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We reveal that an isotropic homogeneous subwavelength particle with high refractive index can 
produce ultra-small total scattering due to vanishing of the electric dipole contribution. This effect can 
be explained based on the Fano resonance of the scattering efficiency associated with the anapole 
excitation. The latter is a non-radiative mode emerging from the destructive interference of electric and 
toroidal dipoles, and it can be useful for the design of highly transparent optical materials. 
 
1. Introduction 
 
The idea of perfect camouflage follows the history of humanity. This idea inspired poets and writers 
who described the great advantages of invisibility for military, political or even for love affairs. Here 
the stories from the Arabian “One Thousand and One Nights”, the Alexander Pushkin`s poem 
“Ruslan and Ludmila”, and a science fiction novella “The Invisible Man” by Herbert G. Wells can be 
mentioned, as well as the Harry Potter of Joanne Rowling and many others. However, for a long 
time this invisibility was considered to be forbidden by general physics. Since the time of Rayleigh1, 
it was recognized that even a very small particle becomes visible due to light scattering. Attempts in 
Nature, e.g. those of chameleons, to realize invisibility are based on camouflage (i.e. imitating the 
colour of the background) and, thus, are just a palliative.  
 
P. Ufimtsev suggested another principle in his book published in 1962. His idea was to use a special 
shape of the aircraft to escape back reflection of radar signal. Such property is demonstrated, for 
example, with conical mirror directed toward to the light source.  Ufimtsev`s book was translated into 
English2 and it gave start for the development of the stealth technology. It is interesting to note that 
Prof. M. Levin (who was a referee of Ufimtsev`s PhD thesis) wrote in his official review that a zero 
back scattering could be derived for an azimuthally symmetric material with µε = . Ufimtsev 
highlighted this story in his book3 but it was never printed in a paper. Meanwhile, the same idea was 
later independently re-discovered4 and published by M. Kerker, after which this condition is named 
as first Kerker condition. According to Arnold`s Principle “if a notion bears a personal name, then 
this name is not the name of the discoverer”5. However, Kerker further developed the idea to reach 
total scattering suppression. For that, he considered the scattering from multi-layered spheres6 and 
spheroids7.  
 
A step further in the development of the invisibility idea led to the next attack based on the concept 
of cloaking8,9 which uses the general principle of optical transformation, i.e. Fermat principle. This 
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idea needs inhomogeneous media, which forces light to go around the cloaking area. Consequently, it 
is necessary to create some special profiles of permittivity ( )rεε =  and permeability ( )rµµ = , which 
make their practical realization rather difficult. Other ideas related to multi-shell structures for 
cloaking were later developed for plasmonic10, dielectric11 and metamaterial coatings together with 
scattering cancellation and mantle cloaking12. 
 
Returning to homogeneous spheres one should mention the idea of directional scattering for 
plasmonic nanoparticles. This idea is closely related to Fano resonance in plasmonic materials and 
metamaterials13, 14. However, such Fano resonances and directional suppression of scattering in 
plasmonic particles is not accompanied by minimization of the total scattering efficiency. Another 
problem is related to dissipation of real metals, but this can be easily circumvented if dielectric 
particles are used instead. 
 
2. Rayleigh approximation 
 
The scattering efficiency, scaQ , in the Rayleigh scattering regime is given by well-known formula15  
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representing the ratio of scattering cross-section to the geometrical one, 2Rgeom πσ = , where R  is  
particle radius, ε  is its permittivity, and λπRq 2=  is the so called size parameter, with λ  the 
radiation wavelength. The particle is considered to be a small ideal sphere made of an isotropic, 
homogeneous and nonmagnetic ( 1=µ ) material. In addition, the size of this particle should be 
sufficiently small. If one consider non-dissipative, 0Im =ε , dielectric materials with positive 
refractive index 1>= εn , then the ratio of scattering efficiency to the fourth power of the size 
parameter presents a universal function, which monotonously increases with refractive index 
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Formula (1) represents the scattering of electrical dipole. Justification of this formula follows from 
the Mie theory15, which is the exact solution of Maxwell’s equations for scattering of a plane wave 
from a spherical particle. Scattering efficiency of the particle according to Mie theory is given by  
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where the scattering amplitudes a  (electric) and b  (magnetic) are expressed in terms of the Ricatti-

