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Ring Dirac solitons in nonlinear topological systems
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We study solitons of the two-dimensional nonlinear Dirac equation with asymmetric cubic nonlinearity. We
show that with the nonlinearity parameters specifically tuned, a high degree of localization of both spinor
components is enabled on a ring of certain radius. Such ring Dirac soliton can be viewed as a self-induced nonlinear
domain wall and can be implemented in nonlinear photonic graphene lattice with Kerr-like nonlinearities. Our
model could be instructive for understanding localization mechanisms in nonlinear topological systems.
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I. INTRODUCTION

The Dirac equation is a paradigmatic model of modern
physics that describes a plethora of systems ranging from
relativistic particles to electrons in graphene, as well as sound
[1], light [2], and cold atoms [3] in artificial lattices. Dirac-
type models with spin-orbit interactions now attract special
attention in condensed-matter physics and optics, being appli-
cable to the topological insulators [4–6] hosting edge states,
immune to disorder. While the linear Dirac equation is now
well understood, the physics of the classical nonlinear Dirac
model, despite its rich history [7–10], still has a number of open
problems. The absence of the rigorous Vakhitov-Kolokolov
criterion [11] significantly complicates the stability analysis
compared to the case of the nonlinear Schrödinger equation
[12–18].

There exists a variety of qualitatively different interaction
mechanisms introducing nonlinear corrections in the Dirac
equation. In relativistic field theory, the equations have to
obey Lorentz invariance, which still leaves Soler [19], Thirring
[20,21], and Gross-Neveu [22] nonlinear models. Condensed-
matter systems, such as Bose condensates, are not restricted
by the Lorentz invariance, which further enriches the family of
nonlinear Dirac equations [23–25]. Moreover, the results de-
pend on the dimensionality of the problem. Two-dimensional
(2D) Dirac systems deserve special attention since they feature
such interesting phenomena as the valley Hall effect and Klein
tunneling and are relatively feasible both in the solid state
[26] and optics [2,27,28]. A nonlinear 2D Dirac equation
can be applied to the emerging field of nonlinear topological
photonics [29–37] aiming for dynamically tunable disorder-
robust guiding of light.

Recently, a stable 2D soliton of the nonlinear Dirac equation
was found by Cuevas-Maraver et al. [38,39]. The main result
of Ref. [38] is the existence and stability of the soliton
in a wide range of parameters for both cubic and quintic
nonlinearities. However, the numerical calculation has also
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revealed an interesting feature in the radial dependence of
the spinor amplitude with zero angular momentum (m = 0).
Instead of the expected monotonous decrease from the initial
value at r = 0 to zero at r = ∞, the amplitude features a
weak flat maximum at some radius r = r∗. Such feature was
also previously seen in the 1D Soler model and termed as a
“hump” [17].

In this work, we analyze the generic 2D nonlinear Dirac
equation with asymmetric cubic nonlinearity. We present the
physical interpretation of the humped solution as a radial lo-
calization of the soliton at the self-induced domain wall, where
the band gap in the Dirac equation changes sign; see Sec. II A.
Such localization is typical for linear topological edge states [4]
and hints at an interesting link between nonlinear localization
and topological properties. Next, we optimize the nonlinearity
parameters in order to achieve the strong degree of localization.
We find a stable solution with m = 0, where both spinor
components have prominent maxima at the ring where r = r∗,
and, hence, we term it as a“ring Dirac soliton.” The exact
analytical solution of the considered nonlinear Dirac model for
the 1D case is given in Sec. II B. The stability and existence
analysis for the ring Dirac soliton is presented in Sec. II C.
Finally, in Sec. III, we propose a scheme to realize our model
in an artificial photonic graphene lattice with Kerr-like optical
nonlinearities.

