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Abstract
Advances in calcium imaging have made it possible to record from an increasingly larger number of neurons
simultaneously. Neuroscientists can now routinely image hundreds to thousands of individual neurons. An
emerging technical challenge that parallels the advancement in imaging a large number of individual neurons is
the processing of correspondingly large datasets. One important step is the identification of individual neurons.
Traditional methods rely mainly on manual or semimanual inspection, which cannot be scaled for processing large
datasets. To address this challenge, we focused on developing an automated segmentation method, which we
refer to as automated cell segmentation by adaptive thresholding (ACSAT). ACSAT works with a time-collapsed
image and includes an iterative procedure that automatically calculates global and local threshold values during
successive iterations based on the distribution of image pixel intensities. Thus, the algorithm is capable of
handling variations in morphological details and in fluorescence intensities in different calcium imaging datasets.
In this paper, we demonstrate the utility of ACSAT by testing it on 500 simulated datasets, two wide-field
hippocampus datasets, a wide-field striatum dataset, a wide-field cell culture dataset, and a two-photon
hippocampus dataset. For the simulated datasets with truth, ACSAT achieved �80% recall and precision when
the signal-to-noise ratio was no less than �24 dB.
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Significance Statement
ACSAT aims at automatically segmenting cells in large-scale calcium imaging datasets. It is based on
adaptive thresholding at both global and local levels and iteratively identifies individual neurons in a
time-collapsed image. It is designed to address a variety of datasets, potentially involving variations in cell
morphology and fluorescence intensity between different datasets. We demonstrate the effectiveness of
ACSAT by testing it under a variety of conditions. For the simulated datasets with truth, ACSAT achieved
recall and precision rates �80% when the signal-to-noise ratio was no less than �24 dB. For the datasets
from mouse hippocampus and striatum, ACSAT captured �80% of human-identified ROIs and even
detected some low-intensity neurons that were initially undetected by human referees.
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Introduction
The ability to record from a large population of single

neurons during behavior greatly facilitates the investiga-
tion of the contribution of individual neurons to neuronal
network dynamics. Extracellular single-unit recording has
traditionally been a method of choice in neurophysiolog-
ical analyses of single neurons in the brain. Recent im-
provements, such as the new generation of genetically
encoded calcium sensors GCaMP6 (Chen et al., 2013,
Sun et al., 2013), have made it possible to observe hun-
dreds to thousands of individual neurons simultaneously
(Ohki et al., 2005; Andermann et al., 2010; Huber et al.,
2012; Ziv et al., 2013; Issa et al., 2014; Mohammed et al.,
2016). Though indirect, these calcium indicators have
been sensitive enough to monitor neuronal activity with
high spatiotemporal precision in behaving animals, allow-
ing researchers to examine the activity of populations of a
specific cell type (Hofer et al., 2011; Wachowiak et al.,
2013; Pinto and Dan, 2015; Allen et al., 2017) or the same
cell over an extended period of time (Poort et al., 2015).

As the performance of genetically encoded calcium
indicators has improved, wide-field microscopy has be-
come feasible for recording the activity of a large popu-
lation of neurons over an extended anatomical area
(Lütcke et al., 2013; Wilt et al., 2013). Although lacking the
spatial subcellular resolution of a multiphoton micro-
scope, wide-field microscopes can operate at a higher
speed, allowing simultaneous recording of increasingly
larger populations (Ghosh et al., 2011; Ziv et al., 2013;
Kim et al., 2016; Mohammed et al., 2016). Advanced
microfabrication techniques further miniaturized the wide-
field microscope to a microendoscope capable of moni-
toring neural activity in freely-moving animals (Ghosh
et al., 2011; Ziv et al., 2013).

An emerging technical challenge that parallels ad-
vances in calcium imaging is the processing of large
datasets (Hamel et al., 2015). During data analysis, an
important step is to identify regions of interest (ROIs)
corresponding to individual neurons. As data grows rap-
idly both spatially and temporally, the traditional labor-
intensive approach of manual inspection has to be
automated. Principal component analysis (PCA) and in-
dependent component analysis (ICA) methods are natural
and frequently used candidates for automating ROI iden-

tification (Mukamel et al., 2009). However, if its assump-
tion of statistical independence between neurons is
violated, which is often the case in real neural recordings,
then the method relies on user selection of parameters for
spatial segmentation.

Threshold-based methods represent a promising and
intuitive alternative for automatic ROI identification. How-
ever, several challenges need to be overcome, including
variability in recording conditions or fluorescence signal
strength across structures, recording subjects, and the
imaging field. For example, one of the most referenced
thresholding methods, Otsu’s method, which automati-
cally selects the optimal threshold value that minimizes
the intraclass variance among ROI pixels and among
background pixels, would only successfully segment
some of the highest-intensity ROIs (Otsu, 1979; Sezgin
and Sankur, 2004). Additionally, the multiclass Otsu’s
method is limited because uneven lighting may result in
separate background classes. A waterfall-thresholding
approach addresses uneven lighting by iterative thresh-
olding to capture all intensity peaks, but its selection of a
threshold value is ad hoc, making it dataset-dependent
and user-dependent (Mellen and Tuong, 2009). A feed-
back loop–based approach for segmenting bacteria cells
optimizes the threshold value from the distribution of pixel
intensities, but its assumption that the total ROI area
remains constant over time does not hold for calcium-
imaging datasets because neurons change in brightness
(Shen et al., 2015). A recent machine learning–based
algorithm uses image gradients and pixel traces to opti-
mize threshold values, but it still requires a user’s subjec-
tive input in selecting a background removal factor based
on each dataset (Fantuzzo et al., 2017). Other approaches
based on edge detection have trouble due to weak fluo-
rescence signal strength in comparison with the back-
ground pixels (Sadeghian et al., 2009). Generally, most
segmentation methods require a high level of tuning to
each individual dataset.

To overcome these challenges of diverse imaging da-
tasets, we introduce a new automated cell segmentation
by adaptive thresholding (ACSAT) algorithm. ACSAT dy-
namically and automatically determines global and local
threshold values based on the distribution of pixel inten-
sities within a time-collapsed image of a recorded image
sequence. We demonstrate the utility of ACSAT on sim-
ulated datasets, cell culture datasets, and in vivo wide-
field and two-photon datasets. For the simulated datasets
with truth, ACSAT achieved �80% recall and precision
when the signal-to-noise ratio was no less than �24 dB.
ACSAT also captured �80% of human-identified ROIs in
datasets from mouse hippocampus and striatum and was
even able to detect low-intensity neurons that were ini-
tially undetected by human referees.

