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Species abundance information improves sequence
taxonomy classification accuracy
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Popular naive Bayes taxonomic classifiers for amplicon sequences assume that all species
in the reference database are equally likely to be observed. We demonstrate that classifi-
cation accuracy degrades linearly with the degree to which that assumption is violated, and in
practice it is always violated. By incorporating environment-specific taxonomic abundance
information, we demonstrate a significant increase in the species-level classification accuracy
across common sample types. At the species level, overall average error rates decline from
25% to 14%, which is favourably comparable to the error rates that existing classifiers
achieve at the genus level (16%). Our findings indicate that for most practical purposes, the
assumption that reference species are equally likely to be observed is untenable. g2-clawback
provides a straightforward alternative for samples from common environments.
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dvances in high-throughput DNA sequencing and bioin-

formatics analyses have illuminated the crucial roles of

microbial communities in human populations and pla-
netary health!2 and enable microbiome meta-analysis on a
massive scale>. An important step in characterizing microbial
communities is classification of short marker-gene DNA
sequences (e.g., bacterial 16S rRNA genes) to infer taxonomic
composition.

Short marker-gene sequence reads often contain insufficient
information to differentiate species using conventional methods*-8.
However, current best practices rely on species-level classification
to circumvent well-documented inconsistencies between genus-
level reference taxonomies and molecular phylogeny (e.g. Clos-
tridium and Eubacterium)®.

In this work, we demonstrate that a substantial improvement
in classification accuracy of marker-gene sequences can be
achieved if a reference taxonomic distribution for the sample’s
source environment is known. This technique enables marker-
gene sequencing to differentiate individual species at a level of
accuracy previously only available at the genus level.

We focus on q2-feature-classifier, a QIIME 210 plugin for
taxonomic classification. In previous work? we benchmarked this
method against other common classifiers, including the RDP
Classifier!! and several consensus-based methods using real and
simulated data for four bacterial and fungal loci. We also tested a
developmental feature that showed that knowing the mixing
proportions of mock communities improved taxonomic classifi-
cation accuracy. In general, q2-feature-classifier meets or exceeds
the accuracy of the other classifiers*. However, all tested methods
perform similarly if their parameters are tuned in a concordant
manner. Significant performance enhancement demonstrated in
the current work for q2-feature-classifier therefore imply
improved performance over those other methods.

Results

Taxonomic weight assembly with q2-clawback. The RDP
Classifier and q2-feature-classifier use similar naive Bayes
machine-learning classifiers to assign taxonomies based on
sequence k-mer frequencies, and exhibit very similar performance
when default parameters are used®. The default assumption of
these classifiers is that each species in the reference taxonomy is
equally likely to be observed. Unlike the RDP classifier, however,
q2-feature-classifier now allows prior probabilities to be set for
each species. We refer to the prior probabilities as taxonomic
weights and the default equal probabilities as uniform weights.
We hypothesized that inputting the frequencies with which each
taxon is actually observed in nature as taxonomic weights would
improve classifier performance.

Taxonomic weights were downloaded and assembled using our
new utility, q2-clawback (https://github.com/BenKaehler/q2-
clawback). We created weights for 14 Earth Microbiome Project
Ontology (EMPO) 3 habitat types!' across 21,513 samples from
the Qiita microbial study management platform? (see Methods
for details). q2-clawback can assemble weights from any
appropriately curated set of samples or by querying Qiita on
any available metadata category. We refer to EMPO 3 habitat-
specific taxonomic weights as bespoke weights.

Taxonomic weights improve species classification. To test
classification accuracy using varying taxonomic weights, we
developed a novel cross-validation strategy that accounted for the
observed abundances of taxa in any given habitat. This strategy
ensured that a classifier was never asked to classify a sequence
that had occurred in its training set or generate taxonomic
abundances that had directly contributed to its input taxonomic

weights. To our knowledge, our cross-validation strategy is the
first to incorporate information about taxonomic weights in
assessing taxonomic classifier performance. This situation is
known in machine learning as imbalanced learning!?. See
Methods for a thorough description of the test dataset and cross-
validation procedure.

