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Highlights

• A new approach for modeling lower-upper probabilities is presented.
• The model tests the conjugacy relation between lower and upper probabilities.
• The resulting new distributions are tractable and have desirable properties.
• Two applications show that the new distributions are a good fit to data.
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Abstract

This paper presents an investigation of a relatively unstudied approach to
modeling lower and upper subjective probabilities. It is based on the fact
that every cumulative distribution function (CDF) with support (0,1) has a
“dual” CDF that obeys the conjugacy relation between coherent lower and
upper probabilities. A new 2-parameter family of “CDF-Quantile” distribu-
tions with support (0,1) is extended via a third parameter for the purpose of
modeling lower-upper probabilities via this approach. The extension exploits
certain properties of the CDF-Quantile family, and the fact that continuous
CDFs on (0,1) random variables form an algebraic group that is closed under
composition. This extension also yields methods for testing specific models
of lower-upper probability assignments. Finally, the new models are applied
to real data-sets, and compared with alternative approaches for their relative
advantages and drawbacks.

Keywords: Probability judgment, distribution, quantile regression,
generalized linear model.

1. Introduction

Techniques for modeling lower and upper pairs of subjective probabilities
comprise a relatively neglected topic. Motivations for investigating this topic
stem from two sources. First, it is motivated by the many applications in
which interval-valued probability assignments play a role in human proba-
bility judgments, whether as input into decision making and forecasting or
as risk communication (e.g., [1]). Note that this kind of data differs from
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the Bernoulli random variate data that is modeled by imprecise probability
distributions such as the well-known imprecise Dirichlet model (IDM) [2] or
Coolen and Augustin’s nonparametric predictive model [3]. Here, we wish to
model a process that generates pairs of samples from two random variables
on (0,1), one of whose cumulative probability distributions dominates the
other.

A second motivation arises from the lack of a systematic framework for
testing relevant hypotheses about the relationships between lower and upper
probability assignments, as generated by human judges or other sources.
Perhaps the most clearly important hypothesis is the so-called “conjugacy”
relationship, whereby pL (A) = 1 − pU (A), where pL (A) and pU (A) denote
the lower and upper probabilities of event A, respectively. Although [4]
presents a statistical test for this hypothesis, it is not embedded in a suitable
framework that would enable a model of the distributions of pL (A) and
pU (A) assuming that conjugacy holds to be compared against a model of
the distributions that differs from the preceding model only in relaxing this
assumption. However, prospects for such a framework have been raised by
recent developments for modeling random variables on the (0,1) interval,
which have resulted in a new family of probability distributions with (0,1)
support, described by [5] and elaborated in [6].

Accordingly, this paper’s primary purposes are as follows.

1. Introduce the concepts required to construct pairs of distributions of
random variables on the (0,1) interval that are connected via the con-
jugacy relationship;

2. Develop distribution pairs based on the distribution family from [6],
elaborate their properties, and investigate their viability for statistical
modeling;

3. Show that when such distribution pairs are based on the distribution
family from [6] they can successfully model real data; and

4. Briefly indicate points of general theoretical and practical interest that
are raised by these new distributions.

The paper also extends the conference paper on which it is based [7], in
the following respects.

• The properties of the extended distributions are elaborated more ex-
tensively, including new results regarding their tail behavior.
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• The statistical models utilizing these distributions are evaluated via
simulations for their Type I error accuracy, estimation bias, and parameter-
estimate collinearity.

• A second data-fitting example has been added, to illustrate modeling
decisions specific to conjugate-pair distribution models.

We begin with a brief description of conventional methods for model-
ing lower-upper probabilities, followed by the introduction of a new mod-
eling approach that can potentially test the conjugacy relationship as well
as modeling the distribution of the data. Then the new family of distribu-
tions is introduced, and extended for the purpose of modeling lower-upper
probabilities and testing whether they obey the conjugacy relation. Models
using the new distributions are evaluated for desirable statistical properties,
and applied to real data-sets. The paper concludes with a brief enumeration
of theoretical and practical prospects raised by the development of the new
distributions and their corresponding statistical models.

Conventional statistical approaches to modeling lower-upper probability
assignments treat them as a pair of dependent random variables, although
lower and upper probabilities need not be statistically related to each other.
One type of method ignores which is lower and which is upper, and simply
models the pairs of probabilities as deviations from their respective means
or as samples from a bivariate distribution with dependency handled by
estimating a correlation. A somewhat more sophisticated regression-style
approach uses a binary dummy predictor that takes a value of 0 for the lower
probabilities and 1 for the upper probabilities and respects the ordering by
restricting the regression coefficient for the dummy variable to being non-
negative by exponentiating it (e.g., [8]).

This paper introduces another approach to modeling lower-upper prob-
abilities, in which the probability distributions modeling the lower and up-
per probability assignments share parameters but take two different forms
satisfying the conjugacy relation between coherent lower and upper prob-
abilities. To begin, let pL (A) = W (p (A) , θ) be a lower probability with
respect to probability p(A) so that 0 ≤ W (p (A) , θ) ≤ p(A), for real-
valued θ. The conjugate upper probability is pU (A) = 1 − pL (∼ A) , so
that pU (A) = 1−W (1− p (A) , θ) . Probability intervals on singletons A of
a finite possibility space are special cases of 2-monotone capacities [9], but of
course not all 2-monotone capacities can be expressed as probability intervals
of the kind dealt with here.
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A specific instance of the conjugacy relationship may be identified with
pairs cumulative distribution functions (CDFs) for random variables on the
(0,1) interval, where the CDF behaves as W . To fix ideas, we begin with
two simple examples. First, consider a CDF, G(x, θ), for 0 ≤ x ≤ 1, with a
location parameter, θ, so that G(0, θ) = 0, G(1, θ) = 1, and G is monotoni-
cally increasing in x. We let x take the role of p(A), and G take the role of
W so that G(x, θ) behaves as pL(A). We require that G(x, θ) ≤ x for all x.
Define GD(x, θ) = 1 − G(1 − x, θ), which also is a CDF if G is continuous
from below. Then GD is the conjugate dual of G, and takes the role of pU
with the corresponding restriction that GD(x, θ) ≥ x for all x.

