene deletion and evolu-

tionary rate. In turn, this suggests that deletion of an isoenzyme is costly, corroborating previ-

ous arguments that true redundant functional backup is not evolutionarily sustainable [30].

Gene Deletion Costs Anticorrelate with Their Evolutionary Rates
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In order to gather further insight into the relationship between different enzymes in an iso-

enzyme set, we tested the correlation between function-loss cost and evolutionary rate for dif-

ferent specific choices of enzymes within each set. Specifically, for each isoenzyme set, we

identified the enzyme which is most conserved (slowest evolutionary rate), and the one that is

least conserved (fastest evolutionary rate). Thus, across all isoenzyme pairs, we could collect a

subset of all fast evolving and slow evolving isoenzymes.

Notably, when computing the correlation between function-loss cost and evolutionary rate

with the inclusion of slow-evolving isoenzymes only (Fig 3B, light green distribution), we

found an average correlation of ρ = −0.38. This correlation is even more negative (Wilcoxon

signed-rank test p = 1 x 10−236) than the mean correlation found using the whole gene set (Fig

2A, light green distribution). When similarly selecting for the fastest-evolving isoenzymes

from each isoenzyme set (Fig 3A), the mean correlation of ρ = −0.30 is significantly less nega-

tive than that when using the slowest-evolving isoenzymes (Wilcoxon signed-rank test p = 4 x

10−230). Prior work had established that different isoenzymes catalyzing the same reaction

evolve at different rates, and that this could be interpreted as a signal of subfunctionalization

[31,32]. Our analysis reveals for the first time that, in computing the anticorrelation between

function-loss score and evolutionary importance, excluding the fast-evolving isoenzymes

results in a stronger anticorrelation than excluding the slow-evolving isoenzymes. This sug-

gests that the historical (long-term evolutionary) importance of slow-evolving (i.e. highly con-

served) genes carries more information about their experimentally measurable essentiality

relative to fast-evolving counterparts.

Modeling isoenzymes as non-redundant increases the number of

predicted epistatic interactions

Given that changing how isoenzymes map to reactions in the flux balance model significantly

affects the predicted cost of single gene deletions, it is interesting to ask how this change would

affect the predicted cost of multiple simultaneous gene deletions. Whether the combined effect

Fig 3. Frequency distributions of (Spearman’s rank) correlations for fast- and slow-evolving isoenzymes. Each isoenzyme in an

isoenzyme gene set was categorized as one of: fast-evolving (highest evolutionary rate within the isozyme set), slow-evolving (lowest rate), or

neutral. Plots show distributions of the correlation with evolutionary rate for both function-loss cost and gene-loss cost, for: (A) fast-evolving

isoenzymes and (B) slow-evolving isoenzymes.

doi:10.1371/journal.pone.0170164.g003
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of pairs of genetic perturbations is predictable from knowledge of each individual effect consti-

tutes a question with broad implications. In fact, deviations from simple expectations (i.e. epis-

tasis) can significantly affect evolutionary processes [33], and can provide valuable functional

information about the underlying system [34]. Previous work has investigated the capacity of

FBA models to predict epistatic interactions between pairs of metabolic enzyme genes [35],

also motivated by the availability of extensive experimental datasets of genetic interactions in

S. cerevisiae [20]. Here, we test the ability of FBA to predict these experimentally derived inter-

actions for two gene-to-reaction mappings. The first mapping—the default in FBA—assumes

complete isoenzyme redundancy (gene-loss cost-like), while the second assumes that isoen-

zymes are completely non-redundant (function-loss cost-like). Our results are scored based on

the ability of the model to predict the type of interaction between pairs of genes correctly: syn-

ergistic (the double knockout combines to limit cell growth more than expected from the sin-

gle knockouts, e.g. synthetic lethal interactions), antagonistic (the double knockout has better

cell growth than expected), or non-interacting.