Bespoke weights achieved significantly better species-level
classification accuracy than other taxonomic weight strategies.
Bespoke weights significantly outperformed uniform weights
when both were compared at the species level across the
14 EMPO 3 habitats (bespoke error rate = 14%, uniform error
rate = 25%, paired t-test P= 5.8 x 107°) (Fig. 1). Similar results
were obtained for Bray-Curtis dissimilarity and F-measure
(see Supplementary Notes). Averaged across the 14 EMPO 3
habitats, Proteobacteria and Firmicutes were the most abundant
phyla (34% and 18% of reads, respectively). Switching from
uniform to bespoke weights caused error rates for classification of
species in these phyla to drop from 35.4% (+0.7% s.e.) to 22.3%
(+0.4% s.e.) and 43.6% (£0.7% s.e.) to 24.3% (+0.3% s.e.),
respectively (Supplementary Fig. 5). These differences were highly
significant for both Proteobacteria and Firmicutes (paired t-tests
P=14x10"%and P = 8.4 x 1079, respectively).

Using bespoke weights, researchers can now classify sequences
at the species level with the same confidence that they previously
classified sequences at the genus level (Fig. 1). To demonstrate
that bespoke classification achieves both greater accuracy and
greater depth of taxonomic classification, we compared the error
rates of bespoke classification at the species level to uniform
classification at the genus level. The mean error rate (the
proportion of reads incorrectly classified) across the 14 EMPO 3
habitat types was 14% (+1% s.e.) for bespoke weights at the
species level and 16% (+1% s.e.) for uniform weights at the genus
level. These results indicate that bespoke weights achieve
comparable or better species-level accuracy to what uniform
weights can only accomplish at the genus level. (As described
below, bespoke weights significantly outperform uniform weights
by all metrics when both are compared at the species level.) The
mean Bray-Curtis dissimilarity between observed and expected
taxonomic abundances was 0.13 (+0.01 s.e.) for bespoke weights
at the species level and 0.15 (+0.01 s.e.) for uniform weights at the
genus level (single-sided paired t-test P =0.013) (Supplementary
Table 2, Supplementary Fig. 2), indicating better performance of
bespoke weights. See Supplementary Notes for more details of our
benchmarking results.

Bespoke accuracy boost is correlated to weight fitness. In
addition to testing classification accuracy using cross validation
within EMPO3 habitats, we performed a set of additional
experiments to evaluate how the selection of taxonomic weights
impacts classifier performance. First, we assessed classification
accuracy when using the average of the 14 EMPO 3 habitat-
specific bespoke weights, which we term average weights. For
every EMPO 3 habitat, bespoke weights outperformed average
weights (sign test P= 6.1 x 10~°) (Fig. 2, Supplementary Figs. 2
and 3). Similarly, average weights always outperformed uniform
weights (sign test P=6.1 x 10~°) (Fig. 2, Supplementary Figs. 2
and 3). The implication is that classification accuracy improves
when taxonomic weights more closely resemble taxonomic fre-
quencies observed in nature. Second, we assessed classification
accuracy when training classifiers with taxonomic weights from
the EMPO 3 habitats other than the sample’s source habitat,
which we term cross-habitat weights. Importantly, uniform
weights demonstrated inferior performance to cross-habitat
weights in 117 out of 182 cross-habitat comparisons, suggesting
that any type of naturally derived taxonomic weight has the
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Fig. 1 Habitat-specific taxonomic weights classify sequences at the species level with the same confidence that uniform weights classify at the genus level
(single-sided paired t-test, species bespoke vs genus uniform, t =1.6, P = 0.14). Overlaid columns show average proportion of incorrectly classified reads
for three taxonomic weighting strategies at each taxonomic level. Bespoke weights were habitat-specific. Average weights were averaged across 14 EMPO
3 habitats. Uniform weights are the current best practice. Box plots are across 14 EMPO 3 habitats. Box bounds and centre lines show first and third
quartiles and median. Whiskers extend to measurements no further than 1.5 times the interquartile range from the nearest quartiles. Outliers are plotted
individually. 21,513 empirical taxonomic abundances contributed to the results. Source data are provided as a Source Data file

