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Integrated photonics is a leading platform for quantum technol-
ogies including nonclassical state generation1–4, demonstration
of quantum computational complexity5 and secure quantum
communications6. As photonic circuits grow in complexity, full
quantum tomography becomes impractical, and therefore an
efficient method for their characterization7,8 is essential. Here
we propose and demonstrate a fast, reliable method for recon-
structing the two-photon state produced by an arbitrary quad-
ratically nonlinear optical circuit. By establishing a rigorous
correspondence between the generated quantum state and classi-
cal sum-frequency generation measurements from laser light, we
overcome the limitations of previous approaches for lossy multi-
mode devices9,10. We applied this protocol to a multi-channel
nonlinear waveguide network and measured a 99.28± 0.31%
fidelity between classical and quantum characterization. This
technique enables fast and precise evaluation of nonlinear quan-
tum photonic networks, a crucial step towards complex, large-
scale, device production.
Practical applications of quantum photonic technologies11,12 require

the integration of linear and nonlinear waveguides on a single device,
where photons can be generated1,4 and manipulated13. Spontaneous
parametric down-conversion (SPDC) and spontaneous four-wave
mixing are the two most common processes used for photon
generation on chip with the former being the most efficient by far,
needing only a few microwatts of pump power for generation rates
exceeding several MHz14,15. Monolithic integration of SPDC sources
with multi-port optical circuits has been achieved in several contexts,
with applications in quantum communication16, quantum metrology1,
spatial multiplexing of heralded single-photon sources17, quantum
state generation in nonlinear waveguide arrays2 and small-scale
reconfigurable quantum photonic circuits18.
The near future of quantum photonics will involve an expansion in

scale and applications of integrated circuits. However, the character-
ization of the two-photon state generated by a nonlinear waveguide

network is a cumbersome experimental task19, requiring the collection
of statistics from coincidence counts and a quadratically increasing
number of measurements with system size. Here we propose and
demonstrate a practical method for the characterization of the two-
photon wavefunction generated by an arbitrary device with quadratic
nonlinearity that uses only laser probes and power measurements.
This technique fully reconstructs the spectral and spatial properties of
the generated photon pairs from the measurements of bright optical
beams and, with optimized hardware, it performs the same number of
measurements at least four orders of magnitude faster than the
corresponding quantum characterization. Our protocol is of both
fundamental and practical importance for the development of
integrated quantum photonics technologies including characterization
of large-scale wafer production.
A method based on stimulated emission tomography (SET) was

proposed9 for predicting the two-photon wavefunction produced by a
nonlinear device using the analogy between spontaneous nonlinear
processes and their classical stimulated counterparts, that is,
difference-frequency generation or stimulated four-wave mixing. This
technique was demonstrated for spectral characterization of two-
photon states20–23, and fast reconstruction of the density matrix of
entangled-photon sources24,25.
However, SET has never been realized on multimode optical

networks since it requires injection of the seed beam into the
individual supermodes supported by the structure26. A possible
workaround is to inject the seed beam into each single channel
individually then perform a transformation through supermode
decomposition to obtain quantum predictions. Regardless, complete
knowledge of the linear light dynamics inside the whole structure is
required, making SET a multi-step procedure prone to errors and not
applicable to ‘black-box’ circuits. Additionally, SET is strictly valid only
in the limit of zero propagation losses10, posing a fundamental
limitation for the characterization of real optical circuits.
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Characterization via sum-frequency generation (SFG), the reverse
process of SPDC, gives exact results in the presence of any type of
losses. This approach was previously formulated only for single,
homogeneous waveguides10, posing a stringent restriction for the
characterization of more complex devices. In this work, we uncover a
fundamentally important equivalence between the biphoton wave-
function and the classical sum-frequency field generated in the reverse
direction of SPDC for any multimode non-linear device, overcoming
the limitations of previous approaches. Our theoretical analysis is
based on the rigorous use of the Green-function method27