Interestingly, by assuming that isoenzymes are completely non-redundant, the flux balance

model correctly predicts more experimentally verified genetic interactions between pairs of

genes than when assuming that isoenzymes are completely redundant (Fig 4). This increase is

not limited to a particular interaction type (synergistic or antagonistic). Using either gene-to-

reaction mapping assumption, the predictions are significantly better than random, for both

Fig 4. Comparison of correctly predicted epistatic interactions per gene. Each row represents one formulation of how isoenzymes map to

reactions in the FBA model: either the new assumption that isoenzymes are non-redundant and so knocking out any member of the isoenzyme set

knocks out the reaction (top) or the standard assumption that all isoenzymes in a set need to be knocked out in order to knock out the corresponding

reaction (bottom). Columns represent experimental classification of an epistatic interaction: synergistic (left), antagonistic (middle) and non-

interacting (right). The total number of these interactions are listed at the top just below the headers. The pie chart in each sextant represents the

capacity of FBA to predict these interactions. The colors of the slices show the FBA model predictions (blue, red and light grey, respectively for

synergistic, antagonistic and non-interacting). The offset slices show the correctly categorized genetic interactions.

doi:10.1371/journal.pone.0170164.g004
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categories of interaction (Fisher’s exact test, p< 0.01). The fact that changing the isoenzyme

assumption increases the number of predicted epistatic interactions is perhaps unsurprising,

given that, under standard gene-loss cost protocols, an isoenzyme may only be predicted to

exhibit epistasis under very narrow circumstances. Namely, (1) the isoenzyme must be one of

an isoenzyme pair, (2) the other deletion must be of the partner isoenzyme, and (3) the reaction

they catalyze together must incur a cost penalty when blocked. However, although the sensitiv-

ity increases after changing the isoenzyme to reaction mapping, there is also a large rise in the

number of false positives. Although the recall is improved, the precision is reduced (S5 Fig).

Discussion

We have introduced function-loss cost, a new metric for quantifying the impact of the deletion

of a gene based on genome-scale models of metabolism. This metric is similar to previously

estimated gene-loss impacts, except for the modification of some of the basic assumptions on

how the deletion of a gene translates into reaction flux constraints. The modification that ends

up being responsible for recovering the expected correlation between gene deletion impact

and evolutionary rate is the assumption on how isoenzyme deletion affects the corresponding

reaction flux. While previous calculations assume that each enzyme in a set of isoenzymes can

unconditionally perform the function in the absence of the other isoenzymes, the algorithm

we use here assumes that deletion of each isoenzyme causes a complete loss of function for the

cell. Based also on multiple types of analyses and observations [27,29,36], one would obviously

expect the reality to be a complex combination of the above assumptions: different isoenzymes

may respond differently to different environmental perturbations, and provide backup to each

other to varying degrees. What our results indicate, however, is that—on average—the

assumption that each isoenzyme fulfills an essential metabolic role is more consistent with the

evolutionary record than the opposite assumption of isoenzymes being unconditionally, indi-

vidually dispensable. On the other hand, the assumption that function-loss cost makes with

respect to how the cost of multifunctional enzymes should be estimated, appears to reduce the

strength of the relationship between evolutionary rate and the model predicted loss cost. The

approach of taking the sum of the costs of the individual reactions was chosen to try and cap-

ture the maximum cost of a gene deletion. In the future it could be worthwhile to investigate

other formulations of the cost for the loss of multifunctional enzymes, such as taking the maxi-

mum cost of the deletion of a single reaction rather than the sum of the costs of each reaction.

From the perspective of flux balance modeling, our analysis suggests that extra caution

should be used when applying the classical gene-to-reaction mapping relationships to estimate

the effect of gene loss, especially when using these models to understand evolutionary aspects

of metabolism. As to whether our newly suggested way to deal with isoenzyme deletion will be

helpful in comparisons with experimental gene deletion studies, this requires additional

evaluations.

With respect to epistasis, we have shown that this modification to the assumption of how

isoenzymes map to reactions results in more correctly predicted genetic interactions but also

in more false positives. In prior calculations, using the standard gene-to-reaction mapping

(Fig 1B), it would have been possible to detect such interactions only between two isoenzymes

that are the only two catalysts for a given reaction. In any other case (e.g. an interaction involv-

ing a single isoenzyme and another arbitrary enzyme), the complete backup assumption of iso-

enzyme sets would completely mask any possible interaction. In the future, by integrating high

throughput experimental data (such as epistasis measurements) and network structure infor-

mation, it may be possible to rewrite reaction-specific gene-to-reaction relationships (using

AND or OR) in order to further improve model prediction capacity.