potential to improve classification accuracy, even if those weights
were derived from a dissimilar habitat type (Fig. 3; see Supple-
mentary Notes). The degree to which cross-habitat taxonomic
weights could accurately classify the taxa within a given envir-
onment was proportional to the similarity between those weights
and the bespoke weights for the source habitat: as the taxonomic
weights moved away from the bespoke weights for a given sam-
ple, error rate increased (Pearson r2=0.57, P<2.2x10716)
(Fig. 4; see Supplementary Notes and Methods).

The ability of uniform-weight classifiers to resolve species-level
differences from marker genes is directly related to sequence
similarity among the reference species. Species with highly similar
sequences will be difficult to differentiate, even if these species
occupy exclusive ecological habitats. However, bespoke weights
incorporate habitat-specific species distribution information to
guide sequence classification. Hence, classification accuracy under
bespoke weights for a given habitat type is tied to sequence
similarity and the distribution of individual species in that
habitat. We devised a statistic that we term the confusion index to
quantify how often similar sequences originated from different
species in the same habitat (see Methods). The confusion index is
a function of the taxonomic difference between sequences with

similar k-mer profiles and the frequency that they appear, taking
the bespoke weights as the likelihood of observing a given species.
We found that error rates for bespoke weights were correlated with
the confusion index (Fig. 5; Pearson r2=0.72, P=1.4x 10—, see
Methods and Supplementary Notes). That is, classification
accuracy is affected by how often different species in the same
sample have similar amplicon sequences but different taxonomic
classifications, and that varies between EMPO 3 habitats.

The clear logic behind using bespoke weights is to encourage
the classifier, when faced with uncertainty, to err on the side of
taxa that are more abundant for a given habitat. The risk with this
approach is that less abundant taxa may then be neglected. We
tested this possibility by using the qualitative performance metrics
taxon detection rate (TDR) and Taxon Accuracy Rate (TAR)*
which take only presence and absence data into account. For
TAR, bespoke weights outperformed average weights and average
weights outperformed uniform weights on average (Supplemen-
tary Fig. 7). The differences were not significant (minimum
paired t-test P =0.17). For TDR, the trend fit with all of our other
tests with average weights always outperforming uniform weights
and bespoke weights always outperforming average weights (sign
test P=6.1x107°) (Supplementary Fig. 8). While the TAR
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Fig. 2 Bespoke weights outperform average weights across EMPO 3 habitat types, and average weights outperform uniform weights (sign test P=6.1x107°),
Columns show average proportion of incorrectly classified reads for differing taxonomic weighting strategies and at genus and the species levels. Bespoke
weights were habitat-specific. Average weights were averaged across the 14 EMPO 3 habitats. Uniform weights are the current best practice. Tests were
based on 5-fold cross validation across 18,222 empirical taxonomic abundances. Box plots are across cross-validation folds. Box bounds and centre lines
show first and third quartiles and median. Whiskers extend to measurements no further than 1.5 times the interquartile range from the nearest quartiles.
Outliers are plotted individually. Source data are provided as a Source Data file
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Fig. 3 Summary of the effect of using cross-habitat weights (taxonomic weights different to the sample habitat). Light grey numbers show F-measure as a
percentage. Bespoke weights (when taxonomic weights match sample habitat) are always superior. Occasionally (8 times) cross-habitat weights achieved
higher accuracy than weights that were averaged across the 14 EMPO 3 habitats. Frequently the cross-habitat weights were better than uniform weights
(which is current best practice, 109 times). Occasionally the uniform weights outperformed the cross-habitat weights (65 times). Source data are provided

as a Source Data file

results were not as positive as our other results, they nonetheless
show that no penalty was incurred, even judging purely by
presence and absence of taxa, when using bespoke weights.