As a specific example, consider G(x, θ) = xθ, for θ > 0. Then GD(x, θ) =
1 − (1 − x)θ. When θ < 1 G is the upper CDF, when θ = 1 we have the
uniform distribution so that G = GD, and when θ > 1 G is the lower CDF.
The “middle” CDF straddled by G and GD is simply x. For instance, setting
θ = 2, for x = .2 G(x, θ) = .22 = .04. The conjugate upper probability is
1−G(1− x, θ), i.e., GD(x, θ) = 1− (1− .2)2 = .36. Thus, .04 and .36 are a
conjugate pair of probabilities with respect to .2.

Our second example is the beta distribution. It is easy to show that
if X is distributed beta(ω, τ) then GD is the CDF of a random variable,
XD, say, that is distributed beta(τ, ω), i.e., the probability density function
(PDF) ofX flipped around 1/2. The absolute difference between their means,
|(ω − τ)/(ω + τ)|, gives a convenient index of the distance between the lower
and upper distributions. Reparameterizing the beta distribution so that the
parameters are the mean, μ = ω/(ω + τ), and precision, φ = ω + τ , it is
clear that the mean and precision of X jointly determine the magnitude of
the difference between its distribution and that of its conjugate dual XD.

One- and two-parameter distributions of the kinds illustrated here have
very limited flexibility regarding the location of G and GD; these CDFs sim-
ply straddle x, the CDF of the uniform distribution, and so their correspond-
ing PDFs are mirror-images of one another reflected around 1/2. Neverthe-
less, while these pairs of distributions may not be very useful for modeling
real data, the concepts involved turn out to be fruitful when applied to the
family of distributions introduced in the next section.

2. CDF-Quantile Distributions

The family of distributions presented here is elaborated in [6] and [10]
implements them in the R package cdfquantile for generalized linear mod-
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eling. This family is a special case of the T-X family presented by Aljarrah,
et al. [11], although it was independently described in [5]. The following
definitions reprise the introduction to the family in [6]. Let G(x, μ, σ) denote
a CDF for random variable X with support (0, 1), and parameters μ and σ.
We define G as follows:

G(x, μ, σ) = F [U(H−1(x), μ, σ)] (1)

where F is a standard CDF with support denoted by D1, H is an invertible
standard CDF with support denoted by D2, and U : D2 → D1 is an ap-
propriate transform for incorporating parameters μ and σ. By a “standard”
CDF we mean a distribution function whose parameters are fixed at the
values conventionally used to describe a standard distribution (e.g., a mean
of 0 and standard deviation of 1 for the logit-logistic, normal, and t distri-
butions). We limit the domains D1 and D2 to pairs taken from (−∞,∞)
and/or (0,∞), and the following cases of U.

For D1 = (−∞,∞) and D2 = (−∞,∞) we put

U(y, μ, σ) = (y − μ)/σ. (2)

For D1 = (−∞,∞) and D2 = (0,∞) we put

U (y, μ, σ) = (log (y)− μ)/σ. (3)

For D1 = (0,∞) and D2 = (−∞,∞) we put

U (y, μ, σ) = exp (−μ/σ) exp (y/σ) . (4)

Finally, for D1 = (0,∞) and D2 = (0,∞) we put

U (y, μ, σ) = exp (−μ/σ) y1/σ. (5)

For all four pairs of domains, μ can take any value on the real line and
σ must be a positive number because of the roles these parameters play in
U : D2 → D1. If all the functions are differentiable then the PDF g(x, μ, σ)
has an explicit expression. If F is invertible, then for every γ such that
G(x, μ, σ) = γ, the quantile functions corresponding to the cases described
in equations (2) to (5) are as follows. For D1 = (−∞,∞) and D2 = (−∞,∞)
we put

G−1 (γ, μ, σ) = H
[
σF−1 (γ) + μ

]
. (6)
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For D1 = (−∞,∞) and D2 = (0,∞) we put

G−1 (γ, μ, σ) = H
[
exp

(
σF−1 (γ) + μ

)]
. (7)

For D1 = (0,∞) and D2 = (−∞,∞) we put

G−1 (γ, μ, σ) = H
[
μ+ σ log

(
F−1 (γ)

)]
. (8)

Finally, for D1 = (0,∞) and D2 = (0,∞) we put

G−1 (γ, μ, σ) = H
[
exp (μ)

(
F−1 (γ)

)σ
]
. (9)

Smithson and Shou [6] present 36 members of the CDF-Quantile family
where D1 = (−∞,∞) and D2 = (−∞,∞) by employing six standard dis-
tributions for F and H : The logistic, Cauchy, t with df = 2, arc-sinh, Burr
VII, and Burr VIII distributions. All of these have explicit PDF, CDF, and
quantile functions. Smithson and Shou observe that F and H may exchange
roles. The resulting pairs of distributions are ”quantile-duals” of one another
in the sense that one’s CDF is the other’s quantile, with the appropriate pa-
rameterization. This duality is due to the fact that (0, 1) is both the domain
and range of these functions. Smithson and Shou denote these distributions
with the nomenclature F -H (e.g., Cauchit-Logistic and Logit-Cauchy).

Smithson and Shou [6] show that the CDF-Quantile family members share
the following properties:

1. The family can model a wide variety of distribution shapes, with dif-
ferent skew and kurtosis coverage from the beta or the Kumaraswamy.

2. (Proposition 1, from [6]) Members are self-dual in the sense that g (x, μ, σ) =
g (1− x,−μ, σ). Note that −μ has the effect of mirror-reversing the
PDF. Moreover, G = GD, so the conjugate-CDF duals in this family
consist of identical distributions. Readers may consult [6] for details
and proof.

3. (Proposition 2) The median is solely a function of μ, so that μ is gen-
uinely a location parameter. Readers may consult [6] for details and
proof.

4. (Proposition 3) The parameter σ is a dispersion parameter, in the sense
that it controls how far other quantiles are from the median. Details
and proof are in [6].
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5. (Proposition 4) Members of this family fall into four subfamilies distin-
guished by behavior at the boundaries of the [0, 1] interval, including
a subfamily whose density is finite in the limits at 0 and at 1.

For illustration, consider the Cauchit-Cauchy distribution, for which F and
H both are standard Cauchy CDFs. The CDF G is

G (x, μ, σ) =
1

2
+

arctan ((tan ((2πx− π)/2)− μ)/σ)

π
(10)

and the quantile function is

G−1 (γ, μ, σ) =
1

2
+

arctan (μ− σ cot(πγ))

π
. (11)

In (10) 1− x will yield the negative of the tangent term for x and therefore
1− x combined with −μ will yield the negative of the combination of x and
μ. Therefore, G(1− x,−μ, σ) = 1−G(x, μ, σ) and Proposition 1 is satisfied.
Likewise, from (11) we can see that when γ = 1/2 the cotangent term is 0,
so the median is solely a function of μ as per Proposition 2.

