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Abstract: We study nonlinear propagation of light in colloidal suspension of metallic nanoparti-
cles, in the regime of particles surface plasmon resonance. We show that the propagation exhibits
features typical for purely defocusing media and the observed spatial confinement is not a real
self-trapping, as for solitons, but rather than is caused by the phase modulation of the beam via
nonlocal defocusing nonlinearity. We also show that the light-induced refractive index change in
the suspension leads to stabilization of structured light beams. In particular, we demonstrate a
stable nonlinear propagation of bright ring beams with complex states of polarization, including
practically important radial and azimuthal states.
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1. Introduction

Suspensions of nanoparticles have attracted great interest in the field of light-matter interaction due
to their abilities to confine light beams and form solitons in both, short pulse [1,2] and continuum
wave (cw) regimes [3–9]. In the latter case the metallic nanoparticles are of particular interest
because of their unique optical properties exhibiting surface plasmon resonance [7, 10–12]. The
interaction with electromagnetic radiation depends strongly on the wavelength and polarization
of light as well as on size and shape of particles [5, 6, 13–16]. The tailored combination of these
parameters can dramatically affect optical properties of a suspension, typically in small focal
volume of a tightly focused laser beam, by assembling particles via optical trapping [17, 18].
Recently, it was proposed [5,16] that suspensions of gold nanoparticles illuminated with light
of frequency near their surface plasmon resonance may change the local concentration of
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nanoparticles along a low-divergence beam by action of the polarizability-dependent gradient
force acting on the particles. This leads to the modulation of the refractive index of the suspension
within the beam, supporting nonlinear self-guiding of the latter. For low light intensity, the
suspension behaves as linear medium with an average refractive index determined by the
concentration of nanoparticles. On the other hand, in case of illumination by an intense laser
beam, both gradient force and light absorption change the refractive index of the suspensions
around the beam in different ways. The change of concentration of particles by the action of
gradient force increases refractive index of the suspensions in the beam center, while light induced
non-local thermal response of the surrounding liquid leads to decreasing of the refractive index
within and outside of the beam [19]. The joint action of these processes may ensure net increase
of refractive index leading to the self-confinement of the incident beams at a long distance in
the form of spatial solitons [1, 2, 4, 16] and their subsequent ability to guide optical signals at
nonresonant wavelengths [5].

In this work we study in great detail propagation of optical beams in metallic suspensions. In
particular, we look at the possibility of low-divergent beams to change locally the concentration of
nanoparticles and subsequently, increase the refractive index of plasmonic aqueous suspensions
by means of optical forces. We show that thermo-optical response is, in fact, a dominating process
preventing the refractive index increase and, hence, making the true self-trapping of the beams
practically impossible. The experimentally observed apparent “self-focusing” of the beam is
caused by the modulation of wavefront of the beam by spatially nonlocal defocusing nonlinearity.

2. Gradient force

Let us start from an estimation of the gradient force acting on gold nanospheres in aqueous
suspension, illuminated by a low-divergence monochromatic Gaussian beams including also
ring-shaped beams. The latter condition means that w0 >> λ0, where w0 is the beam waist radius
and λ0 is the wavelength of the beam in vacuum. The gradient force for an isotropic particle is
given as Fgrad = (1/4)αR∇ {E(r) · E∗(r)}, where complex function E(r) represents the electric
field E(r, t) = E(r)ei(kz−ωt) of monochromatic light and αR is the real part of the particle’s
polarizability α = 4πε0a3(εg − εw)/(εg + 2εw) [10]. Here ε0 is the dielectric permittivity of
vacuum, εg is the frequency-dependent permittivity of the gold nanosphere of radius a, and εw is
the permittivity of surrounding water.
In the linear (low power) regime of propagation, we assume the intensity profile of Gaussian

beams to be I(m)(ρ, z) = Pρ2me−ρ
2/w2(z)/πm!w(z)2(m+1), where P is a beam power, m = 0, 1..,

w(z) = w0(1 + z2/z2
0)

1/2 is the beam radius coinciding with the radius of the maximum intensity
contour of the beam with m = 1, z0 = kww2

0 is a parameter characterizing the beam divergence,
and kw = 2πnw/λ0 denotes the wave number. For the zero-order Gaussian beam (m = 0), the
maximum gradient force is then Fmax

grad
= PnwαR

√
2e/(2πcε0w

3
0), where c refers to speed of light.