We also tested whether using bespoke weights would reduce
classification accuracy for rare taxa. By averaging results across
the 14 EMPO 3 habitats, we plotted average differences in
uniform and bespoke weight error rates against average species
abundance (Supplementary Fig. 9). We found that for abun-
dances less than 1074, there was some evidence of degradation in
classifier accuracy, although for most species it made no
difference. For a typical sample depth in the order of 104 reads,
this indicates that there may be some risk of misclassification for
singletons.

Discussion

The assumption of uniform weights, that species are evenly dis-
tributed in nature and hence equally likely to be detected, is
incorrect. We have demonstrated that this assumption imposes a
consistently negative impact on performance, even when com-
pared to deliberately incorrect taxonomic weights selected from
ecologically dissimilar environmental sources (the cross-habitat
weights). As a result, we suggest the continued usage of uniform
weights is not justifiable. When publicly accessible pre-existing
microbiome data is available for the sample (i.e., environment)
type being investigated, bespoke weights should be used. For
other natural sample types that lack sufficient characterization for
bespoke weight assembly, average weights estimated from global
microbial species distributions are superior to uniform weights.
We did observe some degradation in performance for rare spe-
cies. If the presence or absence of singletons for a typical sample
is critical to experimental design, then we advocate using
amplicon sequence variants!>!4 rather than taxonomic classifi-
cation. For highly unusual sample distributions, e.g., in
synthetic populations, we recommend compiling custom
bespoke weights from existing samples. We demonstrated
species-level classification improvement with as few as
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Table 1 Sample counts for each EMPO 3 habitat type
EMPO 3 habitat type Number of samples
Animal corpus 158
Animal distal gut 5632
Animal proximal gut 903
Animal secretion 974
Animal surface 1,839
Plant corpus 543

Plant rhizosphere 328
Sediment (non-saline) 188
Surface (non-saline) 1383

Soil (non-saline) 2802
Water (non-saline) 4769
Sediment (saline) 414
Surface (saline) 152

Water (saline) 428

122 samples (four-fifths of the saline surface samples from the
EMP study; Table 1).

Our key finding is that taxonomic classification is sensitive to
taxonomic weight assumptions, and better alternatives to
assuming uniform weights exist for natural samples. Even when
we intentionally used taxonomic weights from the wrong habitat
type (our cross-habitat tests), these weights still outperformed
uniform weights for species classification in the majority of cases.
Where uncertainty exists regarding the correct choice of habitat
for taxonomic weights, average weights offer a generalized solu-
tion for improved accuracy over uniform weights. Systematic
comparison of uniform, average, bespoke, and cross-habitat
weights demonstrated that the more specific the taxonomic
weights are to a query sample’s environment, the better the
classification accuracy. Thus, taxonomic weight selection impacts
classification results, but any deliberate decision regarding choice
of taxonomic weights is unlikely to negatively impact classifica-
tion accuracy beyond the penalty imposed by uniform weights.

5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

20

Error rate less bespoke error rate (%)

+ EMPO 3 habitat

B Animal corpus

® Animal distal gut

A Animal proximal gut

¢ Animal secretion

B Animal surface

@® Plant corpus

A Plant rhizosphere

¢ Sediment (non-saline)

B Sediment (saline)

® Soil (non-saline)
Surface (non-saline)
Surface (saline)
Water (non-saline)

Water (saline)

0 5 10

T
15

Kullback-Leibler divergence to bespoke weights
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taxonomic weights to those from each of the 13 EMPO 3 habitats other than the appropriate bespoke weights, across 14 EMPO 3 habitats. There is a clear
association (Pearson r?2 = 0.57, P<2.2 x10~16). Error bars show standard error. Source data are provided as a Source Data file

q2-clawback facilitates the use of appropriate weights by
making it easier for the researcher to assemble weights that are
specific to a particular sample type, provided that appropriate
source data are available. For instance, it is trivial to assemble
weights for all stool samples with human hosts from Qiita (See
the online tutorial, https://library.qiime2.org/plugins/q2-
clawback).