Thus, the CDF-Quantile family enables a wide variety of quantile regres-
sion models for random variables on the (0, 1) interval with predictors for
both location and dispersion parameters, and simple interpretations of those
parameters. Smithson and Shou [6] demonstrate that members of the fam-
ily can out-perform the beta and other two-parameter distributions in fitting
real data. Because they have explicit CDFs and quantile functions, the CDF-
Quantile family is well-suited for multivariate models using copulas, and an
example of this application will be presented later in this paper. Shou and
Smithson [12] fit a trivariate copula model to real data as a demonstration of
how this may be done using their cdfquantreg package in conjunction with
the R package copula.

3. Introducing a Third Parameter to the CDF-Quantile Family

The fact that G = GD for the entire CDF-Quantile family implies that
they may be well-suited to testing the conjugate-CDF model of lower and
upper probabilities via the introduction of a third parameter. Unlike two-
parameter distributions such as the beta distribution, for a three-parameter
distribution the third parameter can determine the difference between a CDF
and its conjugate dual CDF.
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There are several ways to introduce a third parameter, but we will fo-
cus on doing so through a composition operator. Marshall and Olkin [13,
pp. 494-495] state that the class G of CDFs G whose support is (0,1) form
an algebraic group. This is true of absolutely continuous CDFs. The class
of absolutely continuous CDFs is closed under the composition operation
G1 • G2 = G1 (G2), and this operation also is associative. The uniform dis-
tribution is the identity. Likewise, for any G in G, the quantile function G−1

also is in G. The quantile-dual relation described in the preceding section is
a special case of this type of closure.

A straightforward way to introduce a third parameter is via an invertible
monotonic function applied either at the outermost or innermost level of
the CDF or the quantile function. Applying an invertible (0, 1) → (0, 1)
transformation W to the innermost level of the CDF, for instance, we have

G (x, μ, σ, θ) = F
[
U
(
H−1 (W (x, θ)) , μ, σ

)]
(12)

and
G−1 (γ, μ, σ, θ) = W−1

[
H

(
U−1

(
F−1 (γ) , μ, σ

))
, θ
]

(13)

If we additionally require that W (0, θ) = 0, W (1, θ) = 1 and W is monotoni-
cally increasing in x and continuous from above everywhere, then W behaves
as a CDF. The conjugate dual CDF therefore is

GD (x, μ, σ, θ) = F
[
U
(
H−1 (1−W (1− x, θ)) , μ, σ

)]
. (14)

Several kinds of CDFs for W and applications of the CDF-composition
operator are available from the literature on lifetime distributions. A power
(resilience) parameter or a frailty parameter can be introduced in this way,
by applying the CDF-composition operator. The relevant CDF is xθ, for
some θ > 0. Slightly less obviously, introducing a tilt parameter also in-
volves a CDF-composition, because, for θ > 0, it is a composition of the
CDF x/(x+ θ (1− x)) with G(x, μ, σ). Likewise, a hazard parameter can be
introduced via composition using the CDF

1 − exp
[
−(− log (1− x))θ

]
, for θ > 0; and a Laplace transform parameter

with the CDF(
1− e−θx

)/(
1− e−θ

)
, for real θ.

In the cases where the composition is G•W , the introduction of the third
parameter yields a three-parameter CDF-Quantile family with distinct CDFs
and conjugate dual CDFs (i.e., G �= GD) and possessing certain properties
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paralleling those derived by [6] for the two-parameter family. The following
Proposition is an extension of Proposition 1 (the self-dual property) from [6].

Let W (x, θ) be described as earlier, so that it behaves as a CDF. Let

G (W (x, θ) , μ, σ) = F
[
U
(
H−1 (W (x, θ)) , μ, σ

)]
.

Then if the CDFs F and H satisfy certain symmetry conditions (in the 4
cases detailed below),

1−G (W (1− x, θ) ,−μ, σ) = G (1−W (1− x, θ) , μ, σ) . (15)

Now define

G−1 (Z1 (γ, μ, σ) , θ) = W−1
[
H

(
U−1

(
F−1 (γ) , μ, σ

))
, θ
]
,

and

G−1 (Z2 (γ, μ, σ) , θ) = 1−W−1
[
1−H

(
U−1

(
F−1 (γ) , μ, σ

))
, θ
]
.

These are the quantile functions corresponding to the conjugate dual CDFs
G (W (x, θ) , μ, σ) and G (1−W (1− x, θ) , μ, σ) , respectively.

Proposition 1 : G−1 (Z1 (γ, μ, σ) , θ) and G−1 (Z2 (γ, μ, σ) , θ) behave as
conjugate lower-upper probabilities.

Proof : The identity in equation (15) has four cases, corresponding to the
four combinations of domains in the CDF-Quantile family.
Case 1: ForD1 = (−∞,∞) andD2 = (−∞,∞) when−H−1 (x) = H−1 (1− x)
and f (x) = f (−x), 1−G (W (1− x, θ) ,−μ, σ, θ) = 1− F [(H−1 (W (1− x, θ)) + μ)/σ]
= 1− F [(−H−1 (1−W (1− x, θ)) + μ)/σ] = F [(H−1 (1−W (1− x, θ))− μ)/σ]
= G (1−W (1− x, θ) , μ, σ, θ) .

Case 2: For D1 = (−∞,∞) and D2 = (0,∞) when H−1 (x) = 1/H−1 (1− x)
and f (x) = f (−x), 1−G (W−1 (1− x, θ) ,−μ, σ, θ) = 1− F [(log (H−1 (W (1− x, θ))) + μ)/σ]
= 1− F [(− log (H−1 (1−W (1− x, θ))) + μ)/σ] = F [(log (H−1 (1−W (1− x, θ)))− μ)/σ]
= G (1−W (1− x, θ) , μ, σ, θ) .