II. RING DIRAC SOLITONS

A. Self-induced domain walls

We start with the 2D nonlinear Dirac equation written for
the two-component wave function χ = [χ1,χ2],

i
∂χ1

∂t
= E1(χ1,χ2)χ1 − i(∂x + i∂y)χ2,

i
∂χ2

∂t
= E2(χ1,χ2)χ2 − i(∂x − i∂y)χ1. (1)

Here,

E1(χ1,χ2) = � + a1|χ1|2 + b|χ2|2,
E2(χ1,χ2) = −� + a2|χ2|2 + b|χ1|2 (2)
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are the positions of the band edges, affected by the cubic
nonlinearity, with � being the band-gap half width for zero
nonlinearity. In Eqs. (2), we consider a general form of the
cubic nonlinearity, which can be asymmetric (a1 �= a2). The
only restriction is the reciprocity of the cross-coupling nonlin-
ear terms, ∂E1/∂|χ2|2 = ∂E2/∂|χ1|2 = b. We are interested
in the solutions with harmonic time dependence and radial
symmetry,

χ1(r,ϕ,t) = ψ1(r)eimϕ−iωt , (3)

χ2(r,ϕ,t) = iψ2(r)ei(m−1)ϕ−iωt , (4)

so that Eqs. (1) simplify to the ordinary nonlinear differential
equations with respect to the radius r:

ωψ1 = E1(ψ1,ψ2)ψ1 +
(

d

dr
+ 1 − m

r

)
ψ2,

ωψ2 = E2(ψ1,ψ2)ψ2 −
(

d

dr
+ m

r

)
ψ1. (5)

In what follows, we focus on the solitons with zero angular
momentum, m = 0 since the high-momentum states were
shown to be unstable [38].

In order to solve Eqs. (5) numerically, we first dis-
cretize them using the Chebyshev spectral method, following
Refs. [40,41]. This scheme provides high precision even for
relatively small sets of basis functions. The singularity at r = 0
is naturally handled [40] by looking only for even solutions
for ψ1 and odd solutions for ψ2. After the discretization is
performed, we apply the numerical shooting technique [42] to
find the solutions, vanishing at r = ∞.

The results of the calculation are presented in Fig. 1. We
start the analysis with the case of symmetric nonlinearity,

a1 = a2 = −b = −1, (6)

corresponding to the 2D Soler model of Ref. [38]. The obtained
spatial distributions of the spinor components are shown in
Fig. 1(a). At the soliton center, r = 0, the component ψ1 has
some nonzero value, while the component ψ2 is zero. The latter
reflects the fact that while the total angular momentum of the
soliton is zero, the orbital momentum for the component ψ2

is equal to −1; see Eq. (4). We would like to draw attention
to the fact that both spinor components depend on the radius
nonmonotonously. They have maxima for the nonzero value
of r = r∗ ≈ 2 (indicated by the vertical line) before decaying
to zero at r = ∞. This maximum is practically unresolved for
the component ψ1, although it becomes more prominent as the
soliton frequency decreases. To the best of our knowledge, the
physical interpretation of this maximum has so far not been
presented.

The origin of such hump can be understood if one examines
the radial dependences of the band edges, shown by the
band-edge positions E1,2(r), presented in Fig. 1(c). At large
radii where the nonlinear corrections vanish, they tend to
the linear band-gap edges ±�. The soliton frequency ω lies
inside the band gap, in agreement with the exponential decay
of the amplitude. When the radius decreases and the soliton
components grow, the nonlinearity induces the crossing of
band edges. Their positions at r = 0 are swapped as compared
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FIG. 1. (a),(b) Radial dependence of the spinor components ψ1

(blue curve) and ψ2 (red curve). (c),(d) Radial distributions of the
band edges E1 and E2 for upper and lower bands shown by blue
and red curves, respectively. Dashed lines indicate the band edges for
vanishing nonlinearity at E = ±� = ±1. The thick horizontal line
indicates the soliton frequency ω = 0.4. Left (a),(c) and right (b),(d)
panels correspond to α = 1 and α = 1.67, respectively. Vertical lines
indicate the position of the maximum of ψ2.

to the case r → ∞. The crossing point matches the maxima
of ψ1,2. Spatial localization of the eigenmodes at the band
crossing in the Dirac spectrum is very intuitive in the linear
regime and lies at the heart of the topological edge states
[4,43,44]. In this case, the domains with opposite band orders
are described by certain integer topological invariants and
the domain wall hosts a localized state. The possibility of
topological characterization of nonlinear edge states is so
far unclear. However, the general phenomenon behind the
localization in topological insulators and the maximum of
spinor components in the considered nonlinear Dirac equation
is the same band crossing. As such, one can interpret the Dirac
soliton in Fig. 1(a) as a self-induced domain wall between
the circular core with E1 < E2 and the outlying space with
E1 > E2.