Let the wavelength of the beam in vacuum be λ0 = 532 nm, and the radius of gold nanospheres
be rp = 20 nm with the peak of absorption at λr = 524 nm. The permittivity of the nanosphere
at λ0 = 532 nm is εg = −4.68 + 2.43i and the dielectric constant of water εw = n2

w = 1.332 at
20◦C. For the beam waist of w0=10 µm, we find that Fmax

grad
/P ≈ 3 × 10−4 pN/W. Note that the

maximum gradient force for a ring-shaped beam of the same power is even lower. For instance for
the beam with m = 1 this force is 1.5 and 2.2 times less for the direction to and out of the contour
of the ring, respectively. Under the action of the gradient force, a particle acquires a speed of
vp = µFgrad towards the intensity maximum, where µ is the particle’s mobility in water. The
mobility for a spherical particle is µ = 1/6πηa, where η = 1 mPa·s is the dynamic viscosity of
water at 20◦ C. Thus, the 20-nm-radius gold nanosphere may drift by action of the gradient force
in the optical beam of 100 mW power with an estimated maximal speed about vg ≈ 10−6 m/s.
This is incredibly low speed which is five orders of magnitude slower than the root mean square
velocity of Brownian motion of the nanosphere (〈vb〉 ≈ 0.13 m/s).
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Fig. 1. Illustration of the beam propagation concept in the aqueous suspension of gold
nanospheres. (a),(b) the beam propagation in a linear (a) and nonlinear (b) regimes when
its waist is at the input facet of the cell with the suspension. The low light power has no
effects on the random particle distribution in the suspension (a). Increasing the beam power
leads to the decreasing of the refractive index of the suspension caused by the negative
thermo-optical response of water (orange zone) (b). The probable optical force increases the
defocusing effect. (c), (d) The beam propagation in a linear (c) and nonlinear (d, e) regimes
when its waist is inside the suspension. In the nonlinear regime (d) the optical forces play
no role and the heated water lowers the refractive index of the suspension defocusing the
beam and, as result, the actual beam waist increases lowering the beam divergence. In the
nonlinear regime (e) the optical forces may locally increase the concentration of particles
near the focus creating both positive nonlinearity with high local refractive index in the beam
maximum and negative nonlocal thermal optical response with a low refractive index of
the surrounding liquid (orange region). The competition between these nonlinear processes
may potentially lead to the self-guiding of the beam. (f) Calculated maximal radiation force
acting on gold nanospheres as a function of beam waist w0 and a position of the focus ( f )
measured from the front facet of the cell. The absorption coefficient of the suspension is
assumed to be η = 0.27 × 103 m−1.
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3. Radiation force

Besides the gradient force the total optical force acting on a gold nanoparticle contains two
other contributions: the absorption forces Fabs = nw 〈S〉Cabs/c and the scattering force
Fscat = nw 〈S〉Cscat/c. Here 〈S〉 is the time-averaged Poynting vector, Cabs = kwIm(α)/ε0 and
Cscat = k4

w |α |2/6πε2
0 are the absorption and scattering cross sections, respectively. While the

gradient force tends to agglomerate nanoparticles, both the absorption and scattering force tend
to destabilize this tendency by pushing the particles in the direction of the light energy flux [17].
Using the same parameters as above, we find the maximum absorption force Fmax

abs
/P ≈ 4 · 10−2

pN/W, and the maximum scattering force Fmax
scat /P ≈ 10−2 pN/W. The speed that a particle

acquires by the action of these forces is about va ≈ 10−4 m/s. This estimation shows that in the
example the joint action of repulsive optical forces (radiation force) is two orders of magnitude
stronger than the gradient force, and thus, the latter should play no significant role in the nonlinear
light-matter interaction with low-divergence optical beams. In other words, the repulsive radiation
force highly dominates over the gradient force and is mainly responsible for the total action of
the optical force in the plasmonic suspension. It should be emphasized that our interest here lies
in a nonlinear response of nanosuspension induced by low-divergence optical beams. In tightly
focusing laser beams (w0 ≈ λ0), the action of the gradient force may exceed the radiation force
leading to a stable trapping of a single or multiple metallic nanoparticles [17,18,20,21]. However,
the trapping region in this case is limited to the tiny focal spot comparable with a wavelength of
light and cannot dramatically impact on the nonlinear properties of the suspension.