Case 3: For D1 = (0,∞) and D2 = (−∞,∞) when H−1 (x) = 1/H−1 (1− x)

and F (x) = 1−F (1/x) , 1−G (1− x,−μ, σ) = 1− F
[
(H−1 (W (1− x, θ)) exp (μ))

1/σ
]

= 1− F
[
(H−1 (1−W (1− x, θ)))

σ
(exp (μ))1/σ

]
= F

[
(H−1 (1−W (1− x, θ)) exp (−μ))

1/σ
]

= G (1−W (1− x, θ) , μ, σ, θ) .
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Case 4. ForD1 = (0,∞) andD2 = (0,∞) when−H−1 (x) = H−1 (1− x) and
F (x) = 1−F (1/x) , 1−G (1− x,−μ, σ) = 1− F [exp ((−H−1 (W (1− x, θ)) + μ)/σ)]
= 1− F [exp ((−H−1 (1−W (1− x, θ)) + μ)/σ)] = F [exp ((H−1 (1−W (1− x, θ))− μ)/σ)]
= G (1−W (1− x, θ) , μ, σ, θ) .

The conjugacy relationship immediately follows by observing that, in the
definition of the quantile functions, H (U−1 (F−1 (γ) , μ, σ)) fulfills the role of
x in the function W−1. End of proof.

The conjugate dual CDFs straddle the CDF G (x, μ, σ) and the resultant
lower and upper quantile functions straddle the quantile functionG−1 (γ, μ, σ) .
That is, the location of the conjugate-dual pair is determined by μ, which
makes them flexible enough to be worthy candidates for modeling real data.
Propositions 2-4 in [6] also hold for these three-parameter CDF-Quantile dis-
tributions because W is monotonically increasing in x and we can write the
quantile function as W−1 [H (U−1 (F−1 (γ) , μ, σ)) , θ]. Thus, the median is
solely a function of μ and θ, and σ still is a dispersion parameter. Moreover,
the θ parameter has an interpretation as a risk-attitude parameter, because
it determines the difference between the lower and upper CDFs (and likewise
the difference between the corresponding quantile functions). This parame-
ter plays a rather different role from the imprecision parameter in the IDM.
The IDM parameter is set by the modeler, whereas θ is determined by the
data. A larger θ indicates a more cautious or risk-averse set of probability
assignments. This three-parameter family therefore is suited to ascertain-
ing whether samples of lower and upper probability assignments behave as
though they come from populations with conjugate dual distributions.

Because these are conjugate dual CDFs, the lower and upper probability
pairs modeled by them are comonotone, i.e., G (x1, μ, σ, θ) < G (x2, μ, σ, θ) ⇒
GD (x1, μ, σ, θ) ≤ GD (x2, μ, σ, θ), and GD (x1, μ, σ, θ) < GD (x2, μ, σ, θ) ⇒
G (x1, μ, σ, θ) ≤ G (x2, μ, σ, θ). Pairs of conjugate lower and upper probabil-
ities are not generally comonotone, so this constitutes a restriction on these
distributions. That said, the same restriction is shared by some of the most
popular models of lower and upper probabilities, such as certain neighbour-
hood models (pari-mutuel, constant-odds-ratio, and neighbourhood-contaminated)
and p-boxes. Moreover, in regression models where the θ parameter’s value is
conditioned by predictors, comonotonicity is relaxed and these distributions
are then capable to at least some extent of modeling conjugate lower and
upper probabilities whose pairs are not comonotone. It is beyond the scope
of this paper to pursue this issue further, but we note that this is an active
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topic of research.

3.1. G •W Conjugate Duals Examples

In this subsection we briefly survey two examples of three-parameter
CDF-Quantile distributions of the G •W type, each one corresponding to a
well-known kind of parameterization borrowed from the life distributions lit-
erature. These include the power parameter (which in this case corresponds
to a frailty parameter) and the tilt parameter. The Cauchit-Cauchy distri-
bution will be used throughout this subsection for illustrative purposes (it
also is employed in a data-fitting example in the next subsection).

Starting with the power parameter, W (x, θ) = xθ and so 1 − W (1 −
x, θ) = 1 − (1 − x)θ. Applied to the Cauchit-Cauchy distribution, we have
the conjugate CDF duals. As its name suggests, both F and H are Cauchy
CDFs, the power parameter (exponentiated) model simply replaces x with
xθ, and the conjugate-dual CDF pair is

G (x, μ, σ, θ) =
1

2
+

arctan
((
tan

(
(2πxθ − π)/2

)− μ
)
/σ

)
π

(16)

and

GD (x, μ, σ, θ) =
1

2
+

arctan
((

tan
(
(2π

(
1− (1− x)θ

)
− π)/2

)
− μ

)
/σ

)

π
(17)

When θ < 1 then G > GD, and when θ > 1 then G < GD.
The tilt parameter, as mentioned earlier, uses the CDFW (x, θ) = x/(x+ θ (1− x)).

Applying it to the Cauchit-Cauchy distribution yields the conjugate CDF du-
als

G (x, μ, σ, θ) =
1

2
+

arctan ((tan ((2πx/(x+ θ (1− x))− π)/2)− μ) /σ)

π
(18)

and

GD (x, μ, σ, θ) =
1

2
+

arctan ((tan ((2πθx/(1 + x (θ − 1))− π)/2)− μ) /σ)

π
(19)

This model behaves as a rescaled version of the constant-odds-ratio imprecise
probability model described in [14] and elsewhere. When θ < 1 then G > GD,
and when θ > 1 then G < GD. Figure 1 displays the pairs of CDFs and PDFs
for the exponentiated and tilt parameter models when μ = 0.1, σ = 0.5, and
θ = 1.5.
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Figure 1: Power- and Tilt-Parameter Conjugate Dual Distributions

3.2. W -Functions and Distribution Subfamilies

Because any CDF whose support is (0,1) can play the role of W , a one-
parameter version of any member of the CDF-Quantile family may be used
in that capacity, with θ as the location parameter. These alternatives would
seem to present a forbiddingly large variety of models for analysts to con-
sider. However, it turns out that under some conditions all of them can be
very similar to one another with appropriate choices of θ. For many practi-
cal modeling purposes we may restrict attention to a subset of such models,
such as the power and tilt parameter models, but at this stage of research
on these models the criteria and procedure for selecting among them remain
an open topic of research. Two kinds of criteria can be considered here: Dis-
tribution properties and sample estimation behavior. This subsection deals
with distribution properties, particularly the tail behavior of distributions in
the different subfamilies of the CDF-Quantile family when extended via the
conjugate-dual parameter.