The maximum in Fig. 1(a) for ψ1 is not particularly promi-
nent. It becomes sharper as the frequency decreases; however,
at low frequencies |ω| � 0.14, the soliton loses stability with
respect to the radial perturbations with the angular momentum
m′ = 2 [38]. Hence, it is an interesting question whether
one can tune the nonlinearity to make the maximum more
prominent while simultaneously keeping the soliton frequency
the same and the soliton stable.

The signature of the self-induced domain wall would be a
realization of the band-crossing condition,

E1(χ (1)) = ω, E2(χ (2)) = ω, (7)

at the frequency ω for the same value χ (1) = χ (2). One can
see from Fig. 1(c) that the bands cross at E1 = E2 = 0
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relatively far below the soliton frequency ω = 0.4, so that
the radial localization is weak. The spinors χ (1) and χ (2) in
Eq. (7) can be estimated by extending the evanescent linear
asymptotic solutions of Eqs. (5) with the ratio of spinor
components χ

(1,2)
1 /χ

(1,2)
2 = √

(1 + ω)/(1 − ω) from r → ∞
to smaller values of r . Substituting this ratio into Eq. (7), we
find

ξ ≡
(

χ
(1)
1

χ
(2)
1

)2

= −1 − ω

1 + ω

a2(1 − ω) + b(1 + ω)

a1(1 + ω) + b(1 − ω)
. (8)

The ideal situation, when both bands cross the frequency
ω at the same time, corresponds to ξ = 1. Our recipe to
improve the radial localization at a given frequency is to adjust
the nonlinearity by making ξ closer to unity. Inspection of
Eq. (8) shows that this condition is further simplified when the
symmetry relation a1/b = b/a2 holds, so that

a1 = −1, a2 = −α2, b = α, (9)

and

ξ = α
1 − ω

1 + ω
. (10)

Hence, one can expect that ξ becomes closer to unity and the
radial localization is improved when α > 1 for ω > 0 and α <

1 for ω < 0.
In order to test this analytical prediction, we show in

Figs. 1(b) and 1(d) the results for asymmetric nonlinear-
ity coefficients satisfying Eq. (9) with α = 1.67. While the
structure of the solution remains formally the same as in
Figs. 1(a) and 1(c), where α = 1, it now features a prominent
maximum for bothψ1 andψ2 components, clearly pinned to the
nonlinear band-edge crossing point. The distinction between
the symmetric and asymmetric cases is most clearly seen in the
two-dimensional maps of the soliton, |χ1,2(x,y)2|, shown in

FIG. 2. Spatial distributions of the soliton spinor components
(a),(c) |χ1|2 and (b),(d) |χ2|2, corresponding to the parameters of
Fig. 1, calculated for (a),(b) α = 1 and (c),(d) α = 1.67.

Fig. 2. A ring at r ≈ 4 is clearly visible for both spinor
soliton components in the asymmetric case [Figs. 2(b) and
2(d)], while it is practically unresolved in Fig. 2(a) in the
symmetric case. Various solitonic and vortex solutions of
the Dirac equation are known, including ring solitons with
|m| > 1, see, e.g., a detailed analysis in Ref. [45]. Here, we
reveal an existence of the m = 0 Dirac solitons with rings for
both spinor components.