In common with other methods, bespoke classification is not
immune to errors that result from poorly curated reference data
(e.g., reference sequence misannotation). The use of empirical
species distributions also creates a potential source of error for
bespoke classification (e.g., misannotation of sample types or
sequencing biases in empirical samples could be propagated if
those samples were used to develop taxonomic weights). Con-
structing taxonomic weights via meta-analysis of many studies of
a single environment type, as we perform here and democratize
with q2-clawback, reduces the impact of unsystematic errors such
as mislabelled samples. More systematic errors, for instance from
bias present in common sequencing techniques, could be con-
trolled by integrating multiple technologies for microbial dis-
tribution estimation (e.g., marker gene, shotgun metagenome,
metaproteome, and non-molecular methods). In the Supple-
mentary Information, we demonstrate that shotgun metagenome
data may be used to construct bespoke taxonomic weights
(Supplementary Fig. 6). Further work could provide an

interesting route for inferring more realistic approximations of
natural taxonomic weights.

Regardless of the source of classification error, as bespoke
classification typically starts from the raw reference and read data
when weights are derived, its use does not lead to classification
errors being propagated through history. Efforts to curate refer-
ence databases and the continued contribution of researchers to
online microbiome data repositories will help refine and extend
our ability to apply appropriate bespoke weights for sequence
classification in diverse sample types. The magnitude of
improvement in classification accuracy and robustness to the use
of deliberately inappropriate weights in our cross-habitat tests
make us confident that these sources of error are of secondary
importance to the much larger error of assuming uniform
weights.

The results we present provide a general path for delivering
species-level classification accuracy. As such, the work provides a
complementary solution to the small number of existing specialist
classification databases!>~18. Moreover, bespoke weight classifi-
cation permits the detection of unexpected species not encom-
passed by custom databases.

By improving species-level classification of marker-gene
sequences, bespoke weights may support critical functional
inferences, e.g., differentiation of pathogenic and non-pathogenic
species of the same genus!®-24. Ongoing improvements in public

6 | (2019)10:4643 | https://doi.org/10.1038/s41467-019-12669-6 | www.nature.com/naturecommunications


https://library.qiime2.org/plugins/q2-clawback
https://library.qiime2.org/plugins/q2-clawback
www.nature.com/naturecommunications

ARTICLE

20 ~

Bespoke error rate (%)

EMPO 3 habitat

W Animal corpus

® Animal distal gut

A Animal proximal gut
¢ Animal secretion

B Animal surface

® Plant corpus

A Plant rhizosphere

¢ Sediment (non-saline)

B Sediment (saline)

@ Soil (non-saline)
Surface (non-saline)
Surface (saline)
Water (non-saline)

Water (saline)

T T T
-7 -6 -5

Confusion index

Fig. 5 Classification accuracy when using the appropriate bespoke weights is largely explained by how often sequences from different from species are
confused (Pearson r2=0.72, P=1.3 x10~4). The confusion index is the log of the expected level of taxonomic difference between two similar reference
sequences weighted by the likelihood of observing similar sequences. All points calculated using 5-fold cross validation. Error bars are standard errors
across folds. Regression confidence intervals are 95%. Source data are provided as a Source Data file

reference sequence and sample databases will further boost per-
formance, supporting biological insight into global microbiome
compositions. Uniform weights should always be avoided, as they
distort natural species distributions, leading to imprecise and
incorrect taxonomic predictions.

Methods

Data. We downloaded all public 150 nucleotide 16S v4 samples for 18 EMPO 3
habitat types from Qiita® using q2-clawback. The downloaded data consisted of
sequence variant and abundance information. The sequence variants were prepared
by the standard Qiita pipeline, including Deblur!3, prior to download. q2-clawback
uses redbiom?? (https://github.com/biocore/redbiom) to access Qiita. Data from
the following Qiita studies were used: 1111329, 11444, 1716, 1036927, 99028, 2080,
1713, 894, 1289, 1883, 1673, 1288, 10353, 219229, 10323, 678, 1773, 662, 1799, 864,
1481, 102439, 1064, 2182, 10934, 1674, 179531, 10273, 1028332, 1042233, 804, 10308,
105634, 238230, 1240, 889, 1041, 1717, 1222, 11149, 11669, 807>, 10245, 1711,
1721, 910, 1001, 895, 5506, 174737, 713%, 755, 861, 958, 1116140, 1115441, 945,
723, 1715, 1714, 10798.