Bessel functions15. With small size parameter, 1<<q , one can find16  12 +∝ 
 qa  and  32 +∝ 

 qb .  
Thus, the electrical dipole amplitude 1a  is dominant. For a small plasmonic particle with 0<ε  the 
scattering efficiency can be very large,    1>>scaQ . The physical reason for this effect can be explained 
from the Poynting vector field16, 17, which indicates that the cross-section of separatrix tubes for the 
energy flow into the particle can greatly exceed the geometrical cross-section. Near plasmonic 
resonances with ( )11 −+−= ε , Rayleigh approximation is not valid, e.g. ( )Ra

scaQ  in formula (1) has 
singularity at 2−=ε . However, the Mie theory yields for electrical dipole resonance a limited value 

26 qQsca = . For weakly dissipative plasmonic materials, one can see an inversion of the hierarchy 
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of resonances, when the scattering efficiency at the dipole resonance is smaller than that of the 
quadrupole one, which is, in turn, smaller than for the octupole resonance, etc.18  
 
A small dielectric particle with 1>ε  produces, according to Rayleigh approximation (1), a very 
small scattering, which tends to zero at 0→q . This scattering corresponds to the situation when the 
electrical dipole amplitude plays the dominant role and all other amplitudes are small. Such situation 
is typical for small plasmonic particles. A similar situation takes place for small size parameter 

1<<q  and refractive index 21 << n , see e.g.19. For these cases, Rayleigh formula (1) represents the 
minimal possible scattering of a small particle. 
 
3. High-index dielectric particles 
 
This situation changes for a particle with high refractive index. For example, silicon particles at the 
optical range ( )4≈n  have scattering efficiencies at the magnetic dipole resonance that are larger than 
at the electrical dipole resonance even for small particles20,21, as has been experimentally  
confirmed22, 23. As a result, the scattering near the resonances is not small in spite of fulfilling the 
condition that the particle size is small. In fact, the true conditions for the applicability of formula (1) 
are 1<<q  and, additionally, nq 1< . This is easy to see in Fig. 1a, where the total Mie scattering and 
Rayleigh scattering efficiencies versus refractive index n  are presented for a spherical particle with 
size parameter 3.0=q  ( )05.0≈λR . Rayleigh scattering saturates at large n , but formula (1) loses 
its validity in the vicinity of the magnetic dipole resonance at 3.10=n  and also in the vicinity of the 
subsequent resonances (as shown in the inset of Fig.1a). Note that some very narrow peaks cannot be 
seen on the scale of this inset. Also note that, even with large refractive index, the total scattering 
between resonances is quite close to Rayleigh scattering (blue line). 
 

 
 
Fig.1. (a) Scattering efficiencies according to Rayleigh approximation (blue line) and exact Mie theory (red line) for small 
size parameter 3.0=q . The inset in (a) shows resonances at higher values of the refractive index. In the vicinity of 

...36,21,15=n  one can see that the total scattering is less than it follows from formula (1). A zoom of the scattering 
within the area indicated by the dashed box is shown in (b), where Rayleigh approximation (blue line) and exact Mie 
theory (red line) are shown together with four partial scattering efficiencies for magnetic dipole (md), electric dipole (ed), 

magnetic quadrupole (md) and electric quadrupole (eq). Inset in (b) and Fig. (c) show scaQ  < RaQ  region in linear 
coordinates. 
 
It is not surprising that the particle has a scattering efficiency much larger than Rayleigh scattering 
near resonances. However, the asymmetric line-shape of the resonance (see Fig 1a) leads also to a 
strong suppression of total scattering near the resonance that becomes lower than that given by 
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Rayleigh formula (1). Such scattering behaviour is achieved e.g. in the region near 15≈n  marked in 
bracket in Fig. 1a. The zoom into this area is shown in Fig. 1b. There are two closely situated electric 
dipole and magnetic quadrupole resonances, which cannot be resolved on the scale of Fig. 1a. 
Although there are many points with local scattering minima, as shown in the inset to Fig. 1a, a more 
precise examination shows that the global minimum in scattering is reached near 15≈n . Detailed 
analysis of this resonance reveals that it has a typical Fano shape. Typically, Fano bandwidth is quite 
narrow, see in Fig. 1c. 
 