Materials and Methods
Wide-field hippocampus and striatum datasets

All animal procedures were approved by [Boston Uni-
versity] Institutional Animal Care and Use Committee.
Female C57BL/6 mice (8–12 weeks old, Taconic) were
first injected with 250 nL AAV9-Syn-GCaMP6.WPRE.
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SV40 virus (titer: �6e12 GC/mL, University of Pennsylva-
nia Vector Core). AAV was delivered either into the dorsal
CA1 (AP: –2, ML: 1.4, DV: –1.6), or into the dorsal striatum
(AP: 0.5, ML: 1.8, DV: –1.6) regions. Injections were per-
formed with a 10-�L syringe (World Precision Instru-
ments) coupled with a 33-gauge needle (NF33BL, World
Precision Instruments) at a speed of 40 nL/min, controlled
by a microsyringe pump (UltraMicroPump 3-4, World Pre-
cision Instruments). Upon complete recovery, a custom
imaging chamber with glass coverslip was surgically im-
planted on top of the viral injection site by removing the
overlying cortical tissue. The imaging chamber was as-
sembled by fitting a circular coverslip (size 0; OD: 3 mm)
to a stainless steel cannula (OD: 3.17 mm, ID: 2.36 mm)
using a UV-curable optical adhesive (Norland Products).
During surgery, a custom aluminum headplate was also
attached to the skull, which allowed head fixation during
the imaging session.

Imaging data were acquired with a custom wide-field
microscope coupled with a scientific CMOS camera
(ORCA-Flash 4.0, C11440-42U, Hamamatsu), controlled
by the commercial software package HCImageLive
(Hamamatsu). The wide-field microscope consisted of a
Leica N Plan 10� 0.25 PH1 objective lens, an excitation
filter (HQ 470/50), a dichroic mirror (FF506-Di02), an emis-
sion filter (FF01-536/40), a commercial SLR lens as the
tube lens (Nikon Zoom-NIKKOR 80–200 mm f/4 AI-s), and
a 5W LED (LZ1-00B200, 460 nm; LedEngin). Data acqui-
sition was performed at 20 Hz, at a resolution of 1024 �
1024 pixels, with 16 bits per pixel, for �10–20 min. With
10� objective lens, the microscope provided a field of
view of 1.343 � 1.343 mm2 (1.312 � 1.312 �m2/pixel) of
brain tissue. Imaging data were streamed from the cam-
era to RAM of a custom computer (dual Intel Xeon pro-
cessors, 128 GB RAM, and a GeForce GTX Titan video
card) to ensure temporal precision. After each imaging
session, data were moved from RAM to hard drive and
saved in multipage tagged image file format.

Two hippocampus datasets (A and B) were collected
from two mice [dataset A was previously reported by
Mohammed et al. (2016)]. The mice were trained to per-
form a trace conditioning task known to involve hip-
pocampal neural activity (Solomon et al., 1986; Moyer
et al., 1990; Tseng et al., 2004; Sakamoto et al., 2005). In
this task, the animal was trained to associate a condi-
tioned stimulus (a 350-ms-long tone) with an uncondi-
tioned stimulus (a gentle 100-ms air puff to one eye).
There was a 250-ms trace interval between two stimuli.
During each recording session, the animal was head-fixed
and performed 40 trials with a randomized 31–36-s inter-
trial interval. The hippocampus datasets (1024 � 1024
pixels/frame, 2047 frames, �100 s, �4 GB size) analyzed
in this study were part of larger recording sessions (�50
GB size).

The striatum dataset was collected from a head-fixed
animal running on a spherical treadmill system. The tread-
mill system consisted of a Styrofoam ball floated by air
pressure in a 3D-printed bowl designed as described in
Dombeck et al. (2007) that allowed the animal to move its
limbs freely while head-fixed. The mouse was first han-

dled for several days before being head-fixed to the
spherical treadmill. Habituation to running on the spheri-
cal treadmill while head-fixed occurred over 3–4 days/
week at the same time of day as subsequent recording
sessions (8–12 h after lights-on), for several weeks. Single
imaging sessions took �25 min. Sampling occurred at
�20 Hz, and exposure time was fixed at 20 ms. The
striatum dataset (�100 s, �4 GB size) contains 2047
frames with 1024 � 1024 pixels per frame and was also
part of a larger dataset (�25 GB size).

Two human referees manually identified ROIs in the
hippocampus dataset A and in the striatum dataset to
create a set of human-generated ROIs for comparison
with ACSAT’s segmentation results. This manual selec-
tion was done by viewing the image sequence and seg-
menting ROIs that had fluorescence traces compatible
with neuronal dynamics and/or by selecting ROIs from a
composite image created from the video sequence and
confirming that fluorescence traces were compatible with
neuronal dynamics.

Wide-field cell culture dataset
The primary neuron cell dataset was collected from a

10-day-old neuron culture, infected with AAV9-Syn-
GCaMP6.WPRE.SV40 virus. Seven days after infection,
neurons were imaged at 20 Hz for 60 s. The primary
neuron culture dataset contains 1201 frames, 1024 �
1024 pixels per frame, recorded with the same imaging
setup as for the hippocampus and striatum datasets de-
scribed above.

Two-photon dataset
The two-photon dataset was downloaded from the

Neurofinder website (http://neurofinder.codeneuro.org/,
03.00). GCaMP6f was used as the indicator. The dataset
contains 2250 frames with 498 � 490 pixels per frame
with resolution 0.588 � 0.588 �m2/pixel.

Signal-to-noise ratio (SNR) calculation
We calculated the SNR in decibels (dB) as

SNR � 20 � log
�ROI

�background
.