The three EMPO 1 control EMPO 3 habitat types were excluded, as well as
Hypersaline (saline), Aerosol (non-saline), and Plant surface, which all had fewer
than nine samples in the Qiita database for 150 nt sequence variants. The number
of samples downloaded for each EMPO 3 habitat are shown in Table 1.

For the cross validation analysis, sequence-variant level data was discarded and
only taxonomic abundance information was retained. The sequence variants were
classified using the standard q2-feature-classifier naive Bayes classifier based on
Greengenes 99% identity OTU reference data*? to obtain empirical taxonomic
abundance data for each sample. The naive Bayes classifier was trained using the
balanced parameter recommendations given in Bokulich, Kaehler et al.%.

For the shotgun data experiment (see Supplementary Notes), data was
downloaded from the Human Microbiome Project website?. The downloaded
tables had been prepared using a pipeline leading to MetaPhlAn2%3. Paired 16S
stool samples were downloaded from Qiita® in the form of DNA sequencing data
with quality scores. The 16S samples were trimmed to 340 nt and denoised using
DADA2!4, In total, 71 pairs of shotgun and 16S stool samples were found.
Reference data sets were downloaded from the NCBI RefSeq database?. Full 16S
sequences were trimmed to the V3-V5 regions (forward primer
CCTACGGGAGGCAGCAG; reverse primer CCGTCAATTCMTTTRAGT), using
q2-feature-classifier?, resulting in 20,696 reference sequences across 14,777 taxa. It
should be noted that this experiment is intended for demonstration only, and that
we are not advocating the use of the NCBI 16S RefSeq database for this purpose, as
on average there are less than two reference sequence examples for each taxon.

Clawback. q2-clawback is a free, open-source, BSD-licensed package that is
available on GitHub (https://github.com/BenKaehler/q2-clawback). It includes
methods for downloading sequence variants from Qiita (fetch-Qiita-samples),
extracting sequence variants for taxonomic classification using q2-feature-classifier
(sequence-variants-from-samples), and assembling taxonomic weights from col-
lections of samples of taxonomic abundance (generate-class-weights). These
methods can be run independently or combined into a single method call
(assemble-weights-from-Qiita). Figure 6 shows the workflow for these methods. An
online tutorial is available (https://library.qiime2.org/plugins/q2-clawback).

In general, taxonomic weights are assembled as follows. A set of sequence
variants with abundances are acquired (fetch-Qiita-samples). The sequence
variants are extracted (sequence-variants-from-samples) and classified using the
naive Bayes classifier under uniform weights using balanced settings?. Classification
to species level is forced by setting the confidence parameter to —1. The
resulting read counts are aggregated, normalised, and added to a small (10~¢
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Fig. 6 Relationship between g2-clawback methods. g2-clawback contains methods for downloading and assembling taxonomic weights. The assemble-
weights-from-Qiita method wraps the illustrated workflow, but fetch-Qiita-samples, sequence-variants-from-samples, and generate-class-weights can also
be accessed directly. Labelled data flows show QIIME 2 semantic types and parameters. classify-sklearn is provided by the q2-feature-classifier plugin
McDonald et al.25. redbiom is a service for downloading data from Qiita Gonzalez et al.3

Reference sequences
and taxonomies
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]
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Fig. 7 Cross validation workflow. Cross validation on the reference sequences ensured that a classifier was only ever asked to classify unseen sequences.
Cross validation on the empirical samples used sequences from the test set of reference sequences to simulate samples with the same taxonomic
abundances as the empirical samples, and ensured that bespoke and average weights were never derived from the samples on which they were tested

unobserved weight default) uniform offset (generate-class-weights) to form
bespoke weights. The resulting weights are used to retrain the naive Bayes
classifier to create a classifier under the bespoke weights assumption. In our
experiments, which are detailed below, this procedure was modified slightly to
accommodate cross validation and compilation of taxonomic weights from a
variety of sources.