4. Thermo-optical response of plasmonic nanosuspensions

The other relevant process affecting the light interaction with metallic suspension is thermo-
optical response of the suspension to the incident light. The particles absorb a large fraction of
the incident light generating heat which is subsequently transferred to the surrounding water.
The speed of a single particle heating is vp = 2a/tp, where tp = a2/κg is a time of the heat
diffusion, and κg = 1.27 · 10−4m2/s is diffusivity of gold. The subsequent heating speed of water
is vw = l/tw , where l is a distance between particles, tw = l2/2κw is a time of water heating,
κw = 0.43 · 10−6m2/s is diffusivity of water. The suspension of discussed here gold nanospheres
with concentration of 0.05 mg/mL gives heating time (speed) of tp = 3.5 × 10−12s (vp=104m/s)
and tw=10−6s (vw=1m/s) for gold nanospheres and water, respectively. The heating of water
stimulates the temperature-dependent refractive index change which can be approximated by ∆nT
= (∂nb /∂T)(T − Tb)(1 − fV ), where T represents spatial temperature distribution and Tb is the
initial temperature of the suspension and fV is the volume filling fraction of nanoparticles. The
thermo-optic coefficient ∂nb/∂T of a suspension with low concentration of particles ( fV << 1) is
negative as it is predominantly determined by that of water [16] which is ∂nb/∂T≈ −10−4K−1 [22].
With the temperature increase a background refractive index, nb , decreases leading to the negative
(defocusing) thermal nonlinearity which is inherently spatially nonlocal because of heat diffusion.

5. Position-dependent scenario of light-matter interaction

According to our above estimations, the heating process is much faster than the process of particle
transport by the optical forces. Therefore, the heated water induces a quasi-stationary background
of spatially-dependent refractive index distribution defining nonlinear optical response of the
colloidal nanosuspension. The radiation force acting on particles may also potentially play a role
in the redistribution of the refractive index via a local change of particles concentration. If this
happens, it should lead to a specific nonlinear behavior of propagating beams. Figure 1 shows the
expected behavior of light, considering, as an example, a low-divergence Gaussian beams focused
at the front facet Figs. 1(a) and 1(b) or inside Figs. 1(c)-1(e) of the cell with gold nanosuspension.
In the low-power regime of propagation in both cases, the beam just diffracts linearly losing its
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power as P = P0e(−ηz), where P0 is the initial power and η is the absorption coefficient of the
suspension. Nevertheless, in a high-power regime, the nonlinear beam behavior may critically
depend on position of the beam waist in the suspension. When the waist position is located before
or at the boundary of the cell, the increasing power leads to the strong thermo-optical response of
water, defocusing the beam. In this situation the optical force rapidly vanishes with the distance
of propagation z due to both the beam diffraction and absorption (see the first graph in Fig. 1(f)).
Moreover, the optical force can only contribute to the defocusing process, at least for particles
with positive polarizability. Whereas the gradient force is too weak to counteract rapid thermal
motion of nanoparticles and attract them to the beam center, both the absorption and scattering
forces tend to push particles out of the focal spot preventing their agglomeration.

The situation may change when the beam is focused deep inside the suspension. The radiation
force acting on nanoparticles can now be defined as Frad ≈ P0e−ηzIm(α)kw/ε0cw2

0(1 + (z −
f )2/z2

0), where kw is the wave vector and f is a distance from the input to the position of the
beam waist. Depending on the size and position of the beam waist, the radiation force may
change significantly in the vicinity of focal area increasing before and decreasing after the focus
(see Fig. 1(f)). Under this force the particles move to the focal area along the energy flux and,
in an ideal scenario of absence of a significant thermal motion of particles, may potentially
increase their local concentration. This situation is schematically shown in Fig. 1(e). While
the thermo-optical response of the suspension decreases exponentially with the distance z, the
increased concentration of particles will locally elevate the refractive index at the beam axis near
the focal position. Such a zone may potentially support the self-confinement of optical beam over
a short distance of optimal balance between thermal defocusing and concentration-dependent
self-focusing in the suspension (self-guiding zone in Fig. 1(e)). After the focal plane though, the
optical force repels the assembly of particles, preventing further self-confinement.
In the above discussion we have assumed that the size and position of the focal spot is

