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ABSTRACT

Development and Validation of Wearable Systems for Human
Postural Sway Analysis

by Michael L. Pollind

Falls are the most common cause of injury in older adults. Around one-third of senior citizens

(aged 65 or over) experience at least one fall per year, and the frequency increases by 66 percent

for those aged over 85 years. Nowadays wearable systems are gaining popularity to perform fall

risk assessments and investigating fall events in natural environments. However all commercially

existing systems are expensive, thus there is paucity of knowledge to develop and validate inex-

pensive wearable systems for fall risk assessment in older adults. An early risk of fall assessment

could help health care professionals to intervene earlier. This study investigates the processes

involved with designing an Inertial Measurement Unit (IMU) including the rational behind the

choice of parts and assembly of the board. The final sensor developed (Mini-Logger) was vali-

dated for sway acquisition in laboratory setting. Further the novel sensor was tested on healthy

adults for its sensitivity with postural sway at 12 different standing conditions. The results from

this study could help in development of inexpensive wearable systems which could identify older

individuals at risk of falling for proactive fall prevention. Thus reduction in falls will improve the

quality of life of older adults and thereby reduce healthcare costs.
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CHAPTER 1

Introduction

Balance is an essential skill for functional mobility which generally degrades with advanced

age (Shaffer & Harrison, 2007). Balance problems in older individuals increases the risk of fall

related injuries, increasing the likely-hood morbidity and mortality (Shaffer & Harrison, 2007).

A third of individuals over 65 experience at least one fall each year and the cost is expected to

reach $32 billion by 2020 (Shaffer & Harrison, 2007). 1 in 40 indviduals are at risk of falling ev-

ery year and as a result Unintentional injury is considered the 5th leading cause of death in older

individuals after cardiovascular disease, cancer, stroke, and pulmonary disorders (Rubenstein,

2006, Zalewski, 2015). Understanding the factors that contribute to fall risk can aid these indi-

viduals. Understanding postural balance is a strong tool that clinicians can use to identify at risk

individuals.

The nature of standing upright is inherently unstable and small deviations created due to pos-

tural muscles firing and gravational induced joint torques can unbalance the process (Peterka,

2002). Corrective torques are added to recenter the off centering effects of gravity and this cre-

ates a pattern of motion that is measured by Center of Pressure (COP) (Peterka, 2002).

COP is a strong measurement of stability and can be used as one important factor to asses fall
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risk (Liu et al., 2012). There are three sensory systems that are used to assess stability and they

included: Visual, Vestibular, and Somatosensory. Force plates are the gold standard for assess-

ing center of pressure but due to weight, size, cost and maintenance they might not be available

in every setting (Liu et al., 2012, Ekvall Hansson et al., 2019). The price of a single IMU (In-

ertial Measurement Units) is considerably more affordable when compared with using a force

plate. previous assessments have shown that an force plates and IMU’s show similar characteris-

tics (Ekvall Hansson et al., 2019).

In this study, we build a custom IMU from common off the shelf components and assembled

by a third party. This works tries to understand the feasibility of developing and verifying a cus-

tom built sensor when compared with the industry standard (Xsens) (Grace Gaerlan et al., 2012,

Lee et al., 2013). This work uses a method developed by (Mayagoitia et al., 2002) to asses postu-

ral sway using only a 3-axis accelerometer to asses motion of sway.

Xsens are set of sensors used to capture motion data and are commonly used for research ap-

plication in physical therapy Grace Gaerlan et al. (2012), Lee et al. (2013). This commercially

available system could provide a good benchmark when comparing against the custom built sen-

sor. This work examines the performance of a custom-built sensor built around an ICM-20948

and attempts to compare performance characteristics. ICM-20948 is an all in one 9-axis sensor

with a 3-axis: gyroscope, accelerometer, and compass. Understanding the performance character-

istics for postural sway should provide a reasonable threshold of performance.

Understanding the process required to build an IMU along with the tools required can be of

use for applications outside the bare minimum of collecting and storing IMU data and aid the

assessment of data in other applications. The process is similar for use with other processors and

other IMU units on the market.
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1.1 Specific Aims

1.1.1 Aim#1 Develop a wearable sensor capable of measuring postural sway with off the shelf com-

ponents.

• Ardunio is a good starting point with a large set of libraries and tools for prototyping

• Write firmware that collects data from an onboard IMU and stores it in a format that can be

later analyzed

• Develop a tool that converts the data into a format that can be used for analysis, for exam-

ple *.csv format files

1.1.2 Aim#2 Generate Understand Periodic movement in controlled environment between track-

ing marker and IMU.