For the simulated datasets, �ROI is the mean intensity
value of all pixels belonging to all ROIs in the time-
collapsed image I0, and similarly, �background is the standard
deviation of background pixel intensity values, i.e., all
pixels that do not belong to an ROI. For the hippocampus
dataset A and the striatum dataset, �ROI is the maximum-
intensity value of an ROI trace, and �background is the stan-
dard deviation of the background trace. The ROI trace
value at each time point is the averaged intensity values of
all pixels belonging to that ROI, and similarly for the
background trace, which uses all pixels not belonging to
any ROI. Note that the SNR for the simulated datasets
describes the whole time-collapsed image I0, whereas the
SNRs for the hippocampus and striatum datasets de-
scribe an individual ROI.
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Simulated datasets
We tested ACSAT’s segmentation performance on 500

simulated datasets with varying SNRs (between �19 and
�29 dB) and numbers of ROIs (between 300 and 700). Fig.

2B shows some examples of the simulated time-collapsed
image, i.e., the input image I0 to ACSAT in Fig. 1A. The
simulation gives us the true locations of all ROIs so that we
can accurately assess ACSAT’s segmentation performance.

Figure 1. Flowchart of the ACSAT algorithm. A, The input is the time-collapsed image I0, and the output is a collection of automatically
segmented ROIs. In each iteration, the Global FIBAT step identifies potential ROIs �ROIs�n

= by applying FIBAT, described in B, to the
entire image In; and the Local FIBAT step, described in C, splits overlapping ROIs. B, Flowchart of the FIBAT algorithm. The input
image is segmented using each of the test threshold values �1, �2, �, �T. The search range for the optimal threshold value (�1, �T) is
iteratively narrowed to contain the test threshold value which results in the maximum number of ROIs. C, Local FIBAT procedure.
FIBAT, described in B, is recursively applied to each potential ROI until the resulting ROIs can no longer be separated by FIBAT.
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Our simulated datasets were obtained by a procedure
adapted from Zhou et al. (2018). We used the model
I0 � E � AC to generate the simulated datasets, where E
represents noise, A represents the shapes of each ROI,
and C adjusts each ROI’s intensity to simulate uneven
lighting.

The pixel noise values in E were randomly sampled
from the background pixel values in the time-collapsed
image for the hippocampus dataset. This noise is unlikely
to be Gaussian, because the time-collapsing procedure
subtracts the mean value from the maximum value of
each pixel such that the time-collapsed image is biased
toward higher pixel values.

The centroid location of each ROI represented in A was
randomly selected with weights C2. The pixel values
comprising the body of each ROI was modeled determin-
istically by the bivariate Gaussian probability density func-
tion, with widths randomly selected according to Zhou
et al. (2018).

The image C is also used to amplify each ROI’s pixel
values to reflect uneven lighting conditions across the
imaging field. C was generated by applying heavy Gauss-
ian filtering to the time-collapsed image of the hippocam-
pus dataset until no individual ROIs are detectable.

ACSAT overview
Fluorescence imaging data obtained in the form of

image sequences is processed offline using a custom
Matlab algorithm. Image sequences were first motion-
corrected as described in Mohammed et al. (2016) to
remove micromotion of the imaged area caused by
breathing and other movements of the animal. ACSAT
(Fig. 1A) is then applied to a time-collapsed image that
represents the image sequences, to automatically identify
individual neurons as ROIs.

The input image sequence is first loaded into Matlab as
a 3D matrix (height � width � time) and then time-
collapsed to produce a representative two-dimensional
image (height � width, I0 in Fig. 1A), where each pixel in I0
is represented by the maximum-intensity value of that
pixel across the entire image sequence with its mean
value removed. This time-collapsed image I0 is then used
for the rest of the algorithm. Pixels with low-intensity
values would correspond to static background, whereas
pixels with high-intensity values would correspond to
neurons with GCaMP6 expression. In general, neurons
with GCaMP6 expression appear in I0 as a cluster of
adjacent pixels with high-intensity values and with size
similar to that of a neuron. Meanwhile, it is improbable for
random background noise to generate clusters with sim-
ilar properties. Thus, the time-collapsed image I0 is ex-
pected to contain sufficient information to separate
neurons from the background.

Next, ACSAT iteratively generates ROIs �ROIs�n from
the time-collapsed image In for iterations n � 1, 2, �,
starting with I1 � I0. Before each subsequent iteration, In is
generated by cumulatively clearing previously segmented
ROIs, �ROIs�n�1, from In�1 by setting each ROI’s pixels in
In�1 to blank values of 0 and dilating the cleared area. As
described later, each iteration consists of both adaptive

thresholding at the global level (Global FIBAT in Fig. 1A),
using the automatically selected threshold value �n

� (Fig.
1B), and adaptive thresholding at the local level (Local
FIBAT in Fig. 1A). When the change in global threshold
value 	�n�1

� � �n
�	 is insignificant, further iterations are likely

to contribute more false positives than true positives.
Thus, the ACSAT algorithm terminates at iteration n if

	�n�1
� � �n

�	
�1

�

 � ,

where �1
� acts as a normalizing factor. Accordingly, the

final output of ACSAT is the union of the segmented ROIs
from each iteration, �ROIs�1�· · ·��ROIs�n.

Global and local adaptive thresholding in ACSAT
Each iteration n of ACSAT contributes a set of newly

segmented ROIs �ROIs�n from In by applying our fluores-
cence intensity based adaptive thresholding (FIBAT) algo-
rithm, at the global and local levels (Global/Local FIBAT in
Fig. 1A). Briefly, FIBAT (Fig. 1B) takes an inputted image I
and outputs the optimal threshold value �� which results in
optimally segmented ROIs �ROIs	���.

Global adaptive thresholding is the first step in the nth
iteration of ACSAT (Fig. 1A). This step applies FIBAT
directly to the whole image �In ¡ I� to identify potential
ROIs ��ROIs	��� ¡ �ROIs�n

� �.
These potential ROIs �ROIs�n

� may include groups of
adjacent neurons or overlapping neurons because neu-
rons located above and below the focal plane could be
captured in the same frame during wide-field imaging.
Such overlap, however, is unlikely to occur in two-photon
datasets or in cell culture datasets. The local adaptive
thresholding step (Fig. 1C) recursively separates any po-
tentially overlapping ROIs within �ROIs�n

� to output �ROIs�n.
Specifically, each ROI in �ROIs�n

� is individually dilated and
then inputted to the local FIBAT (ROI ¡ I) in Fig. 1B to
obtain a set of separated ROIs �ROIs	���. If any outputted
set �ROIs	��� contains more than one separated ROI, then
each ROI in the set �ROIs	��� is further separated using the
same procedure, thus forming a recursive loop. Other-
wise, if any outputted set �ROIs	��� contains only one ROI,
then the recursion terminates. The final output of the local
thresholding step �ROIs�n is the union of all such sets
containing one ROI that cannot be further separated.