unchanged when the power increases. However, in an realistic scenario of focusing a beam
inside the suspension, the nonlinear properties far before the focal spot are mostly defined by
the thermo-optical response of heated water as the optical force plays no significant role in the
redistribution of particles concentration there. This creates only defocusing nonlinearity with
lower refractive index along the beam propagation and results in changing the beam divergence
(see defocusing zone in Fig. 1(d)). In other words, the diffraction length of the beam is expected to
increase within certain range of the power growth, resulting in the apparent beam self-confinement.
This defocusing process weakens gradually along z because of light absorption, and after that the
quasi linear diffraction will take place (free propagation zone in the Fig. 1(d)). Note that in such a
process, the optical forces should have no influences on the homogeneous particle distribution as
well as on the refractive index of the suspension. The two scenarios considered above predict
almost identical behavior of an output optical beam as a function of its power and the initial focal
position inside the suspension. Indeed, the size of the beam at the output facet of the cuvette
may show a similar tendency as a function of input power (see Figs. 1(d) and 1(e)). Moreover,
the nonlinear transformation of the beam may support apparent guiding of the co-propagating
beams at different wavelength. Nevertheless, the actual formation of a true self-guiding requires
refractive index increase at the beam axis. This, in turn, should lead to nonlinear absorption
(due to larger particle concentration) of the beam and strongly affect stability of the higher order
beams.

6. Experiment

To clarify the light-matter interaction in metallic colloids we conducted series of experiments
with fundamental and ring-shaped Gaussian optical beams. In the first instance, we studied
nonlinear behavior of the fundamental Gaussian beam (wavelength 532 nm in vacuum) with
fixed position of the beam waist w0=7.5 µm at the distance of 5.7 mm from the input of the 20
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Fig. 2. Side-view observation of Gaussian beam propagation in suspension of 20-nm-radius
gold nanospheres with absorption coefficient η=0.133 m−1. (a-c) Evolution of the beam
radius with power. Insets show magnified sections around beam waist. (d) Measured width
of the beam at the output versus input power. (e) Distortion of interference fringes and
corresponding inhomogeneous phase shift (f) induced by the beam.

Fig. 3. Schematic diagram of the experimental setup for the beam convertor and ring beam
formation. In the upper row, the uniaxial crystal (UC), microobjectives MO1 and MO2,
pinhole PH and lens L3 are used to separate the radially polarized beam from a circularly
polarized vortex. Blue arrows show the direction of a vortex rotation; red arrows show the
states of polarization. The polarizer, half-wave plates and quarter-wave plates used to change
the polarization state of the beam are denoted by P, λ/2 and λ/4, respectively. In the lower
row, the crystal is replaced with a glass prism GP with the same optical length to give a free
pass to the initial optical vortex. The lenses L3 and L4 are used to collimate and focus a
beam to the sample. Examples of the radially polarized beam at the input and output facets
in linear (1 mW) and nonlinear (80 mW) regimes are shown in black pictures.
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mm long cuvette which was filled with aqueous suspension of gold nanospheres (diameter 40
nm, concentration 0.05 mg/mL). The light intensity distribution and the refractive index change
of the suspension were monitored at the transparent side facets of the cuvette by collecting the
scattered light with an optical microscope. Results of these experiments are depicted in Fig. 2.
For the power range from 10 mW to 200 mW, the beam waist tends to spread and move forwards
with increasing power. The side-view pictures in Figs. 2(a)-2(c) shows this tendency for three
different input powers. The insets depict the increasing of the beam waist, thereby decreasing
its divergence. As a result, the size of the output beam is smaller for higher power in that range.
The graphs in Fig. 2(d) depict the power-dependent evolution of the beam width with a distance.
One can clearly see that for the power level around 200 mW the beam exhibits relatively low
divergence over quite significant distance which appears as apparent self-confinement. However,
this effect is caused by nonlocal defocusing of thermal origin. This is further confirmed in
interference experiment, in which cuvette with the propagating beam was inserted into a one
arm of Mach-Zehnder interferometer. The corresponding interference pattern obtained with red
(721nm) light and the extracted phase change across the beam at various position within the
cuvette are shown in Figs. 2(e) and 2(g). The shift of fringes in the beam area and above it (due
to heat convection) with negative phase change around the beam axis indicates the decreasing of
the refractive index reflecting defocusing response.