• known period movement in a controlled environment

• verify performance of IMU with marker as ground truth

1.1.3 Aim#3 Utilize the sensor with a healthy population with different proprioceptive and vibra-

tion conditions and identify problems.

• Verify the performance of the sensor with a set of healthy subjects with a set of verifiable

conditions

• verify the sensor with Xsens as a ground truth

• parameterize the data into different factors and run a model that examines cross effects for

the set of given conditions.
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1.2 Organization

This thesis has 5 chapters. Chapter 1 covers information about the background of the study along

with aims and objectives. Chapter 2 covers the design of the IMU boards along with components

where they were assembled, firmware along with the tools used to build the firmware, how the

data was stored and additional software that was used to decode the data. Chapter 3 covers pro-

cedures to capture student collected data along with methods to parameterize the raw time series

data, explanations and analysis. Chapter 4 works on creating a sythetic setup to verify the valid-

ity of a motion sensor for use in identifying if the signal originates from a common source and

validity of the source signal. ?? concludes the work of this thesis.
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CHAPTER 2

Hardware

2.1 Mini Data Logger

2.1.1 Introduction

Arduino is a powerful platform with a large selection of libraries and easy to use API’s that allow

for easy prototyping. The platform and tools are all open source which offers a lot information

about the platform including compiling the source code along with schematics and layouts. It’s a

fairly easy process to go from protype to a board with similar components.

2.2 Materials and Methods

2.2.1 Hardware

This sensor uses an ICM-20948 and an I2C bridge PCA9306DCUR. The recommended schematic

from the datasheet is used to inform the design of the final circuit board; including the MEMS 2.2

and microprocessor. The mems sensor runs at 1.8v, which is lower than the 3.3v for the AT-

mega processor. A separate drop regulator is used to bring the voltage down to the required 1.8v
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(a) Circuit Ki-CAD Design (b) Fabricated Circuit

Figure 2.1: Mini-Logger

Figure 2.2: ICM-20948 recommend schema c from datasheet (ICM-20948)
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(TLV70218). This voltage is much lower then other mems developed by TDK. The board was

powered with an external li-poly battery connected with a JS2-2 connector.

The two major interface protocols between Integrated Components (IC) are the I2C bus spec-

ification and Serial Peripheral Interface (SPI). These two are mainly used to talk between other

processors and embedded peripherals. I2C is a two-wire protocol used in a master-slave config-

uration where the same two wires can be connected to multiple slave devices. A slave address is

given to each device on the pair so only one slave device can talk with the master at a time. SPI

is a three-wire protocol, and a fourth wire is used to select multiple devices on the same line. SPI

is a dual-duplex where data can be sent in both directions where I2C is handled in turn. Each ad-

ditional device introduces an extra wire for the selection. Two devices use 5 wires; three devices

use 6 so on and so forth.

The ICM-20948 is configured for I2C, but there are also options for SPI. SPI supports higher

sample rates up to 7Mhz while I2C supports data rates up to 400kHz but only in high-speed mode.

For this application, these higher data rates are not necessary since 500Hz is well below this

400khz range. AD0 determines the slave address of the device, which can be 0x68 for low and

0x69 for high. Section 4.2 from the datasheet shows the typical operating circuit for the IMU for

both I2C (2.2) and SPI operation.

The SD card has two modes of configuration, SD mode, and a slower SPI mode. For this case,

the slower SPI mode is more than enough bandwidth for the ATmega processor. SdFat is an Ar-

duino library that implements the API for writing and reading files to and from the SD card. Mi-

cro SD is an 8 pin device. The pin-outs for the SD card can be found in figure 2.3. In SPI mode,

one bit is written at a time where SD mode has a bit width of up to 3 bits for micro SD and 4 bits

for standard SD (SD Specification).

2.2.2 Firmware

The firmware was written in C++ and compiled with the avr-gcc and avr-g++. Scons was used to

setup the environment and compile the source for the Atemga. The process is similar to writing
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Pin# Name Description
1 Dat2 X
2 CD/Dat3 Chip Select (neg true)
3 CMD Data In/MOSI
4 VDD Supply Voltage
5 CLK Clock
6 VSS Supply Voltage Ground
7 DAT0 Data Out/MISO
8 DAT1 X

Figure 2.3: SD card pinout

Ino files using the Ardunio IDE which use a fairly similar set of tools (avr-gcc, avr-g++, and avr-

dude) that build and install the ardunio code. The final .elf binary is converted to Ihex (Intel Hex)

and flash to the processor with Avrdude using an Atmel Ice Programmer.