(Supplementary Information), and holds for arbitrarily complex
second-order nonlinear circuits, in the presence of any type of losses.
More importantly, the SFG-SPDC analogy can be expressed in any
measurement basis, providing a simple and fast experimental tool for
the characterization of any ‘black-box’ χ2 -nonlinear process
(Figure 1).
Multimode SFG characterization can reconstruct any degree of

freedom of the photonic state including spatial mode, frequency, time-
bin, and polarization. Here we illustrate its application to a ‘black-box’
device with N spatial modes of the same polarization, as schematically
depicted in Figure 1. When a pump beam with frequency ωp is
injected into waveguide np at the input of the device it produces, by
SPDC, the biphoton state (Figure 1a)
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where ns(ni) is the index for signal(idler) output waveguide number,
âwn oð Þ is the photon creation operator in the waveguide n with the
frequency ω, and Cnp

nsni
os;oið Þ is the two-photon wavefunction20. In

the classical SFG process shown in Figure 1b, two beams with signal
frequency ωs and idler frequency ωi are injected into waveguides ns
and ni from the SPDC output directions. The generated sum-
frequency electric field E

np
nsni is detected from waveguide np.

We reveal that the sum-frequency field in the undepleted pump
regime is directly proportional to the two-photon wavefunction
Cnp

nsni
ðos;oiÞ (Supplementary Information). From this

correspondence we infer the squared amplitudes of the wavefunction
elements by direct optical measurements of the sum-frequency power
PSFG, and predict the absolute photon-pair generation rates for SPDC
through the relation:
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Here, Pp is the pump beam power, dNpair/dωsdt is the photon-pair
generation rate per unit signal frequency, and ZSFGnsni

� PSFG=PsPi is the
sum-frequency conversion efficiency. Full spectral characterization of
the biphoton state is obtained by scanning the signal and idler
wavelengths, with an accuracy that is limited only by the spectral
resolution of the laser source. In addition we can characterize the
relative phases of the wavefunction components by classical interfero-
metric measurements of the generated sum-frequency field.
The validity of the SFG protocol for multimode and inhomoge-

neous circuits was experimentally verified on an array of three
evanescently coupled nonlinear waveguides schematically depicted in
Figure 2a. The device was fabricated in lithium niobate by the use of
the Reverse Proton Exchange technique28,29 and heated to T= 84 °C to
obtain phase matching at λ= 1550 nm. The waveguides have an
inhomogeneous and asymmetric poling pattern along the propagation
direction in order to test the generality of the method where laser light
propagates in the opposite direction of the SPDC process
(Supplementary Information).
We performed the SFG measurements by coupling two frequency

tunable lasers into the device and measuring sum-frequency genera-
tion from waveguide 1. Figure 2b shows the SFG efficiency ηSFG as a
function of signal and idler wavelengths coupled to the waveguides 2
and 3, respectively. Similar data were taken for all input combinations
(Supplementary Fig. S1).
Figure 2c shows the probabilities CSFG

nsni

�� ��2 predicted from SFG
efficiencies as a function of the SPDC pump wavelength for the
degenerate case λs= λi= 2λp. Similar results are predicted for non-
degenerate SPDC since the phase-matching bandwidth of the device is
larger than the tuning range of our laser (Figure 2b).
We verified our characterization results by measuring the biphoton

state generated when a λp= 775 nm pump is coupled into waveguide 1
in the reverse direction and the down-converted photon pairs pass
through a 6 nm band-pass filter (Supplementary Fig. S2). Figure 2d
shows two characteristic time histograms of photon coincidences for
outputs from the waveguides 2–3 and 1–2 acquired by two avalanche
photodiodes and a time tagging module. Coincidence-to-accidental-
ratio (CAR) is ~24.5.
Figure 2e shows the squared amplitudes of the wavefunction

elements predicted by SFG and those directly measured through
normalization of SPDC coincidences (see complete data set and speed
up analysis in Supplementary Information, and Materials and Methods
for details on the calculation). SFG predictions are obtained by
integrating the measured conversion efficiencies over a bandwidth of