Internally, q2-feature-classifier uses the multinomial naive Bayes classifier
provided by scikit-learn (see http:/scikit-learn.org/stable/modules/naive_bayes.
html). Loosely, the naive Bayes classifier finds the taxon that maximises the
expression P(T|S) = P(S|T) x P(T)/P(S), where P(T) and P(S) are the probabilities
of observing a taxon T and sequence S respectively, and P(S|T) and P(T|S) are the
conditional probabilities of observing a sequence S given a taxon T and a taxon T
given a species S, respectively. The probabilities are estimated under questionable
assumptions (the term naive refers specifically to the way P(S|T) is calculated). The
goal is not to provide a realistic model of reality; the goal is to predict taxa given

sequences. When taxonomic weights are provided, they are used directly as
estimates of P(T). For uniform weights, it is assumed that P(T) = 1. We note,
however, that q2-feature-classifier is able to take taxonomic weights inputs for a
variety of machine learning classifiers that are available in scikit-learn.

Cross validation using empirical taxonomic abundance. As mentioned above, to
test classification accuracy using varying taxonomic weights, we developed a cross-
validation strategy that accounted for the observed abundances of taxa in any given
habitat.

Cross validation was used to analyse the effectiveness of setting the taxonomic
weights for the q2-feature-classifier naive Bayes taxonomic classifier. A single
cross-validation test follows the pattern (shown in Fig. 7, several steps are described
in more detail below):
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1. Obtain a set of reference sequences and reference taxonomies.

2. Obtain a set of samples for a given EMPO 3 habitat type, where each sample
contains the number of reads observed for each taxon.

3. Perform stratified k-fold cross validation simultaneously on reference
sequences and samples.

4. For each fold:

a. Train a classifier on the training reference sequences, optionally
incorporating read counts from the training samples to calculate
taxonomic weights.

b. Simulate samples that closely match the taxonomic abundances in the
test samples using the test reference sequences, then classify them using
the above classifier.

Step 2. Data were obtained as detailed above. Taxonomic abundances were
estimated using the naive Bayes classifier under uniform weights using balanced
settings®, where the classifier was forced to classify to species level.

Step 3. We performed 5-fold cross validation in each instance. Standard
stratification for 5-fold cross validation requires that at least five sequences exist for
each taxonomy, which is not the case for the 99% identity Greengenes reference
taxonomy. We, therefore, formed a stratum for each taxonomy for which five or
more reference sequences existed (large taxonomies) and merged the remaining
taxonomies (small taxonomies) into those strata. A single large taxonomy was
chosen for each small taxonomy by training a naive Bayes classifier on the large
taxonomies, classifying the reference sequences in the small taxonomies, then
voting weighted by confidence. Shuffled stratified 5-fold cross validation was then
implemented using a standard library call to scikit-learn°.

Cross validation was performed simultaneously on samples and reference
sequences. Sample cross validation was not stratified.

Step 4a. Each sample consisted of a set of taxonomies and their abundances.
Taxonomic weights were formed by aggregating those counts across the training
samples. As a result of the merged strata in Step 3, some taxonomies that were
present in the bespoke weights were not present amongst the taxonomies of the
training sequences. Any such taxonomy was mapped to the nearest taxonomy that
was present amongst the taxonomies represented by the training sequences, as
measured by the voting system from Step 3.

Step 4b. Samples were simulated by drawing sequences from the test sequences
in such a way as to closely resemble the taxonomic abundances of the test samples.
Again as a result of the merged strata in Step 3, some taxonomies that were
present in the test samples were not present in the taxonomies of the test
sequences. In the same way as for Step 4a, any missing species-level taxonomy was
mapped to the closest taxonomy for a sequence present in the test sequences. Once
missing taxonomies were resolved, samples were simulated by drawing test
sequences as evenly as possible from each taxonomy so that any read count was a
whole number.