Smithson and Shou [6] report that the CDF-Quantile distributions fall
into four subfamilies, distinguished by their density’s tail behavior at the
boundaries of the unit interval:

1. ∀σ < s, lim
x→0

g (x, μ, σ) = lim
x→1

g (x, μ, σ) = 0, ∀σ = s, lim
x→0

g (x, μ, σ) =

v (−μ) and lim
x→1

g (x, μ, σ) = v (μ), and ∀σ > s, lim
x→0

g (x, μ, σ) = lim
x→1

g (x, μ, σ) =

∞, where s is a constant and v(z) ≥ 0;
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2. lim
x→0

g (x, μ, σ) = lim
x→1

g (x, μ, σ) = 0;

3. lim
x→0

g (x, μ, σ) = lim
x→1

g (x, μ, σ) = u(σ), where u(σ) ≥ 0 and is finite;

and

4. lim
x→0

g (x, μ, σ) = lim
x→1

g (x, μ, σ) = ∞.

For the first subfamily (the LL group, typified by the logit-logistic distri-
bution), when σ > s the distribution is uni-modal and when σ < s the
distribution has a bathtub shape with modes at 0 and 1. The second sub-
family (the bimodal or BM group) has a limit of 0 for the density at 0 and
1, and is capable of bimodality on the interior of the unit interval. The third
subfamily has nonzero finite density in the limit at 0 and 1 as a function of
σ, and is known as the finite-tailed (FT) group. The fourth subfamily has
infinite densities at at 0 and 1 and is known as the trimodal (TM) group.

We now examine the impact of the W functions on the tail behavior of
these subfamilies. From equation (12), and applying the chain-rule, we have

g(x, μ, σ, θ) =
∂G[W (x, θ), μ, σ]

∂W (x, θ)
· ∂W (x, θ)

∂x
. (20)

Because the first term on the right-hand side of this equation is just the PDF
of a two-parameter CDF-Quantile distribution with W (x, θ) substituted for
x, we may write

∂G[W (x, θ), μ, σ]

∂W (x, θ)
= g∗ (W (x, θ), μ, σ) . (21)

Now, W (0, θ) = 0 and W (1, θ) = 1, so for x = 0 and 1 respectively, we have

g(0, μ, σ, θ) = g∗ (0, μ, σ)
(

∂W (x,θ)
∂x

)
x=0

g(1, μ, σ, θ) = g∗ (1, μ, σ)
(

∂W (x,θ)
∂x

)
x=1

(22)

so the partial derivatives of the W functions scale the values of the CDF-
Quantile distributions at 0 and 1. We consider four popular candidates for
W functions described earlier.

Starting with the power parameter, we have

∂W (x, θ)

∂x
= θxθ−1. (23)
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At x = 1 we have g(1, μ, σ, θ) = θg∗ (1, μ, σ), so the right tails of the distri-
butions are simply scaled by θ. However, as x goes to 0, for 0 ≤ θ < 1 this
expression will go to ∞ and for θ ≥ 1 it will go to 0. Thus, the left tails
of the distributions and the right tails of their conjugate duals will not gen-
erally retain the properties entailed by membership in the four subfamilies
identified by [6].

The tilt parameter, on the other hand, is better behaved:

∂W (x, θ)

∂x
=

∂ (x/x (θ(1− x) + x))

∂x
=

θ

(θ(1− x) + x)2
. (24)

The right-hand expression goes to 1/θ as x goes to 0 and to θ as x goes
to 1. So, the tail behavior properties of the CDF-Quantile subfamilies are
preserved in a rescaled form.

The hazard parameter yields

∂W (x, θ)

∂x
=

∂
(
1− exp

(
−(− log(1− x))θ

))

∂x
=

θe−(− log(1−x))θ(− log(1− x))θ−1

1− x
.

(25)
The right-hand expression goes to 0 as x goes to 0 or to 1 when θ > 1 and to
∞ when θ < 1. As with the power parameter, the tail-behavior properties
of the CDF-Quantile subfamilies therefore are not preserved.

Finally, for the Laplace parameter we have

∂W (x, θ)

∂x
=

∂ ((1− exp(−θx)) / (1− exp(−θ)))

∂x
=

θeθ−θx

eθ − 1
. (26)

The right hand expression goes to θeθ
/(

eθ − 1
)
as as x goes to 0 and to

θ
/(

eθ − 1
)
as x goes to 1, and thus the tail-behavior properties of the CDF-

Quantile subfamilies are simply rescaled.
If we wish the tail-behavior properties of the CDF-Quantile subfamilies

to be preserved when adding a third parameter, then the tilt and Laplace
parameters are desirable because they do so. The power parameter does
this only for the right tail (as x goes to 1) of the distributions and the left
tail of their conjugate dual counterparts, and the hazard parameter does not
preserve the properties for either tail. That said, what impact does the non-
preservation of these properties have? The θ and σ parameters both influence
dispersion, so each can offset the other’s effect. Thus, the three-parameter
conjugate-dual LL and TM subfamilies’ tail behaviors are qualitatively the
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same as in their respective two-parameter versions, but now are influenced
by both θ and σ. The conjugate-dual BM subfamily exhibits conditional
bimodality which is violated for sufficiently high θ relative to σ, and likewise
the conjugate-dual FT subfamily has finite densities at 0 and 1 conditional
on θ sufficiently low relative to σ.

4. Sample Parameter Estimate Collinearity, Bias, and Type I Error
Rate Accuracy

Among the most important criteria for selecting specific distributions for
modeling data are parameter estimation bias, Type I error-rate accuracy,
and parameter estimate collinearity. This section presents the results of sim-
ulations in which every member of the conjugate-dual CDF-Quantile family
was fitted to samples drawn from its own distribution population. Each sim-
ulation had 2500 runs. To assess the effect of sample size, samples of size
10, 25, 50, 100, and 250 were investigated for every distribution. Two types
of W functions were investigated: The tilt parameter and the Laplace pa-
rameter. The null-model set consisted of μ = 0, σ = 1, and θ = 1 for the
tilt parameter and θ = 10−7 for the Laplace parameter, i.e., values that were
found to render the lower and upper conjugate dual distributions identical.
The non-null-model set comprised μ = 0.4, σ = 0.5, and θ = 1.5 for the
tilt parameter, and θ = −0.85 for the Laplace parameter, in order to give
similar distribution shapes for the two parameters. Thus, there were a total
of four models (two W functions by two parameter sets) and five sample sizes
applied to 36 distributions.

4.1. Bias and Type I Error Rate Accuracy

We begin with a brief summary of the findings regarding estimation bias
for the three parameters (details are in the Supplementary Materials: https:
//drive.google.com/open?id=0B2mZom-c8j2_THRJQTZYbnBCVUE). No sys-
tematic bias in μ or θ was observed across all four models, distributions, or
sample sizes. However, σ estimates showed a consistent (negative) bias. Bias
was more strongly negative for null models than non-null models. The bias
decreased in magnitude with increasing sample size, but remained below -.06
for all sample sizes.