6 nm along the diagonal l�1
s þ l�1

i

� ��1 ¼ 775 nm. The two matrices

have a fidelity F ¼ P
nsni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CSFG

nsni

�� ��2 CSPDC
nsni

�� ��2q
¼ 99:2870:31%. From

equation (2), using the SFG measurements, we calculated a photon
pair generation rate NSFG= 2.36± 0.14MHz, which is the sum of the
rates from all 6 output combinations. Direct measurement of this rate
from SPDC data gives NSPDC= 1.67± 0.15MHz, showing a good
qualitative agreement between the two values. We believe that an
overestimation of the detector efficiencies from the η1= 8% and
η2= 10% provided by the manufacturer, and not measurable with our

Pump beam ωp

1 2 3

a b

1 2 3ns np ni N

χ(2) χ(2)

ns np ni N

i-photon

Signal beam
ωs

Idler beam
ωi

s-photon

SFG

Figure 1 Scheme for the characterization of the biphoton state produced by
an array of N waveguides with an arbitrary χ(2)-nonlinear process. (a) SPDC:
a pump beam is injected into waveguide np at the input of the device.
Photon-coincidence counting measurements between each pair of
waveguides (ns, ni) at the output are used to measure photon-pair generation
rates and relative absolute squared values of the wavefunction. (b) SFG:
Laser light at signal and idler frequencies is injected into waveguides ns and
ni in the reverse direction of SPDC. Absolute photon-pair generation rates
and relative absolute squared values of the wavefunction can be predicted
by direct optical power detection of the sum-frequency field emitted from
waveguide np.
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current setup, introduces a systematic error that underestimates the
measured SPDC rate.
Our method allows direct characterization of the phases between

the wavefunction elements, by performing interferometric detection of
the generated sum-frequency field. Verification of the generated state
by quantum state tomography would be experimentally difficult due
to phase fluctuations between the different paths introduced by
thermal and mechanical instabilities. Hence, the SFG-phase measure-
ments are presented as a proof-of-concept and not directly verified by
SPDC measurements.
Figure 3a shows the phase measurements setup used for input into

waveguides 2 and 3. This procedure allows us to infer the relative
phases between wavefunction elements ynsni up to the phases of signal
and idler beams �ðysns þ yini Þ from the output of waveguide 1
(Figure 3b). The predicted wavefunction phases are shown in
Figure 3c. Since the unknown phase multiplier exp½�i ysns þ yini

� �
�

does not alter the degree of entanglement of the biphoton state,
we calculated a Schmidt number30 S= 1.59. (Supplementary
Information), which precisely characterizes the degree of spatial
entanglement and cannot be obtained with only photon correlations.
The SFG characterization method proposed here provides a

practical path for characterization and development of monolithically
integrated networks that for devices similar to ours can be four orders
of magnitude faster than the equivalent quantum measurements and
with two orders of magnitude greater accuracy (Supplementary
Information). This technique can be applied to any arbitrary ‘black-
box’ second-order nonlinear device and supports the development of
integrated photon sources and large-scale quantum photonics tech-
nologies. In the future it will be of interest to explore how the SFG

analogy can be applied to larger photon number states generated
through SPDC.

MATERIALS AND METHODS

Experimental setup for SFG measurement
Signal and idler beams, generated by two tunable laser diodes with

100 kHz linewidth, were injected into each pair of waveguides with a
fibre V-groove array. All the beams were collected in free-space at the
output of the waveguides with a lens with 0.5 NA. SFG and signal-idler
wavelengths were separated with a dichroic mirror. SFG power from
the output of waveguide 1 and signal-idler powers from the outputs of
all three waveguides were then measured with two standard power
meters. The measured powers were corrected for Fresnel losses at the
chip interface and used to calculate the SFG conversion efficiency at
the output of the array. SFG conversion efficiencies for the single
channel inputs were measured by combining signal and idler beams
with a 50:50 fibre coupler. The measurement process was automated
with Labview.