FIBAT
As described, FIBAT (Fig. 1B) is used in both the global

and local adaptive thresholding steps of each iteration of
ACSAT to identify potential ROIs in the time-collapsed
image I � In or to separate potentially overlapping neurons
within I which is an element of �ROIs�n

� , respectively. In
either case, an optimal pixel intensity threshold value ��

separates ROIs from the background. FIBAT selects �� by
searching for the threshold value that maximizes the num-
ber of resulting ROIs that are larger in area than Amin and
smaller in area than Amax.

The search is performed recursively over a pixel inten-
sity range ��1, �T�, where initially �1 is the minimum pixel
intensity value in I and �T is the maximum pixel intensity
value in I. From this search range, T test threshold values
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�1, �2, �, �T�1, �T are uniformly selected. A larger T will de-
crease the probability of skipping the optimal threshold
value, but it will result in more computation time that may
not be necessary. Because the threshold value is refined
by a recursive process until it reaches the optimal value
that produces the maximum number of ROIs, the value of
T should have little to no effect on ACSAT’s segmentation
results. We chose T � 12. Each of these test threshold
values �1, �, �T is applied to the image I by assigning each
pixel a 1 (a true calcium event) if its value is greater than
the threshold or a 0 (a false calcium event) otherwise. Mor-
phological operations are then performed to refine the
thresholded images. Specifically, these operations fill in
holes (0s surrounded by 1s) and remove spur pixels that may
be due to noise. The operations also break H-connected
ROIs before splitting overlapping cells. ROIs are finally col-
lected with 8-connectivity (Matlab function bwlabel or bw-
conncomp) to generate a set of segmented ROIs for each
test threshold value: �ROIs	�1�, �, �ROIs	�T�.

Since ROIs represent real neurons that are roughly
spherical in shape and are �5–20 �m in diameter, some
realistic criteria can be used to eliminate false ROIs that
are not possibly actual neurons. Accordingly, FIBAT re-
moves ROIs from �ROIs	�1�, �, �ROIs	�T� if their centroid is
outside the ROI, or if their area is less than Amin or greater
than Amax, or if their solidity (i.e., the area ratio between the
convex hull of a ROI and the ROI itself) is greater than
approximately the golden ratio.

The next search range is selected based on the
results of the test thresholds. A relationship of the test
threshold values �1, �, �T versus the numbers of result-
ing ROIs 	�ROIs	�1�	, �, 	�ROIs	�T�	 can be generated
(Fig. 1B). If the test threshold value �c resulted in the
most ROIs, i.e., c � argmaxc	�ROIs	�c�	, then the next
search range is set to ��max�1, c�1�, �min�T, c�1�� to include �c

inside the search range. If more than one test threshold
value �c1

, �c2
, � resulted in the same maximum number of

ROIs, then the next search range is similarly set to
��max�1, min�c1, c2, ���1�, �min�T, max�c1, c2, ���1�� to contain all �c1

, �c2
, �.

This search is terminated when further refinement of the
search range produces little improvement in the number
of detected ROIs: either the new search range 	�c�1 �
�c�1	 is less than � or the new range overlaps the previous
range by at least . We chose  � 90% and � � the
smallest nonzero intensity difference between every pair
of adjacent pixels in whole image I. As such, � is deter-
mined automatically and does not require user input. On
termination, the optimal threshold value is set to �� �
1 / 2 �min��c1

, �c2
, �� � max��c1

, �c2
, ���, and the segmented

ROIs �ROIs	��� includes ROIs whose area exceeds Amax.

Code accessibility
The code/software described in the paper is freely

available online at https://github.com/sshen8/acsat. The
code is available in Extended Data 1.

Results
We tested ACSAT on 500 simulated datasets, two

wide-field hippocampus datasets, a wide-field striatum
dataset, a wide-field cell culture dataset, and a two-
photon hippocampus dataset. The simulated datasets

with known ground truth allowed us to accurately assess
the segmentation performance of ACSAT in different con-
ditions of SNR and number of ROIs. For the hippocampus
dataset A and the striatum dataset, in which the ground
truth is unknown, we used human-generated ROIs as a
reference. For the cell culture dataset, hippocampus da-
taset B, and two-photon dataset, we provide the ACSAT
segmented ROIs that can be inspected and interpreted by
users.

ACSAT performance on simulated datasets with
various SNRs and numbers of ROIs

To evaluate the performance of ACSAT, we simulated
500 time-collapsed images I0 with various numbers of
ROIs (between 300 and 700) at random locations and
different SNRs (between �19 and �29 dB). The exact
locations of ROIs are known and served as the ground
truth to provide an accurate evaluation of the performance
of ACSAT. For all 500 datasets, we used the parameters
� � 10%, Amin � 50 px � 86 �m2 and Amax � 300 px �
516 �m2 for the global adaptive thresholding step, and
Amin � 20 px � 34 �m2 and Amax � � for the local adaptive
thresholding step because ROIs tend to shrink in size after
repeatedly applying FIBAT.

The recall and precision results for each of these sim-
ulated datasets are shown as dots in Fig. 2A1 and Fig.
2A2, respectively. Fig. 2B shows examples of the simu-
lated time-collapsed images, and each example corre-
sponds to a dot in Fig. 2A1 and Fig. 2A2. At SNR greater
than �24 dB, ACSAT shows a stable performance with
generally higher than 80% recall. The precision rate re-
mains stable at generally higher than 80% when SNR is
greater than �21 dB. However, the performance of AC-
SAT falls when SNR is below �20 dB.

ACSAT performance on hippocampus dataset A and
striatum dataset

We used ACSAT (Fig. 1A) to automatically segment
ROIs from a hippocampus wide-field imaging dataset and
a striatum wide-field imaging dataset. Before the applica-
tion of the ACSAT, the image sequences were time-
collapsed as shown in Figs. 3 and 4 (top rows) for the
hippocampus A and the striatum datasets, respectively.
These time-collapsed images show high-intensity areas
resembling neural morphology. The final segmented ROIs
outputted by ACSAT are illustrated in Figs. 3 and 4 (bot-
tom row), respectively.