Tendencies in estimation bias had consequences for Type I error-rate ac-
curacy, with an absence of bias generally ensuring that the observed Type
I error rates were close to the target .05 rate. Across all four models, μ
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Type I error rates tended to stabilize for sample sizes close to 50. These
error rates were similar for all distributions, with a mean at n = 50 of
.0637± .0065. Likewise, θ error rates at n = 50 averaged .0627± .0129 for 34
of the 36 distributions, with exceptions being the Cauchit-BurrVII distribu-
tion (.1055 ± .0507) and the ArcSinh-BurrVII distribution (.1507 ± .0799).
The latter was due to a slight positive estimation bias for θ. Type I error
rates in σ increased with sample size, due to the negative estimation bias and
the fact that it did not decrease sufficiently rapidly with increased sample
size. For example, the average error rate at n = 50 was .1108 ± .0327, and
increased to .1547± .0620 at n = 100.

4.2. Parameter Estimate Collinearity

Parameter estimate collinearity is a relatively unstudied problem for dis-
tributions with doubly-bounded support. Its potential importance stems
from the fact that location, dispersion, skew, and other aspects of distri-
bution shape are not independent of one another. For instance, as loca-
tion approaches either boundary of the support interval, skew must increase
if dispersion does not decrease, and vice-versa. Our preliminary investiga-
tions into adding a third parameter to the CDF-Quantile family and other
two-parameter distributions for random variables on the unit interval have
frequently encountered high collinearity among parameter estimates.

However, parameter estimate correlations in conjugate-dual distribution
models averaged close to 0 for all pairs of parameters, across all models,
distributions, and sample sizes. Variability in these correlations decreased
with increasing sample size, with variability tending to be somewhat greater
for distributions whose F distribution components were Cauchit, arc-sinh,
and T2. As mentioned earlier, more details regarding these findings are
available in the Supplementary Materials.

5. Examples and Applications

5.1. Interpretations of Verbal Probability Phrases

We now present an example of model-fitting that compares the conju-
gate lower-upper distributions with appropriate alternatives for modeling
lower-upper probability assignments. The fourth Intergovernmental Panel
on Climate Change (IPCC) report utilizes verbal phrases such as “likely”
and “unlikely” to describe the uncertainties in climate science. Budescu
et al. [15] conducted an experimental study of lay interpretations of these
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phrases, using 13 sentences from the IPCC report, in which they asked 223
participants to provide lower, “best”, and upper numerical estimates of the
probabilities to which they believed each sentence referred. For example,
participants were presented with the sentence “The Greenland ice sheet and
other Arctic ice fields likely contributed no more than 4 m of the observed
sea level rise.”, and asked to consider the probability they thought the report
authors may have had in mind for the term “likely” in this sentence. Partici-
pants were required to provide their lowest, highest, and their best numerical
estimates of this probability. Budescu et al. found that participants’ “best”
estimates were more regressive (toward the middle of the [0, 1] interval) than
the IPCC stipulations, but they did not report systematic analyses of the
lower and upper estimates.

We present 11 models fitted to the lower and upper probability estimates
in the Budescu et al. data. The first three models are based on the two-
parameter CDF-Quantile distribution. Model 1 is just the two-parameter
distribution, as defined in equation (2), with intercept-only submodels μ̂ =
β0 and σ̂ = exp (δ0). Model 2 has conditional parameter estimates, with
submodels μ̂ = β0 + β1x and σ̂ = exp (δ0 + δ1x), where x = 0 for lower
probabilities and x = 1 for upper probabilities. Model 3, in addition to the
submodels from Model 2, also estimates the dependency between the lower
and upper estimates via a t-copula with CDF-Quantile margins. This model
therefore also includes estimates of the t-copula dependency parameter, ρ,
and degrees of freedom parameter, φ.

Models 4-7 are based on the 3-parameter power (exponentiated) CDF-
Quantile distribution, as in the CDF defined in equation (12) withW (x, θ) =
xθ. Model 4 has intercept-only submodels μ̂ = β0, σ̂ = exp (δ0), and
θ̂ = exp (γ0). Model 5 is the conjugate-dual model, as defined in equa-
tions (12) and (14). This has the same intercept-only submodels as Model
4 but is a two-component distribution mixture model with a fixed mixture
parameter, so that the first CDF, G, is weighted 1 and the second, GD,
is weighted 0 for the upper probabilities and the reverse weighting is ap-
plied to the lower probabilities. Technically, it is a four-parameter model
although the mixture parameter is not being estimated. Model 6 has con-
ditional parameter estimates, μ̂ = β0 + β1x and σ̂ = exp (δ0 + δ1x) with
x = 0 and 1 for lower and upper probabilities, but an intercept-only sub-
model θ̂ = exp (γ0). Model 7 has the conditional μ and σ submodels in
Model 6 plus θ̂ = exp (γ0 + γ1x). Finally, models 8-11 are based on the
tilt-parameter CDF-Quantile distribution, as in the CDF defined in equation

17



(12) with W (x, θ) = x/(x+ θ(1− x)). These models have the same variants
as Models 4-7.

The best-fitting models from the CDF-Quantile family are from the FT
subfamily, whose members have defined, finite densities at 0 and 1 as shown in
[6]. The best-fitting distribution from this subfamily is the Cauchit-Cauchy,
so the models considered here are mainly limited to that distribution. Table
1 displays goodness-of-fit statistics for the 11 models. The top section of
the table presents these results for the three models using the two-parameter
Cauchit-Cauchy. The middle section contains the power-parameter (expo-
nentiated) models, and the lower section contains the tilted-parameter mod-
els. The “Params” column displays the number of parameters in each model,
the “2LL” column shows twice the log-likelihood of the fitted models, and
the “AIC” column is the Akaike Information Criterion, AIC = −2LL + 2p,
where p is the number of parameters in the Params column.

Remarkably, the 4-parameter conjugate-dual models fit the data better
than most of the 5- and 6-parameter conditional models and better than the
6-parameter copula model. The conjugate-dual power-parameter model is
superior to the conjugate-dual tilted-parameter model, and is out-performed
only by the 6-parameter conditional tilted-parameter model. Likewise, the
conjugate-dual tilted-parameter model is out-performed only by the 5- and
6-parameter conditional tilted-parameter models and the 6-parameter con-
ditional power-parameter model.