B. Exact solution in 1D

In order to gain deeper insight in the properties of the ring
Dirac solitons, we consider a simplified one-dimensional prob-
lem instead of the cylindrically symmetric two-dimensional
one. The 1D problem with symmetric nonlinearity is known
to admit exact analytical solutions [46]. It turns out that the
nonlinearity of the type given by Eq. (9) admits them as well. In
the 1D case, the derivative over x in Eqs. (1) can be suppressed
and they reduce to

ωχ1 = E1(χ1,χ2)χ1 + dχ2

dy
,

ωχ2 = E2(χ1,χ2)χ2 − dχ1

dy
. (11)

Equations (11) have a Hamiltonian structure,

dχ1

dy
= ∂H

∂χ2
,

dχ2

dy
= − ∂H

∂χ1
,

with the Hamiltonian

H (χ1,χ2) = ω − �

2
χ2

1 + � + ω

2
χ2

2 + 1

4

(
χ2

1 − αχ2
2

)2
.

(12)
For localized soliton solutions, χ1,2(∞) → 0, and, hence, H =
0. We use the substitution

χ1(y) = A(y) cos ϕ(y), χ2(y) = A(y) sin ϕ(y), (13)

so that Eq. (12) yields

A2 = 2(� cos 2ϕ-E)

(cos2 ϕ-α sin2 ϕ)2
. (14)

Substituting Eq. (13) into Eq. (11), we obtain an ordinary
differential equation for ϕ that turns out to be independent
of α,

dϕ

dy
= −E + � cos 2ϕ, (15)

and has the solution

ϕ = arctan

[√
� − ω

� + ω
tanh(

√
�2 − ω2y)

]
. (16)

The final expressions for χ1,2 are obtained by substituting
Eqs. (16) and (14) into Eq. (13).

C. Existence and stability analysis

In order to determine the spectral stability of the soliton
solution χ (0), we perform a standard linearization procedure.
The solution is sought at the frequency ω′ in the form

χ (1) = χ (0)e−iωt + Ue−iω′t + V e+(iω′∗−2iω)t , (17)
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FIG. 3. Shape of the soliton depending on its frequency ω and
the nonlinearity asymmetry α. (a),(c) Ratio of the maximum of the
component χ1 at the point r∗ to its value at r = 0. (b),(d) Position of
the soliton maximum r∗. (a) and (b) have been calculated analytically
for the 1D soliton solution given by Eq. (13); (c) and (d) correspond
to the numerical calculation in 2D. (c),(d) The blue line bounds the
region where the soliton is spectrally unstable and, in the blue region,
the soliton does not exist. The dotted white line bounds the region
where the soliton has a ring shape, i.e., r∗ > 0. The calculation has
been performed for � = 1.

where χ (0) is the unperturbed soliton profile, and the spinors
U and V have the form

U =
(

u1e
i(m+m′)ϕ

iu2e
i(m+m′−1)ϕ

)
, V =

(
v1e

i(m−m′)ϕ

iv2e
i(m−m′−1)ϕ

)
, (18)

and m′ is the angular momentum of the perturbation. The
resulting system of linear equations for the spinors u =
[u1,u2]T , v = [v1,v2]T reads

ω′
(

u

v

)
=

(
H+ H0

−H0 2ω − H−

)(
u

v

)
, (19)

with

H± =
(

� + 2a1ψ
2
1 + bψ2

2 D+,m±m′ + bψ1ψ2

−D−,m±m′ + bψ1ψ2 −� + 2a2ψ
2
2 + bψ2

1

)
,

H0 =
(

a1ψ
2
1 bψ1ψ2

bψ1ψ2 a2ψ
2
2

)
,

where the differential operators are

D+,m = ∂

∂r
+ 1 − m

r
, D−,m = ∂

∂r
+ m

r
.

The calculated stability and existence diagram for the ring
soliton depending on its frequency and nonlinearity asymmetry
α is presented in Fig. 3. Figures 3(a) and 3(c) show the relative
amplitude of the maximum, ψ1(r∗)/ψ1(0), while Figs. 3(b) and
3(d) present the maximum position. We start the analysis from
the exact 1D solution, obtained in the previous section. The
soliton exists and has a double-hump profile with maxima at

FIG. 4. Schematic of a photonic graphene structure with waveg-
uides having the opposite sign of Kerr nonlinearity than the matrix,
χ

(3)
A,Bχ

(3)
M < 0.