For both datasets, we initiated ACSAT using the same
parameters as for the simulated datasets (� � 10%,
Amin � 50 px � 86 �m2 and Amax � 300 px � 516 �m2 for
the global adaptive thresholding step, and Amin �
20 px � 34 �m2 and Amax � � for the local adaptive
thresholding step). To obtain the results as shown in Figs.
3 and 4, it took approximately 1 min per iteration on a
Xeon E5-1650 v4 at 3.6 GHz with 128 GB DDR4 RAM, but
it used �30 MB RAM. As such, the RAM size had little
effect on the speed.

ACSAT performance compared to human-generated ROIs
To assess the performance of the ACSAT algorithm, we

compared the ACSAT segmentation results with ROIs
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Figure 2. ACSAT performance on simulated datasets. A1,A2, Recall (A1) and precision (A2) are plotted as a function of SNR and
number of ROIs. Each dot corresponds to the ACSAT result for one of the 500 simulated datasets. A surface was fitted to these dots
for visualization. The black vertical plane corresponds to the SNR of the hippocampus A dataset. B, Six examples of simulated
time-collapsed images, labeled a–f, correspond to the dots labeled a–f in A1 and A2.

Figure 3. Hippocampus dataset A and ROIs identified by ACSAT. A, The time-collapsed image of hippocampus dataset A and
zoom-in images (Ai, Aii, and Aiii, corresponding to the gray boxes). B, ACSAT-determined ROIs from multiple iterations overlying on
the time-collapsed image (red, yellow, green, and blue outline corresponds to iteration 1, 2, 3, and 4, respectively). The fourth iteration
(blue) is shown for comparison although ACSAT terminated at iteration 3 (red, yellow, and green).
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generated by human inspection (human-generated ROIs).
This set of human-generated ROIs contained 423 ROIs for
the hippocampus dataset A and 91 ROIs for the striatum
dataset. We first compared the ACSAT-generated ROIs
for the hippocampus A and striatum datasets with the
ROIs in the human-generated ROIs. We consider a pair of
ROIs to correspond to the same neuron if they had cen-
troids that were �50 px � 65.6 �m apart and had a
mutual overlap �60%. We calculated the mutual overlap
as the average of the percentages of the overlapping area
against the areas of both ROIs. When there were multiple
ROIs sharing overlapping areas, we selected the pair with
highest mutual overlap as the matched ROIs.

For the hippocampus dataset A, ACSAT identified 445
ROIs after three iterations. Among these 445 ROIs, 317
ROIs were matched in the human-generated ROIs
(Match), and 128 ROIs were not in the human-generated
ROIs (ACSAT-only). Additionally, 106 ROIs in human-
generated ROIs were not identified by ACSAT (Human-
only). This result gave us a precision rate of 71.2% (317
out of 445) and a recall rate of 74.9% (317 out of 423). For
the striatum dataset, ACSAT was terminated after one
iteration and identified a total of 135 ROIs: 69 Match ROIs,
66 ACSAT-only ROIs, and 22 Human-only ROIs (precision
rate: 51.1%, recall rate: 75.8%).

We further examined the fluorescence traces of ROIs
from the ACSAT-only, Human-only, and Match groups.
Representative traces are shown in Fig. 5A1,B1, respec-
tively, for the hippocampus A and striatum datasets, and
all traces are available in Extended Data 2. The value of
each ROI fluorescence trace at each time point is the
average intensity value of all pixels belonging to that ROI.
In Fig. 5A1,B1, each trace is normalized by subtracting

the mean value of that trace over time and then dividing
the difference by that mean value. We calculated the SNR
for every ROI in each group. In both the hippocampus A
and striatum datasets, the Match ROIs exhibit a broad
range of SNR, indicating that both ACSAT and humans
are capable of identifying ROIs with various intensities in
the time-collapsed image (Fig. 5A2,B2).

We further examined the individual ROIs identified by
ACSAT that were not identified by humans. This second-
ary manual inspection found that some of the ACSAT-only
ROIs were actually true neurons (i.e., with fluorescence
traces compatible with neuronal dynamics) that were
missed in the initial human-generated ROIs because of
human error. This means that ACSAT was able to seg-
ment ROIs that were difficult to identify by human experts.
Specifically, for the hippocampus A dataset, 70 (54.7%)
out of 128 ROIs initially labeled as ACSAT-only were later
determined to be actual neurons, and for the striatum
dataset, 31 (47%) ROIs were true neurons. After correc-
tion, of the total 445 ACSAT ROIs from the hippocampus
dataset A, 387 segmented ROIs corresponded to true
neurons (Match), and 58 segmented ROIs did not corre-
spond to true neurons determined by human inspection
(ACSAT-only). Additionally, 106 true ROIs were not seg-
mented (Human-only). This corresponds to a precision
rate of 87% and a recall rate of 78.5%. Similarly, for the
striatum dataset, which resulted in 135 ACSAT ROIs,
there were 100 Match ROIs, 35 ACSAT-only ROIs, and 22
Human-only ROIs after correction. This corresponds to a
precision rate of 74.1% and a recall rate of 82%. Although
neurons in the hippocampus and striatum have different
morphology and fluorescence intensity, ACSAT was con-
sistently effective for both datasets, and it was able to

Figure 4. Striatum dataset and ROIs identified by ACSAT. A, The time-collapsed image of striatum dataset and zoom-in images (Ai,
Aii, and Aiii, corresponding to the gray boxes). B, ACSAT-determined ROIs from multiple iterations overlying on the time-collapsed
image (red, yellow, green, and blue outline corresponds to iteration 1, 2, 3, and 4, respectively). The second (yellow), third (green), and
fourth (blue) iterations are shown for comparison although ACSAT terminated at iteration 1 (red).
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detect low-intensity neurons that were initially undetected
by human referees. As such, our results demonstrate the
robustness and effectiveness of the algorithm.

The result from the hippocampus dataset A shows that
ACSAT successfully identified true ROIs of diverse sizes
(Fig. 6, red). In general, the false-positive ROIs had rela-
tively smaller areas (Fig. 6, yellow), similar to the ROIs
missed by human referees (Fig. 6, green). This indicates
that ACSAT is more likely to recognize intensity changes
in small areas, thereby outperforming human referees
under such challenging detection conditions. Additionally,
ACSAT missed a small portion of true ROIs, which shares
similar sizes with those identified (Fig. 6, blue).