These results are not due to some kind of fluke in the Cauchit-Cauchy
distribution. Other members of the FT subfamily have similar fits for their
conjugate-dual models. For instance, the T2-T2 and the Cauchit-ArcSinh
conjugate-dual power-parameter models have AIC’s of -2159 and -2062, re-
spectively, and both of these out-perform their respective 5- and 6-parameter
conditional power-parameter counterparts.

Figure 2 shows the fitted distributions from the conjugate-dual model (top
half of the figure) and the 6-parameter conditional exponentiated model. The
two pairs of fitted distributions are strikingly similar and the conjugate-dual
AIC is the better of the two. The facts that the 4-parameter conjugate-
dual model fits the data better than a regression model with 6 parameters
and that the fitted distribution shapes are reasonably similar to the empir-
ical distributions lend plausibility to the seemingly unlikely conjecture that
human lower-upper probability judgments are distributed approximately as
conjugate-dual distributions.

The exponentiated Cauchit-Cauchy 4-parameter conjugate-dual and 6-
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Table 1: Cauchit-Cauchy Models and Fits

Model Description Params. 2LL AIC
1 2-parameter 2 595 -591
2 2-parameter condit. μ, σ 4 1378 -1370
3 2-parameter condit. t-copula 6 1584 -1572
4 exponentiated 3-param. 3 616 -609
5 conjugate-dual exponentiated 4 2378 -2372
6 exponentiated condit. μ, σ 5 1392 -1382
7 exponentiated condit. μ, σ, θ 6 1967 -1955
8 tilted 3-param. 3 880 -874
9 conjugate-dual tilted 4 1736 -1730
10 tilted condit. μ, σ 5 2152 -2142
11 tilted condit. μ, σ, θ 6 3118 -3106

Table 2: Quantiles and Exponentiated Model Quantile Estimates

Model Estimate .1 .25 .5 .75 .9
empirical lower 0.092 0.301 0.570 0.699 0.779

5 conjugate-dual lower 0.059 0.303 0.535 0.688 0.825
7 conditional lower 0.091 0.378 0.584 0.713 0.834

empirical upper 0.540 0.729 0.858 0.948 0.998
5 conjugate-dual upper 0.298 0.684 0.863 0.935 0.977
7 conditional upper 0.495 0.672 0.846 0.935 0.975
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Figure 2: IPCC Data and Fitted Distributions

parameter conditional regression models may be compared further via the
5-number summaries in Table 2. When compared with their empirical coun-
terparts (rows 1 and 4 in the table), the conditional model is more accurate
than the conjugate-dual model at the 10th quantile, but the reverse is the
case for most of the other quantiles. Both models appear to be fairly accurate
in the middle 50% of the distributions. Again, this is an intriguing outcome
for the conjugate-dual model, given that only three of its four parameters
are being estimated from the data.

5.2. Partiton Priming Effects Study

Our second example probes the problem of how to choose between two
possible pairings of the conjugate-dual distributions. In principle, either G
or GD may take the role of the upper distribution; swapping them simply
reverses the sign of the θ parameter. These alternative models may be fitted
by reversing the mixing dummy-variable that specifies which parts of the
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data are to be treated as lower and which as upper distribution data (i.e., z
vs 1−z). However, the magnitudes of the alternative θs may not be identical,
and the maximum-likelihood estimates for μ and σ alternatives may differ,
along with the goodness of fit. These considerations raise the question of
when a case can be put that one G-GD pairing should be preferred to its
alternative. This example illustrates this type of decision.

The “Weather task” in the study reported by [16] asked participants to
judge how likely Sunday is to be the hottest day of next week. This replicates
a task used by [17]. Using the terminology adopted by Fox and Rottenstreich,
participants were randomly assigned to a Case Prime condition (see below)
which invokes a two-fold partition by focusing on whether Sunday will or
will not be hottest, or a Class Prime condition (see below) which invokes a
seven-fold partition by focusing on the hottest day of the week. This task
has a “corrrect” partition, namely the seven-fold. The main hypothesis was
that the tendency to provide probability intervals that included 1/2 would
be more pronounced in the Case than in the Class condition. The primes are
as follows:

Case Prime

• “[What is the probability that] the temperature at Canberra airport
on Sunday will be higher than every other day next week?”

• “[What is the probability that] the temperature at Canberra airport
on Sunday will not be higher than every other day next week?”

Class Prime

• “[What is the probability that] the highest temperature of the week at
Canberra airport will occur on Sunday?”

• “[What is the probability that] the highest temperature of the week at
Canberra airport will not occur on Sunday?”

Participants were instructed to provide lower and upper probability esti-
mates:

For next few questions, please assign a lower and an upper prob-
ability estimate for each event described in the spaces provided.
For example, if you think the probability of an event could range
from 20 percent to 40 percent then record those figures in the
space provided.
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Thus, participants were asked to provide lower and upper estimates of the
probability that Sunday would be the hottest day (the “yes” judgments), and
of the probability that it would not be the hottest (the “no” judgments). The
data from 171 participants are included in the analyses presented here. To
simplify interpretations of the conjugate-dual models, the “no” probabilities
have been subtracted from 1 (i.e., reversed), thereby enabling them to be
compared directly with the “yes” probabilities.

We initially fit four conjugate-dual distributions to the Weather data, one
from each of the four subfamilies (logit-logistic from the LL subfamily, T2-T2
from the FT subfamily, logit-T2 from the BM subfamily, and T2-logistic from
the TM subfamily). The log-likelihoods for these models are shown in Table
3. These clearly suggest that the T2-T2 and T2-logistic distributions have
the best, and nearly identical, fits. However, we selected the T2-T2 model
as the more plausible of the two, because there is no evidence of anti-modes
at 0 or 1 in the data (as predicted by the T2-logistic model).

Log-likelihoods also were compared to determine which of alternative
conjugate-dual distribution pair should be used as the upper and which as
the lower distribution. The best-fitting alternatives are those whose results
are shown in Table 5. For the logit-logistic, T2-T2, and T2-logistic models,
the log-likelihoods for these alternatives did not differ greatly (0.79 to 3.78).
However, the logit-T2 the model displayed in Table 5 has a log-likelihood of
123.94 whereas its alternative conjugate pair’s log-likelihood is only 38.50.