A 2x3 ISP header is left exposed and was programmed with a pogo pin adapter. Additional

bits have to be set along with flashing the firmware. These fuse bits disable and enable features

built into the processor. Some of these can be configured in code while others have to be set by

the programmer. A fuse calculator can be used to set the correct fuses for the flash utility. This

includes changing the internal clock to an 8Mhz external clock and disabling div by 8 for the

clock rate. The compiled source expects 8Mhz and this can be configured with Microcore by

setting ‘CPU_FREQUENCY‘ to the desired sample frequency; in this case, it would be 8 million

times a second or 1 million if divide by 8 is set.

The option to flash the processor over the UART interface is not possible because the Arduino

bootloader is not configured with the ATMEGA processor. The Ardunio bootloader is a small

chunk of code at the start of the memory and allows for the ability to program the ATMEGA pro-

cessor through UART. This also requires a crystal because the timing over UART is much more

precise. Protocols such as SPI and I2C use a separate clock line to keep time with transferring

data.

The external push button on the board starts a session and clicking it again stops it. Each new

session produces a new bin file. When the processor is not logging data, the processor is placed

into a sleep state, along with the IMU. For efficiency, a large file is allocated on the SD card
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before writing. Write efficiency is improved if the data is written block by block. The set of

samples are cached and written all at once to each 512 block sector. Each payload starts with

the number of samples in the block then an array of samples. Each sample stores the 3-axis ac-

celerometer, 3-axis gyroscope, epoch timestamp and temperature. The payload consists of first

the number of entries in that chunk of data then an array of samples and finally empty bytes fill

in anything that does not fully occupy the block. Each write cycle writes 512 bytes. This setup

avoids corruption because a failed write does not affect more than a single block. It is relatively

simple to read back from the SD card and skip blocks that have been corrupted due to a failed

write.

The ICM-20948 is configured through a set of readable and writable registers. A fixed register

is used to switch between different set of registers organized into four banks. Each register has

a 1-byte address and 1 byte of writable/readable memory. REG_BANK_SEL is used to change

the register bank. PWR_MGMT_1 is used to place the device into sleep and also wake up the

device when the sensors are not enabled. ACCEL_CONFIG and GYRO_CONFIG are used to

configure the gyroscope and accelerometer. These are the key registers, but there are a lot more

configuration options that could be explored.

The sensor only provides the data for 6-axes (accelerometer, gyroscope). The data is stored

in a 2 byte signed short which provides a full resolution from -32,768 to 32,767. The range can

be exchanged for sensitivity by setting ACCEL_FS which supports: ±2 G’s, ±4 G’s, ±8 G’s,

±16 G’s. This involves dividing the raw value by a scaling factor. Using one range limits the

resolution to the scaled range and saturates if the number of G’s exceeds that target sensitivity.

The resolution chosen was ±4G’s where the act of standing would not exceed this fixed range but

offers higher sensitivity.
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Sensitivity ACCEL_FS

±2 16,384

±4 8,192

±8 4,096

±16 2,048

2.2.3 Software - Data Decoding

A separate application was written to decode the raw data collected from the SD card. The appli-

cation was written in QT; A C++ graphical toolkit library. The serialized data is stored in chunks

of 512 bytes as described from the previous section. So decoding the data involves reading chunk

by chunk and extracting the relevant signals from each chunk. A 512 block chunk starts with

16 bit unsigned short describing the number of entries and another 16 bit unsigned short for the

number of times that data overran the current block. Anything after the 32 bits is the raw data

collected from the sensor up to the last possible sample that can be stored in that chunk. each

sample is 18 bytes long where: 4 bytes (time), 2 bytes(acc_x), 2 bytes(acc_y), 2 bytes(acc_z),2

bytes(gyro_x), 2 bytes(gyro_y), 2 bytes(gyro_z), 2 bytes(temperature). For each chunk, the max

number of samples that can be stored in a sample is exactly 28. This leaves only 4 bytes that are

padded as zeros, so each chunk is exactly 512 bytes.

2.3 Results

The Mini Logger board is based off an Arduino Pro mini 3.3v at 8Mhz. The layout of the board

is designed with Kicad and exported to Gerber files. A separate CSV (comma separated value

file) was created, mapping the components to the associated footprints. Wherever possible, com-

ponents are sourced from Seeds OPL (Open Parts Library) else they are sourced from either

Digikey or Mouser. The final board is assembled from Seeed Studio. The firmware was com-

piled against MiniCore, a derivative Ardunio kernel. Libraries written for Arduino core should

function the same when compiled against MiniCore. Minicore is a general library that supports
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other processors in the same family including ATmega328, ATmega168, ATmega88, ATmega48,

ATmega8 and all variants of A, P, PA, and PB (ATMEGA).