Number of iterations in using ACSAT
For the hippocampus dataset A, ACSAT was termi-

nated at iteration n � 3 when the change in global thresh-
old value

	�4
� � �3

�	
�1

�
� 5.12% 
 � � 10% .

For the striatum dataset, ACSAT was terminated at
iteration n � 1 when the change in global threshold value

	�2
� � �1

�	
�1

�
� 4.53% 
 � � 10% .

To evaluate how ACSAT performs when terminated at
different iteration numbers, we ran ACSAT up to nine
iterations on both datasets, and calculated several major
performance indicators after each iteration (Fig. 7): cumu-
lative number of ROIs, global threshold value, recall, false-
negative rate, and false discovery rate (which is equal to 1
– precision) compared to the human-generated ROIs be-

Figure 5. Fluorescence traces and SNRs. A1, Representative fluorescence traces from the hippocampus dataset A for ROIs identified
by both ACSAT and human referees (Match), ROIs identified only by ACSAT, and ROIs identified only by human referees (Human).
A2, Histogram of SNR for Match, ACSAT, and human ROIs from the hippocampus dataset A. B1, Representative fluorescence traces
from the striatum dataset. B2, Histogram of SNR for the striatum dataset.

Methods/New Tools 9 of 15

September/October 2018, 5(5) e0056-18.2018 eNeuro.org



fore secondary manual inspection of false positives. The
cumulative number of ROIs, recall, and false discovery
rate increased with the iteration number, but at different
speed. While the cumulative number of ROIs and the false
discovery rate increased steadily, recall rose steeply and
reached its plateau within approximately three iterations
for the hippocampus dataset and after the first iteration
for the striatum dataset. Both the global threshold value
and the false-negative rate dropped as iterations pro-
gressed, indicating that ACSAT dynamically adjusted the
threshold to capture potential ROIs with lower intensity in
later iterations. This dynamic adjustment of the threshold
value at each iteration was possible only because of the
removal of segmented ROIs before each iteration. Overall,
the changes in these performance indicators over itera-
tions suggested that most true ROIs were identified dur-
ing the early iterations: n � 3 for the hippocampus dataset
and n � 1 for the striatum dataset, which are consistent
with when the ACSAT termination criterion described by �
was met. ROIs segmented during later iterations were
mostly false positive.

FIBAT global and local thresholding
In Fig. 8, we demonstrate how FIBAT (Fig. 1B) deter-

mines the threshold value that achieves optimal segmen-
tation results by sampling the distribution of threshold
values versus the number of ROIs. Each trace of Fig. 8
plots the number of ROIs that results from each sampled
threshold value in the global thresholding step during the
first four iterations of ACSAT (Fig. 1A) on the hippocam-
pus dataset A. In each iteration, FIBAT (Fig. 1B) first
samples the threshold values across the entire intensity
range at coarse resolution to identify the potential search
range that may result in the maximum number of ROIs.
FIBAT further resamples threshold values within the new
search range with a finer resolution, until it reaches a
threshold value that gives the maximum number of ROIs.
This design allows FIBAT to determine the optimal thresh-
old value with a fine resolution without actually sampling

the whole intensity range at the fine scale, and, as a result,
reduces the processing time.

After performing global thresholding to identify potential
ROIs �ROIs�n

� (Fig. 1A), ACSAT further applies FIBAT lo-
cally to each identified ROI in �ROIs�n

� to refine the seg-
mentation results (Fig. 9). When neurons are densely
labeled with GCaMP6, using the global thresholding step
alone may lead to one or more large clusters of adjacent
neurons being segmented as a single ROI (Fig. 9A). For
each such cluster, FIBAT (Fig. 1B) determines and applies
a new threshold value to the local ROI area. With local
thresholding, the example cluster is further segmented
into five new ROIs (Fig. 9B), which would not otherwise be
separated by applying the global threshold. Because fur-
ther local thresholding produces the same result (Fig. 9C),
the local thresholding step of ACSAT concludes that
these five ROIs cannot be further separated, exits the
recursive loop, and outputs these ROIs.

To evaluate the efficacy of local thresholding, we ex-
amined the hippocampus dataset A at each iteration be-

Figure 6. Distribution of ROI size for hippocampus dataset A.
ROIs identified by ACSAT and human (red) with various size. The
ACSAT-only ROIs (yellow) and those missed by human experts
(green) tend to have small areas, while the areas of human-only
ROIs (blue) appear slightly larger.

Figure 7. Performance of ACSAT over iterations. A, B, For both
hippocampus dataset A (A) and striatum dataset (B), the cumu-
lative number of identified ROIs (solid line) increased steadily
over iterations. The global threshold (dashed blue line) tended to
decrease with each iteration, allowing ACSAT to capture ROIs
with lower intensity. Both recall (solid red line) and false discov-
ery rate � 1 – precision (dotted red line) increased with iterations,
while the false-negative rate (dashed red line) decreased. All
results reported here are based on human-generated ROIs be-
fore secondary manual inspection of false positives.
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fore and after the local thresholding step (Fig. 10, left and
right bars, respectively). Local thresholding refined the
ROIs detected by global thresholding and captured more
true ROIs at every iteration. It is also worth noting that, at
later iterations, local thresholding was still able to identify
true ROIs that were missed by global thresholding alone
(Fig. 10, iteration 4).

ACSAT performance on two-photon dataset
We applied ACSAT to the two-photon dataset Neu-

rofinder 03.00 (Fig. 11C). Genetically Encoded Calcium

Indicators are generally not expressed in the nuclei (Tian
et al., 2009), and because of the optical sectioning tech-
nique that two-photon imaging provides, in this dataset
the nuclei appear dark. Additionally, this dataset had high
speckle noise. Thus, the time-collapsed image generated
by ACSAT using max minus mean pixel values shows
bright nuclei. The truth file provided by Neurofinder con-
tains 621 ROIs, most of which are nuclei. Since the fea-
tures of this dataset are the nuclei, which are smaller, we
used the parameters � � 5%, Amin � 20 px � 6.9 �m2 and
Amax � 1000 px � 34.6 �m2 for the global adaptive thresh-
olding step, and Amin � 20 px � 6.9 �m2 and Amax � � for
the local adaptive thresholding step.