In the subsequent experiments we investigated the nonlinear behavior of beams with complex
intensity, phase and polarization using, as example, ring-shaped beams. If the local self-focusing
takes place in the suspension, the ring-shaped beams should be a subject of destructive amplitude
and phase perturbations leading to the azimuthal instability [8,23]. On the other hand, nonlocality
of the negative refractive index change provided only by the thermo-optical response typically
supports stable complex structure beam in nonlinear defocusing media [24–26]. Therefore one
may expect that a beam with complex intensity and polarization structure should break into
individual filaments in the local self-focusing media or preserve their structure in the non-local
defocusing media. To be consistent, in our experiments we generated all ring-shaped beams
with a single setup as shown in Fig. 3. In particular, all the beams were derived from the initial
circularly polarized single charge optical vortex by straightforward polarization transformations.
The electric field of such a beam E− = E(ρ, z)eiϕσσσ− can be represented as a superposition of
electric fields of radially and azimuthally polarized beams: E− = (Eρ − iEϕ)/

√
2. The vortex

was propagating along the optical axis of 10-mm-long c-cut calcite crystal placed between two
identical microscope objectives MO1 and MO2 (NA=0.25). As both radially and azimuthally
polarized beams are eigenmodes of a uniaxial crystal [27] with different divergences, their waists
were axially separated after the crystal at the distance ∼ 1.5 mm with respect to each other. The
circular pinhole with the radius 50 µm was placed in the waist plane of the radially polarized
beam so that the azimuthally polarized component was removed and did not contribute to the the
final polarization state. After the pinhole the resulting radially polarized beam was collimated
and could be converted to other types of the singular beams with complex polarization, before
focusing. The antivortex beam was derived from the radially polarized beam by straightforward
polarization transformations with a first half waveplate after the pinhole as it is shown in the
upper row of the Fig. 3. By placing and rotating the second half-wave plate, one can change the
polarization state of the antivortex beam to the azimuthal or radial without affecting its other
parameters [28]. Thus, these three vector beams had identical initial intensity distributions. Vortex
beams of different polarizations was derived from the initial circularly polarized vortex beam in
the same forming setup but with the calcite crystal replaced with 10-mm-long glass prism (see
the bottom row in Fig. 3). The conversion between different states of polarization was obtained
with a polarizer and a quarter waveplate located after the pinhole. Thus, the resulting vortex
beams have identical to vector beams intensity distributions. This allowed the beams to maintain
the same conditions in a linear regime of propagation. All the ring-shaped beams had beam
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Fig. 4. Results of the nonlinear propagation of ring-shaped beams in suspension of gold
nanospheres (a-c) and gold nanorods (d-f). (a), (d) Measured power absorption of the
suspensions. (b,c) and (e,f) Radius of the ring-shaped beams at the output facet of cuvettes
as a function of the initial beam power and position of the beam waist for the nanospheres
and nanorods, respectively. Dots represent experimental data while lines are averaged fits.

width w(z) = w0

√
1 + (z − l)2/z2

0 with the same position of the beam waist w0=12 µm inside
the cuvette in linear regime of propagation. The set of considered beams included four types of
high-order beams with the same ring-shaped intensity distributions: x-polarized single charge
m=1 optical vortex with complex amplitude of the electric field Ex = E (1)(r)eiϕex ; circularly
polarized vortex with the same signs of handedness σ=1 and chirality m=1: E+ = E (1)(r)eiϕσσσ+;
as well as radially polarized Eρ = E (1)(r)eρ and azimuthally polarized Eϕ = E (1)(r)eϕ beams.
Here E (m) =

√
2I(m)/cnwε0,σσσ±

√
2 = (ex ± i ey) = (eρ± i eϕ)e±iϕ is a unit vector corresponding

to right (+) and left (-) hand polarization; ex , ey, ez and eρ, eϕ denote unit vectors in Cartesian
and polar coordinates, respectively. Thus, all ring-shaped beams had the same initial intensity
distribution I(1)(ρ, z) = Pρ2e−ρ

2/w(z)2/πw(z)4.
In the experiment we used two identical sets of glass cuvettes with various lengths of 1, 6,