Experimental setup for SPDC measurements
A pump beam with 775 nm wavelength and 100 kHz linewidth was

generated by second-harmonic generation in a periodically poled
lithium niobate waveguide and injected into waveguide 1 with a lens of
0.5 NA. The three outputs were collected with a fibre V-groove array,
and photon coincidences between each pair of waveguides were
measured with two gated InGaAs avalanche photodiodes and a
time-tagging module. A filtering stage in free-space, made from a
set of 5 long-pass filters and a band-pass filter, was used to attenuate
the pump beam by 150 dB. Photon pairs were filtered with a 6 nm
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Figure 2 Comparison between SFG and SPDC measurements. (a) Schematic of the device used for biphoton state generation. The device is made of three
coupled waveguides with five defects in the poling pattern introduced by translating the poled domains by half a poling period Λ (inset). This design is based
on the recently developed concept for quantum state engineering with specialized poling patterns26. Waveguides are fabricated on a lithium niobate substrate
by reverse proton exchange (Supplementary Information)28,29. (b) Measured classical sum-frequency conversion efficiency from waveguide 1 as a function of
signal and idler wavelengths coupled to waveguides 2 and 3. (c) Predicted squared relative amplitudes of the biphoton wavefunction for a pump injected into
waveguide 1, proportional to the SFG signal for different combinations of signal and idler in coupled waveguides vs. the pump wavelength in the degenerate
regime (λs= λi=2λp). (d) Time histogram for the photon coincidences between waveguides 2–3 and waveguides 1–2 for a 50 min acquisition time, a pump
wavelength λp=775 nm, and a pump power Pp=32±5 μW. Time bin width is 82 ps. Complete data sets are in Supplementary Fig. S2. (e) Normalized
biphoton wavefunctions predicted by SFG (left) and measured by SPDC (right) for λp=775 nm.

Letter

3

Light: Science & Applicationsdoi:10.1038/lsa.2017.143

http://dx.doi.org/10.1038/lsa.2017.143


band-pass filter centred at λc= 1550 nm to restrict the SPDC emission
bandwidth to the range measured by SFG. Photon coincidences from
the single channels were measured by splitting signal-idler photons
with a 50:50 fibre coupler.

Absolute photon pair generation rates and relative squared
amplitudes of the wavefunction from SFG measurements
For each pair of waveguides ns, ni the signal wavelength was scanned

in steps of Δλ= 0.25 nm in a 6 nm bandwidth centered at 1550 nm. At

each step j the idler wavelength was set to lið Þj ¼ l�1
p � lsð Þ�1

j

� ��1
,

where λp= 775 nm is the pump wavelength for SPDC. Absolute
photon pair generation rates were calculated by discretization of
equation (2) through the relation

1

Pp

dNpair

dt
¼

X
j

ZSFGj

l2p
lsð Þj lið Þj

cDl

lsð Þj
h i2

where ZSFGj is the normalized sum-frequency conversion efficiency

measured at each step j. The pump power Pp was measured during the
SPDC characterization from the first output of the fibre array. Relative
squared amplitudes of the wavefunction elements were calculated as

CSFG
nsni

�� ��2 ¼ ðPjZ
SFG
j ÞnsniP

nsni
ðPjZ

SFG
j Þnsni

Error in the fidelity between correlation matrices
The error in the fidelity between the correlation matrices predicted

by SFG and measured by SPDC was calculated with an iterative
numerical algorithm with N= 106 cycles. At each step we assigned to
the two correlation matrices a random value calculated from a normal
distribution with a sigma given by the error in the measurements.
Average value and error in the fidelity were finally calculated from the
simulated distribution.

Second-harmonic generation contributions in SFG measurements
For SFG-power measurements second-harmonic generation (SHG)

contributions were first measured by inputting signal and idler beams
into each channel individually. SHG powers were then subtracted
from SFG-power measurements. The procedure was repeated and
automated with Labview. For SFG-phase measurements, SFG and
SHG contributions were separated at the output of the array with the
aid of a diffraction grating.
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