ACSAT identified 571 ROIs. Among these, 442 ROIs
were matched with the truth (true positive), and 179 ROIs

Figure 8. Convergence of the FIBAT optimal global threshold value for the hippocampus dataset A. FIBAT first sampled at a coarse
scale across a wide intensity range, and then focused on a small potential intensity range with a fine scale to identify the optimal global
threshold value that generated most ROIs. The vertical lines indicate the final optimal global threshold value determined by FIBAT for
each iteration.

Figure 9. Improved ROI identification by local thresholding. A,
With global thresholding alone, a cluster of hippocampal neurons
was identified as a single ROI. B, After application of local
thresholding, ACSAT successfully separated five new ROIs from
the single ROI. C, Zoom-in of each ROI separated by local
thresholding.

Figure 10. Local thresholding improves ACSAT performance for
hippocampus dataset A. The ROIs identified by ACSAT at each
iteration before local thresholding (left) and after (right). Local
thresholding separated overlapping ROIs and thus helped iden-
tify more ROIs, including those identified by human (black) or
missed by human (red).
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were not in the truth (false positive). Additionally, 129 ROIs
in truth were not identified by ACSAT (false negative). This
result gave us a recall rate of 71.2% (442 out of 621) and
a precision rate of 77.4% (442 out of 571).

We further inspected the time-collapsed image I0 and
observed that the right side of the time-collapsed image I0
had different patterns of texture than the left side. To use
the new texture information for ROI detection by ACSAT,
we extracted the right side of I0 that is rich in texture
information to generate I�0 as input to ACSAT. The I�0
was generated by change detection between the orig-
inal image and its Gaussian-filtered counterpart. Thus,
ACSAT identified an additional 157 ROIs, of which 95
were true positives, and 62 were false positives. Com-
bining these additional ROIs with the ROIs identified by
direct application of ACSAT results in a recall rate of
82.8% (514 out of 621) and a precision rate of 70.6%
(514 out of 728).

ACSAT performance on cell culture and
hippocampus B dataset

Finally, we used ACSAT to detect ROIs in the dataset of
the primary neuron culture expressing GCaMP6f (Fig.
11B). Qualitatively, it appears ACSAT successfully identi-
fied the cell bodies of the majority of neurons in early
iterations, and neurites in later iterations. We also used
ACSAT to detect ROIs in the hippocampus dataset B (Fig.
11A). For both datasets, we used the parameters � �
10%, Amin � 50 px � 86 �m2 and Amax � 300 px �

516 �m2 for the global adaptive thresholding step, and
Amin � 20 px � 34 �m2 and Amax � � for the local adaptive
thresholding step because ROIs tend to shrink in size after
repeatedly applying FIBAT.

Discussion
In this study, we presented our automated cell segmen-

tation by adaptive thresholding (ACSAT) method that
adaptively selects threshold values based on image pixel
intensity with two iterative steps at the global and local
levels using a time-collapsed image. As such, the algo-
rithm is capable of handling morphological variations in
fluorescence intensity in neurons and is robust against
luminance condition changes across datasets. When ap-
plied to two datasets collected from the hippocampus
and the striatum in mice, ACSAT resulted in �80% recall
rate of ROIs containing individual neurons (78.5% for the
hippocampus A dataset and 82% for the striatum data-
set), and �80% precision rate (87% for the hippocampus
dataset and 74.1% for the striatum dataset). ACSAT was
also able to detect low-intensity ROIs that were initially
undetected by human referees. When applied to 500
simulated datasets, ACSAT achieved recall and precision
rates higher than 80% when SNR was no less than �24
dB. However, the performance of ACSAT falls when SNR
reaches below �20 dB.

The ACSAT algorithm is an intuitive thresholding
method that uses global and local schemes to address
variations in fluorescence intensity levels of GCaMP6 flu-

Figure 11. ACSAT results of various datasets. A, The time-collapsed image of hippocampus dataset B (top) with ACSAT ROIs overlaid
(bottom). B, The time-collapsed image for the primary neuron culture dataset (top) with ACSAT ROIs overlaid (bottom). C, The
time-collapsed image for the two-photon dataset (Neurofinder 03.00; top) with ACSAT ROIs overlaid (bottom). For all three datasets,
the majority of ROIs were identified during the first two iterations. Red, yellow, green, and blue ROI outline corresponds to iteration
1, 2, 3, and 4, respectively.
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orescence even within the same image field. Simply ap-
plying a lower global threshold value would result in few
large ROIs containing multiple neurons within one ROI. On
the other hand, with a high global threshold value, only a
small number of neurons with high intensity would be
found. As such, applying a single high or low threshold
value would generate inadequate results of either few or
excessive ROIs, which is a universal limitation of thresh-
olding methods. Our algorithm efficiently addresses this
challenge in two ways.

First, it cumulatively excludes previously segmented
ROIs from the time-collapsed image In after each iteration
so that in the following iteration, ACSAT could detect new
ROIs that require distinct thresholds to separate but were
missed with previous thresholds. Therefore, the global
threshold value �n

� (Fig. 1) used by ACSAT usually de-
creases after each iteration, and ROIs with high intensity
were segmented before those with low intensity, as
shown in Figs. 3 and 4. Because ACSAT is based on
adaptive thresholding, it allows us to objectively and ro-
bustly segment ROIs with low intensity relative to the
background. These low-intensity areas often pose chal-
lenges to human experts when manually detecting ROIs,
as our results showed that about half of the ROIs initially
labeled as false positive were actually true neurons (Fig.
10).

Second, ACSAT uses fluorescence intensity based
adaptive thresholding (FIBAT) locally to separate overlap-
ping ROIs. This approach directly addresses the issue of
heterogeneity in recorded neural signals when the inten-
sities of pixels surrounding an ROI can vary. However,
because a higher thresholding value is usually required to
separate adjoining neurons, the output sub-ROIs after
local FIBAT are often smaller than the corresponding true
neurons. Thus, a simple dilation step was applied during
the local FIBAT step. This correction is useful to prevent
real ROIs from falling below the minimum area criterion
Amin and thus being removed. Although the interleaving
process of global FIBAT and local FIBAT has been effec-
tive in addressing overlapping neurons, a potential prob-
lem still arises if two neurons with similar intensities have
significant overlap with each other in the time-collapsed
image such that there is no trough between them. Then
ACSAT may identify them as a single ROI. Conversely, if
there is a neuron with multiple hotspots (Pnevmatikakis
et al., 2016), then this may be identified as multiple neu-
rons by ACSAT. Such a scenario, however, can be mini-
mized by the minimum area criterion Amin and the
maximum area criterion Amax. Spatial overlap is profound
for wide-field imaging, but not for two-photon imaging or
in vitro cell culture imaging with single cell layer. With
increasing improvement wide-field imaging, such as vol-
umetric imaging (Shain et al., 2018; Xiao et al., 2018), such
significant overlap may be better eliminated during data
acquisition step.