10.9, 16.2, 21.2, 25, 27, 30, and 40 mm. We monitored the nonlinear transformation of beam
intensities as a function of power and propagation distance. In one series of experiments the
cuvettes were filled with the suspension of gold nanospheres as in experiment above, while
in the second one, with the suspension of gold nanorods (width 50 nm, length 100 nm). The
experiments with nanorods aimed checking a possible nonlinear dependence of the propagation
on a polarization structure of the incident beam via orientational nonlinearity. The position of
the beam waist inside the cuvettes was controlled with the micro-translation stage and the input
power of the beam was adjusted with a gradient transmission filter.
At low power, P < 1 mW, each beam propagates linearly, and their ring radius expands due

to diffraction (see black curves in the Fig. 4). The similar smooth transition from the linear to
the nonlinear propagation was observed in both suspensions with gradually increasing power.
The spatial evaluation of beam radius at various input power levels and initial waist positions is

                                                                                              Vol. 26, No. 18 | 3 Sep 2018 | OPTICS EXPRESS 23204 



(a)

(b)

(e) (i) (m)

(f) (j) (n)

(c) (g) (k) (o) (s)

(d) (h) (l) (p) (t)

1 mW 40 mW 80 mWx
y

(q)

(r)
E

E

E

E

E

E

I n
 p

 u
 t

O
 u

 t 
p 

u 
t

Fig. 5. Observation of stable nonlinear propagation of ring-shaped beams in the suspension
of gold nanospheres. Each beam of identical intensity distributions was initially focused
inside the cell, 6 mm from its front facet. (a)-(d) Input and (e)-(t) output profiles for a linearly
polarized vortex (first row), circularly polarized vortex (second row), radially (third row)
and azimuthally polarized vector (fourth row) beams. Yellow arrows indicate the state of
polarization. (e)-(p) Output beam profiles after 2.5 cm of propagation at different input
power levels, showing the transition from diffractive broadening at 1 mW to nonlinear
narrowing at 80 mW. (q), (r) The interferograms confirming the vortex nature. (s), (t)
Intensity distributions of radially and azimuthally polarized beams after an analyzer. The
scale bar in (a) corresponds to 500 µm.

depicted using different colors in the graphs of Fig. 4. The narrowing, intensity and polarization
distributions of the beams at various input power levels as they are focused at the distance of 6
mm in 25-length cuvette filled with gold nanospheres are depicted in Fig. 5. We observe that all
the ring-shaped beams maintain their intensity profile and polarization structure throughout the
nonlinear transformation at the power range up to 90 mW. For higher input power, the size of rings
increases and the beams gradually lose their perfect symmetry due to the thermal convection
but without any break-up into filaments. Interestingly, the beam size is extremely sensitive to
the power variations even at very low power of a few mW indicating that the thermal nonlinear
processes already start at this power level.

7. Conclusions

These observations confirmed that the quasi diffraction-free propagation of the high intensity
beam in plasmonic nano-suspension was not caused by the self-trapping but the phase modulation
via nonlocal refractive index decrease (self-defocusing). Furthermore, we found complete lack
of nonlinear absorptions in all our experiments irrespectively of the beam power and beam
waist positions in the suspensions. This indicates no changes in particle concentrations in
the nonlinear process. These observations are consistent with previously reported absence of
nonlinear absorption in metallic nanosuspensions [29].
It is also worth to mention, that we found no principal differences in the beam behavior in

both nanospheres and nanorods colloids except for power range needed to observe the nonlinear
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processes (because of different absorption). This indicates that also in the suspension of nanorods,
the thermal nonlinearity induced by the light absorption significantly dominates over the possible
orientational nonlinearity caused by optical torque.

Despite the fact that our measurements show only the thermally-dependent nonlinearity of the
suspensions for low-divergence optical beams, the stable propagation of the ring-shaped beams
in nonlinear regime is still an important result. The refractive index change provided by the
thermo-optical response of a plasmonic nanosuspension suppresses typical azimuthal instabilities
inherent to focusing nonlinear media, supporting stable propagation of beams with complex
intensity and polarization distributions. The intensity distribution and state of light polarization are
crucial parameters for any photonic technique requiring precise control of light-matter interaction.
While the structured light is now routinely used in various applications including high resolution
microscopy [30–32], Raman spectroscopy [33], material processing [34], second harmonic
generation [35], particle trapping and manipulation [36, 37], their use in nonlinear optical
media is scarce [7] because complex beams are typically susceptible to structural instabilities in
propagation [38]. We believe that the demonstrated here structural stability of complex beams in
plasmonic nanosuspensions unveils potentially rich scenarios for nonlinear-based optical circuits
and reconfigurable photonic interconnects.
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