Gene Deletion Costs Anticorrelate with Their Evolutionary Rates

PLOS ONE | DOI:10.1371/journal.pone.0170164 January 20, 2017 9 / 15



This could prove to be a very important development for the use of constraint-based mod-

els as tools in the future study of genetics, especially in the area of biomedicine. Double gene

deletions that result in cell death (synthetic lethal deletions) are an important avenue of cancer

research, where the ability to induce lethality only within subpopulation of cells that carry spe-

cific mutations by inducing a perturbation to the entire population is of obvious benefit. Simi-

larly, research into other metabolic diseases, such as fructose intolerance, could benefit from

increased ability to predict unexpected changes of metabolic phenotypes caused by double

gene perturbation events.

Materials and Methods

Yeast metabolic model and genes used in this study

This study was conducted using the Yeast 7 metabolic model of Saccharomyces cerevisiae
metabolism [22,23], which may be obtained from http://yeast.sf.net (specifically, version 7.6).

This model specifies a metabolic network consisting of 3493 reactions between 2220 metabo-

lites, a set of 909 enzyme-encoding genes, and a set of Boolean expressions associating reac-

tions to all possible subsets of genes that are required for catalysis (the gene-to-reaction

mapping, also known as the gene-protein-reaction expression map or GPR). We identified

blocked reactions in the model (reactions incapable of carrying flux) using a previously estab-

lished method [37] and subsequently purged all genes associated only with these reactions

from our analyses. All subsequent analyses presented in this section and the results presented

in this paper were made using this subset of 792 genes. For the specific cases of correlating

gene-loss cost and function-loss cost with evolutionary rate, restricting our analyses to a subset

of metabolic genes did not significantly impact the outcome (S4 Fig).

Calculation of gene evolutionary rates

The evolutionary rates of all metabolic genes included in this study were derived following the

procedure described in [26]. First, dN/dS ratios [2] (hereafter referred to simply as k) were

obtained from [26] for each Saccharomyces cerevisiae model gene from its corresponding

ortholog in five related yeast species: Saccharomyces bayanus, Saccharomyces castellii, Lachan-
cea kluyveri (formerly S. kluyveri [38]), Saccharomyces mikatae, and Saccharomyces paradoxus.
This provided, for each gene g, five separate strain-dependent measures of evolutionary rates

(kS: bayanus
g , kS: castellii

g , etc.). To obtain a single representative rate for each gene k̂g , we first grouped

all values of k by strain, converted these sets to rank order, and then took the average rank of

each gene across these sets; that is, k̂g ¼ hf
�kY

G j G ¼ ggi where �kg is the rank order of kg within

the set fkY
G j Y ¼ yg and y is the yeast comparison strain. The use of this measure of evolution-

ary rate allows more proteins to be analyzed than standard dN/dS, since this method does not

require that a protein have orthologs in all other species used. There were 13 genes for which

none of the five related species carried an appropriate ortholog. These genes were excluded

from the analysis of evolutionary rates. Note that throughout the paper we refer to the aver-

aged evolutionary rate rank score (k̂g) as the evolutionary rate. Importantly, since all our corre-

lations involving evolutionary rates are rank-based measures, this does not affect the outcome

of these calculations.