ACSAT has three sets of free parameters that can be
rationally chosen or otherwise are not sensitive: �, which
describes the termination condition for ACSAT; , which
describes a termination condition for FIBAT; and Amin and
Amax, which describe the allowed sizes of ROIs.

The termination condition for ACSAT, described by �,
can be explained by the tendencies of ACSAT. Specifi-
cally, running ACSAT for more iterations increases the
number of ROIs segmented, especially the number of
low-intensity ROIs, as the global threshold value �n

� grad-
ually decreases (Fig. 7). While many of the added ROIs are
true ROIs, the proportion of false-positive ROIs added
increases as iteration number increases (Fig. 7). This in-
creasing proportion of outputted false positives in later
iterations can be attributed to the higher probability of a
spurious collection of adjacent background pixels meet-
ing the criteria to be an ROI. Also, the added false posi-
tives can be related to the step which clears previously
segmented ROIs from the time-collapsed image at the
start of each iteration of ACSAT. Due to the scattering of
light in brain tissue, ROI removal may leave a few small
fragments of bright pixels around removed areas, which
could be identified as ROIs during the next iteration.
ACSAT tries to avoid this problem by dilating the cleared
area, which makes sure the whole ROI is cleared rather
than only the brighter center. Besides dilation, these mis-
identified ROIs were also discarded either because of
their small size or because they do not meet the solidity
criteria; however, occasionally they may pass the size
criteria and become the false-positive ROIs. As a result,
the majority of false positives tend to have small size (Fig.
6, yellow).

To balance the effects of simultaneous increase in true
ROIs and false positive ROIs, ACSAT stops when a de-
crease of global threshold value becomes relatively small
between iterations, i.e.,

	�n�1
� � �n

�	
�1

�

 � .

At that stage, most true ROIs have been detected and
removed from the time-collapsed image. Thus, the global
threshold values �n

� of any further iterations are similar, so
most ROIs detected at this stage are false positives. For
the hippocampus dataset A, iteration n � 3 is when the
increase in false positives begins to outweigh the increase
in true positives, and for the striatum dataset, nearly all
true ROIs segmented by ACSAT were outputted at itera-
tion n � 1 (Fig. 7). Qualitatively, the time-collapsed image
I0 for hippocampus has a higher density of neurons with a
greater variety of pixel intensities than the I0 for striatum,
so it may take more iterations for ACSAT to perform at the
same rate on the hippocampus dataset than on the stria-
tum dataset. ACSAT’s performance under the diverse
conditions of these two datasets suggests that our choice
of � � 10% provides a robust and rational termination
condition for ACSAT that can be generalized to other
datasets, namely the 500 simulated datasets and the cell
culture dataset, as well. In fact, changing the termination
condition from � � 10% to � � 5% only affected the
segmentation results in �17% of the 500 simulated da-
tasets. For the two-photon dataset, our reported results
are using the termination condition � � 5%. In general,
users can choose � to be between 5% and 10% based on
the needs of their application: if recall is more important,
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then users should choose a smaller �, and if precision is
more important, then users should choose a larger �.

Additionally, the final segmentation results generated
by ACSAT are not sensitive to the termination conditions
for FIBAT described by  and �. FIBAT is terminated if the
threshold search range has minimal change over an iter-
ation, which we determine in two ways. One way this
condition would be satisfied is when all threshold values
within the search range result in the same, optimal num-
ber of ROIs. This is equivalent to setting the criterion
 � 100%. For the practical purpose of reducing FIBAT
run time, we allow termination if the change in the search
range is 
 1 �  � 10%. This condition is also easily met
when FIBAT is used in the local thresholding step be-
cause, by definition, ROIs that cannot be separated by
FIBAT will return exactly one ROI no matter what
threshold value is used. Additionally, we terminate FI-
BAT if the search range is smaller than �, the smallest
difference between any pair of adjacent pixels in I,
which can be objectively and automatically determined
from I. If FIBAT were to continue refining the threshold
value, then the gained precision beyond that defined by
� would be useless due to the discrete step in pixel
intensity values in I.

The last set of parameters Amin and Amax should be chosen
based on how large neurons are expected to be using
information including neuron size, image resolution, magni-
fication, imaging method, etc. In our wide-field datasets, the
boundaries of neurons may not be as well defined as those
collected with two-photon microscope, and the size will
appear larger than the size of a neuron due to light scattering
in wide-field conditions. This effect is consistent with our
observation that the minimum size of the human-generated
ROIs was 38 px � 64.6 �m2 for the hippocampus A dataset
and 66 px � 112.2 �m2 for the striatum dataset. Thus, our
minimum ROI criteria for the wide-field datasets may be
larger than a typical neuron size.

The images I0 used by ACSAT are time-collapsed, and
therefore do not contain any temporal information. With
the flexibility of ACSAT, the framework of ACSAT can be
used as long as a single image can be generated to
represent the ROIs within the image sequence. For exam-
ple, an input image I�0 can be generated where the value of
each pixel represents the time of its maximum intensity.
This image I�0 would allow ACSAT to separate adjoined
ROIs that have similar intensity values in I0 but reach their
maximum intensity at different time points, which is de-
scribed by I�0. Other ways to generate the single repre-
sentative image include correlations with nearby pixels,
intensity dynamics such as standard deviation or variance
over time, texture of the time-collapsed image (for exam-
ple, as used for the two-photon dataset), and a combina-
tion of various parameters. Overall, by taking advantage
of adaptively determining the threshold value at both the
global level and the local level, ACSAT can theoretically
perform segmentation on any image containing ROIs with
nonhomogenous intensity as long as it has sufficient con-
trast between ROIs and the background.
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