Table 3: Log-Likelihoods for Four Models

Distribution log-lik.
logit-logistic 168.9132

T2-T2 188.9316
T2-logistic 188.7894

logit-T2 123.9383

The T2-T2 model was then extended to include effects from valence (yes
vs no: Whether participants were asked to estimate the probability that
Sunday would or would not be the hottest day) and partition (two-fold vs
seven-fold). The final model coefficients and log-likelihood are shown in Table
4. In the left-hand column, “partition” refers to the seven-fold partition con-
dition, and “valence” refers to the “no” judgments. The intercept coefficients
therefore index the two-fold partition and the “yes” judgments. This model
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has main effects for valence in all three parameters’ submodels, main effects
for partition in the μ and σ submodels, and a valence-by-partition interac-
tion term in σ. Adding other terms did not significantly improve model fit,
whereas subtracting any of the current terms significantly decreased model
fit. The model broadly confirms the findings reported by [16], yielding a
significantly lower median and quantile spread for the seven-fold partition
condition, with the partition effect on quantile-spread enhanced in the “no”
judgments.

Table 4: Final T2-T2 Model

Effect Coeff. Estimate S.Error z p
μ intercept b0 -0.6098 0.0341
μ valence b1 -0.2625 0.0354 -7.4079 < .0001

μ partition b2 -0.1666 0.0329 -5.0611 < .0001
σ intercept d0 -0.4747 0.0421
σ valence d1 -0.1707 0.0422 -4.0430 < .0001

σ partition d2 -0.0818 0.0419 -1.9545 0.0253
σ val*partit d3 -0.1326 0.0418 -3.1745 < .0001
θ intercept g0 -0.3560 0.0266
θ valence g1 0.0640 0.0262 2.4428 0.0073
log-lik. 252.6550

This model is fairly complex, so by way of assessing it, Table 5 com-
pares the model predictions of the proportion of participants providing lower
and/or upper probabilities greater than 0.5 (denoted here by P (x > 0.5))
with the corresponding proportions in the data. The 0.5 benchmark corre-
sponds with the main hypothesis that invoking a two-fold partition (either
Sunday will or will not be the hottest day of the week), participants would
anchor their judgments around a 0.5 probability. The model captures the
expected partition effects in both the “yes” and “no” data, with P (x > 0.5)
clearly higher for the two-fold than for the seven-fold partition conditions,
and this difference being larger in the “no” data. The proportions also are
higher for the “no” probabilities (in the lower half of the table), and the model
captures this reasonably well, despite over-estimating the lower-yes-two-fold
probability. The model also echoes the clear differences in P (x > 0.5) be-
tween the lower and upper distributions. Except for the lower-yes-two-fold
probability, the magnitudes of the residuals are less than 0.1, suggesting a
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reasonably good fit by the model overall.

Table 5: Model vs Empirical P (x > 0.5)

model empirical
distribution valence partition P (x > 0.5) P (x > 0.5) residual

lower yes two-fold 0.1349 0.0112 0.1237
upper yes two-fold 0.2884 0.3034 -0.0150
lower yes seven-fold 0.0449 0.0000 0.0449
upper yes seven-fold 0.1067 0.1829 -0.0762
lower no two-fold 0.2493 0.1798 0.0695
upper no two-fold 0.6051 0.5169 0.0882
lower no seven-fold 0.1814 0.1220 0.0594
upper no seven-fold 0.4457 0.4269 0.0188

6. Conclusions and Future Directions

A new family of probability distributions, the CDF-Quantile family, shows
promise in modeling probability judgments. The two-parameter version of
the family has been sufficiently well-explored by [6] to have been made avail-
able for generalized linear modeling via the cdfquantreg package in R and
a SAS macro, as presented by Shou and Smithson ([10], [12]), and those au-
thors also have demonstrated that these distributions can model probabilities
better than other two-parameter distributions such as the beta. This paper
has presented an investigation of the application of the CDF-Quantile family
to modeling pairs of lower and upper probability assignments or estimates,
by extending it to incorporate a third parameter.

Because absolutely continuous CDFs whose support is the (0,1) interval
are closed under composition, and due to the properties of the CDF-Quantile
distributions, three-parameter extensions via the composition of CDF func-
tions yield conjugate dual pairs of CDFs. This result may hold some theoret-
ical interest. A future line of research may elaborate the connections between
these conjugate duals and imprecise probability frameworks. There is a nat-
ural link with probability boxes (p-boxes, as coined by [18]), given that the
conjugate-dual CDFs form a p-box. This can be seen from the fact that one
CDF bounds the other one from below for every x ∈ (0, 1), as implied by the
restriction that W (x, θ) < (>)x and 1−W (1− x, θ) > (<)x and inspection
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of equations (12) and (14). Conjugate duals are noteworthy cases of p-boxes
because the “width” of the gap between them is determined in a different
way from the data-driven methods to which Ferson et al. [18] refer. To our
awareness, p-boxes have not been systematically studied regarding methods
of fitting them to lower-upper probability data.

Some conjugate-dual models, in turn, have been found to fit two data-sets
reasonably well, raising the possibility that human lower-upper probability
assignments may approximate a conjugacy relationship in their CDFs. Fur-
ther research will determine whether these findings generalize to other such
data-sets, if elicitation methods influence the results, and what cognitive
mechanisms or heuristics account for the phenomenon. However, perhaps
the first priority is to ascertain the connections between the θ parameter,
measurement error, and sampling error.

Finally, the three-parameter CDF-Quantile distributions also beg for fur-
ther investigation. The overview in this paper only skims their characteris-
tics, and little is known about the advantages and drawbacks of alternative
parameterization methods for θ (e.g., power versus tilt parameters). Pre-
liminary investigations suggest that the high correlations between parameter
estimates may be a pervasive problem for three-parameter distributions on
the unit interval (including three-parameter generalizations of the beta dis-
tribution). Moreover, as [6] observes, model diagnostics and related aspects
of model evaluation for the 2-parameter CDF-Quantile family have yet to
be completely thought through, and the same holds for their 3-parameter
extensions. Thus, the questions of effective estimation procedures and di-
agnostics for models using these distributions are active topics of research.
The primary goals regarding this paper have been to introduce this extension
of the CDF-Quantile family and to make a case that it holds some promise
for modeling distributions of lower-upper probability assignments while also
testing the conjugacy relationship. However, this paper also may be regarded
as a preliminary exploration of three-parameter CDF-Quantile distributions,
with the unexpected finding that conjugate-dual distributions may be useful
for modeling lower-upper probability assignments made by human judges.
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