Prediction of gene-loss costs for S. cerevisiae metabolic genes

The gene-loss cost of each gene is calculated as the relative loss in predicted fitness of the gene-

knockout mutant as compared to the predicted fitness of the wild-type yeast. Fitness
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predictions for the wild type and all mutants were obtained using standard flux balance analy-

sis (FBA), which has been previously described in [14]. Briefly, FBA calculates the rate of flow

(i.e. flux) of metabolites through each reaction (vi) in the metabolic network in such a way as

to maximize the flux through a pseudo-reaction describing organism growth (w = vbiomass),

while at the same time satisfying the major constraint of steady state mass balance: S~v ¼ 0,

where S is the stoichiometric matrix. Additional constraints may be imposed on each reaction,

such that the minimum and/or maximum flux allowed through it is bounded (αi� vi� βi). In

our FBA model we impose three such types of additional constraints on reactions: (1) reaction

irreversibility constraints (vi > 0), as defined by the original model; (2) constraints pertaining

to environmental nutrient availability, available in S1 Table; and (3) constraints imposed by

gene deletions, described here in detail. Gene deletions are translated, through the gene-to-

reaction mapping, to constraints on some number of reactions (possibly zero) which limit the

flux through these reactions to zero (αi = 0� vi� βi = 0). With fitness taken to be the flux

through the biomass reaction, the normalized gene-loss cost of any gene g can be expressed as:

cGLC
g ¼

ww:t: � wDR

ww:t:

where ww.t. is the fitness of the wild type and wΔR is the fitness of the mutant with the set of

reactions R blocked. For a reaction r to be in the set R, the gene in question (g) must be a neces-

sary prerequisite for that reaction, as determined by the GPR:

R ¼ frjGPRðr; gÞ ¼ 1g

Prediction of function-loss costs for S. cerevisiae metabolic genes

The function-loss cost for each gene is calculated as the sum total of the individual costs of

removing each function (reaction) the gene is responsible for from the model one-by-one,

where an individual cost is represented by the fitness loss of the single-reaction knockout

mutant relative to the wild type as predicted by FBA. For this purpose, a gene g is said to be

responsible for a reaction r if the gene appears anywhere in that reaction’s associated GPR

expression. This translates to a fairly simple adaptation of the gene-loss cost metric, which can

be expressed as:

cFLC
g ¼

X

fr j GPRðr;gÞ existsg

ww:t: � wDr

ww:t:

Generation of environmental conditions for gene-deletion impact

simulations

Environmental conditions for flux balance simulations were generated by modifying a previ-

ously defined heuristic for determining minimal media that support growth [24]. First, an ini-

tial minimal medium was manually defined for the model, such that each primary nutrient

(e.g. carbon and nitrogen) was provided by only a single metabolite. Our initial medium con-

sisted of glucose, ammonium (NH4
+), inorganic phosphate and sulfate, oxygen, and minerals

(S1 Table). We then identified alternative carbon-providing metabolites by removing glucose

from this initial medium and exhaustively testing all other metabolites for growth. Similarly,

nitrogen-providing metabolites were identified by the removal of ammonium and subsequent

testing of metabolites. Our final set of minimal media was constructed by taking all pair-wise

combinations of carbon-providing and nitrogen-providing metabolites, together with the
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secondary metabolites listed previously, for which the wild-type model predicted positive

growth (S1 Table).

Simulations were also conducted on several non-minimal environments representing com-

mon lab-growth media. Such so-called “rich media” were defined manually for YPD, YPLac-

tate (both D- and L-Lactate), SD and SD−His (S1 Table). The SD-His settings were used in the

epistasis investigation in order to mimic the experimental setup in [20]. Maximum import

rates were restricted based on the measured uptake rate of glucose by S. cerevisiae grown in

YPD where this rate is limiting.

Calculation of epistasis

Epistatic interaction scores were calculated for each possible pair-wise interaction between

genes using a standard method [39]. Epistasis (ε) between any pair of genes i and j, is defined as

εij ¼ wij � wi � wj

where wi and wj represent the relative fitness of each single-gene deletion mutant and wij is the

relative fitness of the double-gene deletion mutant. The relative fitness of any mutant wi may be

derived from the loss cost (ci) as wi = 1 –ci. Predicted values of εwere generated using gene-loss

cost and using a modified version of gene-loss cost where the ORs were replaced with ANDs

for the isoenzyme gene to reaction mapping rules.