y = ±r∗ in the region where

1

2

1 + ω

1 − ω
< α <

1 + ω

1 − ω
. (20)

For lower values of α, the hump disappears and the maximum
is in the coordinate origin, i.e., r∗ = 0. The boundary of the
corresponding region is indicated by a black dashed curve.
For α larger than (1 + ω)/(1 − ω), the solution does not exist.
The main result of the calculation is the possibility to adjust
the soliton shape by controlling the nonlinearity. For a given
soliton frequency, the increase of the α parameter transforms
the ordinary soliton to the double-hump one and enhances
the maximum for the ψ∗

1 component, in agreement with the
calculation in Fig. 1.

Figures 3(c) and 3(d) show the phase diagram for the 2D
ring soliton solution. It has qualitatively the same structure as
the one in the 1D case. However, the ring soliton region where
r∗ > 0 (bounded by a dotted white curve) is considerably wider
in the 2D case than in the 1D case; cf. Figs. 3(b) and 3(d).
The blue line indicates the stability region. An increase of the
nonlinearity asymmetry first makes the ring soliton unstable
and than it ceases to exist. For both symmetric and asymmetric
nonlinearity, the instability develops first for the perturbation
with m′ = 2.

III. IMPLEMENTATION IN NONLINEAR LATTICES

Here, we consider a model example of nonlinear photonic
graphene based on an array of waveguides arranged in a
honeycomb lattice; see Fig. 4. In the linear optical regime,
this waveguide platform has already been used to demonstrate
topological edge states of light [27,28,47]. Our suggestion
is to embed waveguides with defocusing Kerr nonlinearity
(χ (3) < 0) in a focusing nonlinear matrix with χ (3) > 0. The
tight-binding equations governing the propagation of light in
this system along the z direction have the following form:

−i
∂ψA,j

∂z
= EA,jψA,j + t

∑
〈j,j ′〉

ψB,j ′ ,

−i
∂ψB,j

∂z
= EB,jψB,j + t

∑
〈j,j ′〉

ψA,j ′ ,

EA,j = � + a1|ψA,j |2 + b

3

∑
〈j,j ′〉

|ψB,j ′ |2,

EB,j = −� + a2|ψB,j |2 + b

3

∑
〈j,j ′〉

|ψA,j ′ |2. (21)
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Here, ψA,j and ψB,j are the smooth envelopes of electric
field E at the sites A and B of the unit cell j ; E(z,j,t) ∝
eikzz−iωtψj (z), where ω is the frequency and kz is the wave
vector along the waveguide axis. The parameter t describes
the tunneling,

∑
〈j,j ′〉 denotes the sum over nearest neighbors

of the cell j , and � is the detuning of the modes of the
waveguides A and B and can be controlled by varying the
waveguide radii. We consider only the linear tunneling terms
but take into account both local (∝a1,2) and nonlocal (∝b) Kerr
nonlinearities. Discrete nonlinear lattices manifest interesting
phenomena such as self-induced gap soliton formation [48,49].
In the case of Dirac systems with symmetric nonlinearity, the
effects of discreteness were recently analyzed in Ref. [25]. For
the purpose of this work, it is sufficient to apply the smooth
envelope approximation near the Dirac points. We start with
the solution of Eqs. (21) in the Bloch form,

ψA,j = ψAeik·rj , ψB,j = ψBeik·rj , (22)

which results in

−i
∂ψA

∂z
= (� + a1|ψAj

|2 + b|ψB |2)ψA + gkψB,

−i
∂ψB

∂z
= (−� + a2|ψBj

|2 + b|ψA|2)ψB + g∗
kψA, (23)

where gk = t[eikxd + 2e−ikxd/2 cos(kyd)] and d is the distance
between nearest neighbors. Applying the k · p expansion near
the Dirac points

κx = kx, κy = ky ∓ 4π
√

3

9d
, (24)

we obtain the following equations:

−i
∂ψA

∂z
= (� + a1|ψA|2 + b|ψB |2)ψA + v(iκx ∓ κy)ψB,

(25)