Previously, it was shown that such Fano shape arises in the total scattering from single elongated 
antennas, both in the plasmonic case24, 25 and in their dielectric analoques26, within a system of 
disordered photonic crystals27 as well as in the transmission spectra of two-dimensional square 
lattices of dielectric circular rods28. In the last case, the Fano resonance is arising due to interplay 
between the resonant Mie scattering from individual rods and the Bragg scattering from the photonic 
lattice. One should also mention the Fano profile of the dipole scattering amplitude ( ) 2

1 na  at the 
limit 1>>n 29. Formally, results of Ref. 29 can be expressed as an interference of two partitions, 
where one corresponds to the n -independent wave, scattered by a perfectly reflecting particle and 
plays the role of a background, while the other is associated with the excitation of an n -dependent 
resonant Mie mode30.  
 
The Fano resonance shape in our case is associated with the destructive interference of an electric 
dipole with a toroidal dipole mode. Previously it was shown that such type of interference, the so-
called anapole mode31, 32, could be observed in Si nanodisks. For nanodisks, this anapole mode can 
be achieved at a specific wavelength and for some fixed ratio of the disk height to its diameter. It was 
shown as well that, in the case of a single isolated nonmagnetic isotropic spherical particle, the 
anapole condition is usually hidden by the rest of multipolar contributions, difficulting its 
observation. Here, we show that the anapole excitation may be observed even in the simple spherical 
case, provided the particle is sufficiently small and has a sufficiently high refractive index. In Fig. 2 
we present the Poynting vector distribution for the particle with 0116.15=n  and 3.0=q . The total 
scattering efficiency, 31099.5 −⋅≈scaQ , for this particle is about 3.5 times less than Rayleigh 

scattering calculated by formula (1), ( ) 21011.2 −⋅≈Ra
scaQ . One can see in Fig. 2 that the Poynting 

vector has a toroidal structure. Note that at 1<<q  the magnetic dipole contribution is small, so that 
inequality ( ) ( )em QQ 11 <<  is satisfied at almost all values of parameters except of regions close to the 
anapole conditions. Closed singular line in Fig. 2b corresponds to zero energy flow. Near this 
singular line Poynting vector produces characteristic vortices, see in Fig. 2c, similar to vortices in 
small plasmonic particle16, 33.    
 
Additionally we can prove the toroidal symmetry by plotting distributions of electric and magnetic 
vectors inside the particle in mutually perpendicular planes as it is shown in Fig. 3.  Here distribution 
of electric vector  E  is shown within the { }zx,  plane through the diameter of the particle in Fig. 3a. 

Colour panel in Fig. 3a presents the intensity 2E   distribution. Within the perpendicular { }zy,  plane, 
one can see the distribution of magnetic vector H , as shown in Fig. 3b. Similar toroidal fields32 
recently attract a lot of attention.  Dominant contributions of electric and toroidal dipole moments can 
be clearly seen in Cartesian coordinates31. Thus, one can conclude that this Fano resonance is related 
to constructive and destructive interference of electrical dipole and toroidal dipole moments.  
 
As it follows from Fig. 1b the corresponding Fano resonance arises in the vicinity of the zero of 
electrical dipole mode, 01 =a . This condition yields the equation  
 
       ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0cotcot1cot1cot11 222222222 =−+−−++−+− nqqnnqnqqnnnqqqnnqn .          (4) 
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Within the equation (4) one should consider ( ) 0cos ≠q  and ( ) 0cos ≠qn . For each value of refractive 
index, there are infinite set of solutions with corresponding size parameter q . However just the first 
root corresponds to the global minimum of scaQ .  
 

 
Fig.2. (a) 2D Poynting vector in { }zx,  plane for 0.3=q  and 0116.51=n . Colour panel presents the variation of the 
modulus of the Poynting vector. The full number of modes in the Mie theory is taken into account. There are 2 saddles 
and 2 focal points. Red lines show the separatrices. Inside the particle, one can see the loops of separatrices representing 
the cross-sections of the electric toroidal dipole. (b) 3D Poynting vector distribution. The focal points in Fig. 2 are in 
reality unstable saddle-focal points. Through these points goes the closed singular line, which provides the axis of the 
toroidal mode. One fourth part of this line is shown by blue line. Green lines show the untwisted spiral of the Poynting 
vector in { }zx,  plane. (c) Vortices around the closed singular line, which provides the axis for toroidal mode. 
 