2.4 Discussion

There are other features for the ICM-20948 that can be tweaked to improve performance charac-

teristics such as using the low band pass filter that comes with the IMU given that the the band-

pass filter on the IMU can sample from a much higher sample rate then after the fact. Generally

the performance can be improved by augmenting the data with other signals such as a pressure

sensor, compass, or Magnetometer. the IMU can be paired with AK09916(magnetometer) and

this should in theory also improve performance of the IMU. Atmega328 only has 32kb of space

and a fairly low end 8Mhz processor. the process of reading the writing the data to the SD card

was pushing the limits of the Atmega processor and a better alternative would be needed.

The Atmega platform is also fairly limited and heavily handy capped by limited amount of

processing and memory. It is possible to do the same task with fewer instructions which both

improves execution speed and also shrinks the footprint of the program. This requires modi-

fying registers directly which requires a fairly strong understanding of the AVR platform, but

other platforms exist for low energy applications with more resources and better tooling. The

ARM platform has grown a lot in the last couple of years especially for wearable. System of

Chip (SOC) are single form factor units which can provide both the processor and a secondary

system such as bluetooth.

2.5 Conclusion

The platform built around the sensor has several limitations. The process of pressing a tactile but-

ton introduce noise into the data and extracting the SD card and saving the data introduces extra

human error. Some more work is necessary to correct some of these flaws in the protocol. The

protocol and process for developing such a sensor is provided as a good starting point and should

inform future work that attempts to improve on this model. There is a lot of space for improve-
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ment along with different methods that should produce a better outcome. More work will have to

done to examine other configurations that would better appropriate the IMU. Other methods can

be combined to improve the characteristic performance of the IMU.

There are other features for the ICM-20948 that can be tweaked to improve performance char-

acteristics such as using the low band pass filter that comes with the IMU given that the the band-

pass filter on the IMU can sample from a much higher sample rate then after the fact. The bare

silicon of the IMU will perform the task more efficiently then the equivalent code executed on

the processor.

Generally the performance of an IMU can be improved by augmenting the data with another

signal such as a pressure sensor, compass, or Magnetometer. the IMU can be paired with AK09916(magnetometer)

and this should in theory also improve performance of the IMU. Atmega328 only has 32kb of

space and a fairly low end 8Mhz processor. the process of reading the writing the data to the SD

card was pushing the limits of the Atmega processor and a better alternative would be needed.
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CHAPTER 3

Postural Sway Assessment from Inertial Sensors With Human Subjects

3.1 Introduction

Human Postural is maintained through three important systems: visual, vestibular, and Somatosen-

sory sensory systems (Peterka, 2002). These systems degrade with age and individual become

more prone to falling (Grace Gaerlan et al., 2012).

Visual information plays a role in perception of motion. The central (focal) specializes in mo-

tion detection and motion recognition (Grace Gaerlan et al., 2012). Peripheral vision helps with

understanding displacement and is used as feedback to control sway (Grace Gaerlan et al., 2012).

For Eyes open and eyes closed condition, participants were either asked to stare at a fixed point

or blind folded to remove visual information. It is known that individuals that have an impaired

Vestibular or Somatosensory system rely more on visual information (Guerraz & Bronstein,

2008).

Vestibular balance input is maintained through the inner ear and motion if identified through

deviation of head orientation where as visual information work out head position through visual

cues (Peterka, 2002). Histologic reports have shown significant hair cell decline with age (Za-
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lewski, 2015). This decline in cell loss impacts the ability of the vestibular system to detect mo-

tion.

Proprioceptive provides information about muscle length and velocity through mechanorecep-

tor (Shaffer & Harrison, 2007, Grace Gaerlan et al., 2012). This helps with discerning the loca-

tion of joints, along with providing a positional sense of the environment. Muscle fibers play an

essential role in more reflexive and voluntary movements informed by the proprioception sys-

tem (Shaffer & Harrison, 2007). Balance information is provided through the plantar surface of

the foot, and is main point of contact between the ground and the body (Ekvall Hansson et al.,

2019). The force applied to the sole is non-uniform and provides sensory cues that enhance pos-

tural response. StepRight stability trainers were used to disrupt sensory information from the

ground and plantar surface of the foot. This forces students to rely on vestibular information and

visual information to maintain balance. For some of the trials, participants had their eye’s closed,

so they had to rely more on vestibular information.