For the q2-feature-classifier naive Bayes classifiers that were reported in this
study, we used the recommended balanced parameters as recommended for
uniform weights?. That is, we used a confidence level of 0.7 in all cases. In Bokulich
et al.4, a confidence level of 0.92 was recommended for bespoke weights tested on
mock communities. We tested the classifiers at this level but in all cases the results
were dominated by the less conservative confidence level of 0.7.

F-measure and Bray-Curtis*® dissimilarity were calculated for each sample and
taxonomic level using the q2-quality-control QIIME 2 plugin (https://github.com/
qiime2/q2-quality-control). F-measure for each fold was aggregated across samples
by weighting by the total read count for each sample. Bray-Curtis dissimilarity was
averaged across samples without weighting, but samples with less than 1000 reads
were filtered out.

Error rates, or the proportion of reads not correctly classified, were calculated as
follows. A classification was called correct only if the expected classification exactly
matched the observed classification to the required taxonomic level. That is, if the
expected classification did not contain classification all the way to that level because
that species was not present in the training set, then the classification was called
correct only if it was truncated at exactly the right level. Correct classification rates
were again calculated for each sample and aggregated across samples by weighting
by the total read count for each sample. Aggregation across folds and EMPO 3
habitats was evenly weighted.

Confusion Index. The degree to which species can be successfully resolved is
directly related to the dissimilarity of their sequences. We sought to establish a
property of the reference data and taxonomic weights that were related to the
classification accuracy across EMPO 3 habitats. For any pair of DNA sequences,
the critical quantities are their sequence and taxonomic dissimilarities. Sequence
dissimilarity is measured as the Bray-Curtis dissimilarity of k-mer counts. Taxo-
nomic dissimilarity is the depth (from species level) of the most recent common
ancestor, e.g. zero for the same species, one for species within the same genus and
seven for an Archaean versus a Bacterium.

The Confusion Index is then the log of the product of the probability that the
sequence dissimilarity for any pair of sequences is less than a threshold (we selected
0.25) and the expectation of the taxonomic distance given that the sequence
dissimilarity is less than 0.25. The expectation was calculated under the assumption

that the two sequences were sampled independently with probability given by their
bespoke weights. That is,
n n
CI =log " > d,(i,j)I(d,(i,j) < 0.25)w(i)w(j)where CI is the confusion index,
i=1j=1
dy(i,j) is the sequence dissimilarity between the i th and j th sequences, d,(i,j) is the
taxonomic dissimilarity between the i th and j th sequences, w(i) is the weight of
the i th sequence, and I(s) is the indicator function.

The confusion index quantifies how often a pair of taxa have nearly identical
sequences but different taxonomies for a given set of taxonomic weights. One
advantage of this quantity is that it can be estimated statistically by taking a
random sample of pairs of sequences. In this study we sampled 108 pairs of
sequences for each calculation.

Comparison of taxonomic classification for shotgun and amplicon sequencing.
The effect of using taxonomic weights derived from taxonomic classification of
shotgun sequencing reads was determined using 5-fold cross validation, where each
classifier was trained using taxonomic weights aggregated across the samples in the
training set, then tested on 16S samples from a test set. TDR* was computed using
the q2-quality-control QIIME 2 plugin. TDR is the fraction of taxa that were
discovered in the shotgun sequencing sample that were also found in the amplicon
sample.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The Qiita data used in this study have been deposited at https://doi.org/10.5281/
zenodo.2548899. The HMP and NCBI data used in this study have been deposited at
https://doi.org/10.5281/zenodo.2549777. All other relevant data is available upon request.

Code availability

q2-clawback is available at https://github.com/BenKaehler/q2-clawback/releases/tag/
0.0.4. All other code developed for this study is available at https://github.com/
BenKaehler/paycheck/releases/tag/0.0.4.
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