 
 
 

 
 
Fig.3. (a) Distribution of electric vector E  within the { }zx,  plane through the particle diameter. Colour panel indicates 

the value of electric intensity 2E in this plane. (b) 3D distributions of electric E  (red lines) and magnetic H  (blue lines) 
vectors within the  planes through the particle diameter.  
 
 
It is important to emphasize that anapole mode produces the global minimum in scattering efficiency. 
Minimization of differential scattering only34-37 does not minimize the total scattering. For example, 
minimization of the forward scattering due to the second Kerker conditions34 is quite close to local 
minimum in scattering (see in Fig. 4a), but it does not beat the Rayleigh scattering. A better way to 
visualize this global minimization scattering effect is shown in Fig. 4b, where two curves 4qQsca  
depend on the refractive index only.  
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Fig. 4. (a) Scattering efficiencies versus size parameter for three values of refractive index: 15=n  (red), 17=n (green) 
and 20=n  (blue). Open circles present positions of the local minima in scattering. Triangular shows the scattering in the 

points which correspond to minimal forward scattering. (b) 4qscaQ along the Rayleigh scattering (green) and anapole 
mode (red). 
 
It is possible to produce further minimization of scattering using spheroidal particles. In contract to 
problem with scattering maximization38 the answer for minimization in fact is quite evident and 
similar to the stealth effect: the needle directed toward to the light source will produce the minimal 
scattering. At the same time, behaviour of directional scattering for spherical particle near the 
magnetic dipole resonance and anapole modes is quite different. The forward, FSQ , and backward, 

BSQ , scattering efficiencies defined for a spherical particle from Mie theory as: 
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A total suppression of the forward scattering is forbidden by the optical theorem39. The back 
scattering of small particle can be almost completely suppresses at the condition 11 ba =  which is 
referees as the first Kerker condition, while minimization of the inverse ratio is often referred to as 
the second Kerker condition34. Calculation with size parameter 3.0=q  yields the first Kerker 
condition for the particle with 14.9≈n  and the second Kerker conditions for the particle with 

08.12≈n . It is interesting to note that the second branch of solutions for Kerker conditions at 3.0=q  
yields the values 99.14≈n  and 14.15≈n  located in the vicinity of the anapole mode. The 
corresponding polar scattering diagrams15 are shown in Fig. 5. At conventional Kerker conditions the 
scattering pattern is independent on incident polarization and is practically the same for linearly 
polarized and non-polarized light (i.e. it has rotational symmetry). In contrast, the scattering pattern 
near anapole is not rotationally symmetric, thus yielding polarization-dependent directional scattering 
(except at backward and forward directions). This behaviour is quite similar to the change of 
directivity in the vicinity of quadrupole resonance within the weakly dissipated plasmonic particles14. 
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Fig. 5. Left panels (a,b) show forward and backward scattering efficiencies for small particle 3.0=q  versus refractive 
index n. The right panels (c-f) show the polar scattering diagrams in the x–z plane (azimuthal angle φ = 0 in Mie theory) 
for different refractive index n . Blue lines shows linearly polarized light and red lines represent non-polarized light. 
Arrows indicate direction of scattering. 
 
4. Conclusion 

 
We have found conditions when the scattering of a small spherical dielectric particle, 1<<q , is 
strictly below the value which follows from the Rayleigh formula (1). It is related to the excitation of 
an anapole scattering mode with an associated Fano line-shape. Similar effects were found previously 
for a homogeneous dielectric rod30, but the physics behind was explained in a different way. It is 
important to highlight that our results refer to a homogeneous isotropic small particle. The only 
conditions for such ultra-small scattering is related to small size parameter, 1<<q , big refractive 
index, typically 5>n , and weak dissipation. There are a number of materials fulfilling these 
conditions in far-IR and microwave region, e.g. SiC, TiO2, ceramics, and some other materials40. We 
foresee that cluster assembled materials from such particles may have interesting properties such as 
high transparency, i.e. the scattering effect in the extinction can be strongly suppressed. 
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