−i
∂ψB

∂z
= (−� + a2|ψB |2 + b|ψA|2)ψB − v(iκx ± κy)ψA,

where v = 3t/2 and the sign ± corresponds to two different
valleys. In the smooth envelope approximation, when κ is
replaced by −i∇, Eqs. (25) are equivalent to the nonlinear
Dirac equations (1) and (2) for each of the two valleys. The
condition a1,2b < 0, required for the ring Dirac soliton for-
mation, can be realized by controlling the nonlinear response
of the waveguides and of the matrix. Namely, defocusing
nonlinearity in each of the waveguides,χ (3)

A,B < 0, decreases the
wave vector along z and, hence, a1,a2 < 0. On the other hand,
the nonlocal Kerr term results from the spatial overlap between
the evanescent tails of the electric fields from neighboring
waveguides, penetrating in the matrix. Thus, when the matrix
has a focusing Kerr nonlinear response with χ

(3)
M > 0, increase

of the field intensity in the given waveguide will increase the
wave vector for its neighbors and, hence, b > 0.

A very promising theoretical result of the chiral polariton
vortex propagation in the honeycomb lattice of micropillars
along the interface was recently reported in Ref. [36]. The
interface bounds two regions with inverted staggering, EA <

EB and EB > EA. In our case, the staggering is not built in the
linear structure, but arises due to the interplay of focusing and
defocusing nonlinearity.

Implementation of the cubic nonlinearity with modulated
sign seems to be a challenging but feasible task; see a
detailed review in Ref. [50]. For example, one could consider
an optofluidic platform [51,52] with photonic crystal fibers
filled by liquids. Strong fast focusing nonlinearity is available
in chalcogenide glass fibers [53]. Chalcogenide waveguides
with high nonlinear refractive index n2 ∼ 4 × 10−14 cm2/W
[54] have enabled demonstration of self-focusing for cm-long
samples at the 1.5 μm wavelength [55]. The main difficulty
would be to balance the focusing nonlinearity of the fiber
material with slow but strong thermal defocusing nonlinearity
of the liquids, where values up to n2 = −1.6 × 10−5 cm2/W
have been reported [56]. In the pulsed regime, this could be
done by controlling the repetition rate. Alternatively, one could
consider solutions where the thermal defocusing nonlinearity
is relatively weak, n2 ∼ −10−13 cm2/W [57]. In addition to
the photonic crystal waveguide platform, similar effects could
potentially be realized for excitonic polaritons in arrays of
coupled micropillars with embedded quantum wells [2] and for
cold-atom lattices [3] with nonlinearity controlled by Feshbach
resonances [58].

IV. CONCLUSION

To summarize, we have theoretically studied rotationally
symmetric soliton solutions of a two-dimensional nonlinear
Dirac equation with asymmetric cubic nonlinearity. It has
been demonstrated that the radial distribution of the soliton
amplitude strongly depends on the nonlinearity parameters.
By adjusting the nonlinearity, we were able to find a spectrally
stable ring Dirac solution where both spinor components of the
soliton have maxima at a certain radius. The radial localization
is explained by the crossing of the band-gap edges in the Dirac
equation, induced by the nonlinearity. Hence, the obtained
solution can be interpreted as a self-induced nonlinear domain
wall. A condition relating the radial localization degree to the
nonlinearity parameters has been derived. We present a concep-
tual scheme to realize a ring Dirac soliton in a nonlinear pho-
tonic graphene lattice with defocusing waveguides in the focus-
ing matrix or vice versa. Remarkably, the formation of solitons
at the self-induced domain walls is intuitively quite similar to
the localization of edge states at the boundary between domains
with distinct topological invariants. However, despite detailed
studies of edge modes in nonlinear lattices [50], no topological
classification comparable with the established classification
of topological insulators [59] is available for nonlinear edge
states. Still, even though generalizations of the Berry phase in
nonlinear systems are known [60], the possibility of rigorous
nonlinear bulk-boundary correspondence remains an open
question. We believe that our model can be applicable to
a variety of nonlinear topological systems spanning from
photonics to cold-atom lattices and could provide important
insights for further developments in the nonlinear topological
physics.
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