Comparison of predicted epistasis with experimental data

In order to assess the validity of our predicted epistatic interaction scores, we compared our

predictions against a data set for which these scores have been computed from experimentally

observed fitness [20]. We limited our comparisons to genes for which the experimentally

observed fitness of deletion mutant was no greater than two standard deviations above the fit-

ness of the wild type, because FBA is incapable of predicting increases in fitness due to gene

deletions (in the absence of other types of perturbations). We used the intermediate criteria

[20] of |ε|> 0.08, p< 0.05 to classify pairs of genes in the experimental data, into synergistic

interactions (negative ε), antagonistic interactions (positive ε), or non-interactions. We used a

cutoff of |ε|> 0.0001 for the FBA predictions in Fig 4. Performance was measured by testing

whether or not the epistatic classification predicted using FBA techniques matched the experi-

mental classification.

Data and scripts availability

All data and scripts used to generate the results presented in this work are freely available at

github.com/llambourne/isoenzymes_flux_balance (doi:10.5281/zenodo.231284) and at data-

dryad.org (doi:10.5061/dryad.6ht2c).

Supporting Information

S1 Fig. Sampling of gene dispensability vs. evolutionary rate plots. These plots show the

specific function-loss cost vs. evolutionary rate (light green dots) and gene-loss cost vs. evolu-

tionary rate (dark orange dots) plots. The four plots compare the dot plot generated by func-

tion-loss cost and gene-loss cost by testing in the same media. The plots were selected as the

most extreme media from both distributions, i.e. those which lead to the most negative and

least negative Spearman’s ρ (top and bottom: most and least negative ρ for function-loss cost,

respectively; middle-top and middle-bottom: most and least negative ρ for gene-loss).

(EPS)
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S2 Fig. Sampling of gene dispensability vs. evolutionary rate plots. These plots show the

specific function-loss cost vs. evolutionary rate (light green dots) and gene-loss cost vs. evolu-

tionary rate (dark orange dots) plots. The three plots show the dot plots for YPD rich media,

the reference media (the default carbon/nitrogen pair from which all other media were gener-

ated) and the median ρ-producing media set (this is the only plot which does not compare the

same environment against itself).

(EPS)

S3 Fig. Hybrid-loss Costs. These plots show the frequency distributions of gene dispensability

measures vs gene evolutionary rate using the hybrid-loss cost measures mentioned in the main

text. The top plot matches Fig 2A (function-loss cost, light green distribution; gene-loss cost,

dark orange distribution). The middle plot (indigo distribution) shows hybrid-loss cost 2,

where function-loss cost is applied to isoenzymes and gene-loss cost is applied to all other

genes. The bottom plot (fuchsia distribution) displays hybrid-loss cost 1, where function-loss

cost is applied to multifunctional enzymes and gene-loss cost to other genes.

(EPS)

S4 Fig. Blocked vs Total genes. Frequency distribution plots of gene dispensability measures

vs gene evolutionary rates for all genes (B) and unblocked genes (A). Blocked genes are incapa-

ble of carrying flux under all tested media conditions.

(EPS)

S5 Fig. Comparison of classification of genetic interactions. Precision/recall curves for (A)

synergistic and (B) antagonistic genetic interactions using different versions of the isoenzyme

to reaction mapping rules. The curves are generated by varying the ε cutoff used to define the

model predictions between 0.0001 and 0.01. The ε cutoff used to define the experimental

genetic interactions remains constant. Distributions of the predicted ε values using (C) the

standard assumption that isoenzymes in a set are redundant and (D) the new assumption that

isoenzymes in a set are non-redundant, for each possible pair of genes in the model.

(EPS)

S1 Table. List of metabolites used to simulate media sets. The first row specifies the refer-

ence minimal media set that was used to generate all other minimal media sets. The next two

rows, labeled “Carbons” and “Nitrogens”, list all possible carbon and nitrogen sources that

could substitute for D-glucose and ammonium (NH4
+) in the reference minimal media set.

The final columns provide a complete listing of the metabolites within the rich media sets

tested. In terms of the model: all exchange reactions not included in the above table were lim-

ited to export only (vi� 0). The non-carbon and non-nitrogen sources in the reference media

were left as unbounded import reactions, while the carbon and nitrogen sources were limited

to a vi = 10.
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