Proprioceptive can be enhanced with the use of sub-sensory noise. Several studies have ver-

ified that introducing noise to a sensor motor system for either static or dynamic tasks can im-

prove performance of that task (Costa et al., 2007, Priplata et al., 2006). A non-zero amount of

noise applied to a sensory system may significantly affect an individuals ability to feel weak sen-

sory stimuli through a process called stochastic resonance (SR) (Martínez et al., 2007). SR is an

affect introduced into nonlinear system where external noise is introduced into a system. Noise

added in an optimal amount enhances information transfer. It has been demonstrated that SR ap-

plied to the feet has been shown to improve postural stability.

Sub-sensory noisy was introduced through the use of a C2 tactor. A typical design for a vi-

brating motor uses an eccentric mass that is driven by a small dc motor (Yao & Hayward, 2010).

The amplitude and frequency are linked; This is influenced by the weight and rotational speed of

the weighted mass (Yao & Hayward, 2010). The typical response of a motor like this involves

a ramp where the motors are driven to speed. This is very problematic, when a precise response

is needed (Yao & Hayward, 2010). The general design of a tactor uses similar to a traditional
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speaker with a cylindrical magnet suspended by two rubber membranes and a voice coil that

drives the magnet and diaphragm (Yao & Hayward, 2010). These devices offer frequencies in the

range of 0-500Hz and are ideal for the task of Stochastic Resonance response (Yao & Hayward,

2010).

3.2 Materials and Methods

Data was collected from both the mini_logger and Xsens. Both acceleration units were mounted

on the T2 spine position as shown in figure 3.2. Each data collection session was 1 minute long,

and individual performing quiet standing each trial consisted of 10 different random treatments

given to each applicant for each trial. The different conditions are listed in table 3.1. The data

was collected over three sessions and consisted of 10 healthy adults (5 males and 5 females, age:

27.3 ± 2.7 years). They were recruited and approved Chapman University IRB. Subjects pro-

vided informed consent as per Chapman University IRB and were evaluated on ability to main-

tain balance with eyes open and with eyes closed, intact sensation of the foot, and intact propri-

oception of the ankle. Subjects were excluded if they presented with foot pain while barefoot or

required orthotics. Each trial consisted of 12 possible conditions listed in table 3.1 were picked

randomly. Students were asked to stand in place for 1 minute and undergo one of the 12 possible

conditions. All trials were randomized and subjects were not aware of the treatment they would

receive when performing the trial. None of the student subjects had a history of vestibular or bal-

ance disorders problems related to performing the study. The goal of this study is to investigate if

IMU’s can identify the different conditions and characterize those signals correctly.

The table 3.1 show all the possible combinations for each treatment. The treatments include

use of tactors, 260Hz, and 280Hz. For the tactor trials, a tactor was attached to the first metatarsal

and the frequency was changed in order to see if the balance of the student would change. Stu-

dents kept the tactors mounted so they were not aware when the tactors were active or not this

can be seen between figure 3.2c and figure 3.2b. For the trials with an uneven surface, a StepRight

system was used to lower the points of contact of the foot. Eyes condition determines if the indi-
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Figure 3.1: Logger Moun ng

vidual in blindfolded for that trial.

Condition Tactor Eyes Condition Somatosensory Condition

C1 0 Hz EO Even

C2 0 Hz EO Uneven

C3 0 Hz EC Even

C4 0 Hz EC Uneven

C5 260 Hz EO Even

C6 260 Hz EO Uneven

C7 260 Hz EC Even

C8 260 Hz EC Uneven

C9 280 Hz EO Even

C10 280 Hz EO Uneven

C11 280 Hz EC Even

C12 280 Hz EC Uneven

Table 3.1: Different condi ons of postural standing
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(a) Steprights (b)With Stepright and tactor moun ng
(c)Without Stepright and tactor
moun ng

Figure 3.2: Experimental Setup

3.2.1 Converting Raw Acceleration data to Center of Pressure

the standing balance of an IMU uses a method developed by Mayagoitia et al. (2002) Where the

vertical gravity vector is used to work out the orientation of the sensor. The IMU is placed at T2

each individual. The relative change in the acceleration due to the rotation of the device in com-

parison to static gravity is used to project a point down on the ground. ax, ay, and az are axes

provided from the accelerometer. The magnitude of the resultant is given as R (mm/s)2, and the

directional angles are described from the resultant from the equation 3.1.

The accelerometer may slightly be tilted due to the curvature and posture of the standing in-

dividual. Depending on the placement, the sensor can be close or farther from the ideal vertical

axis. The off-axis tilt of the sensor has to be corrected to line up with a horizontal coordinate sys-

tem. This is calculated by using the average tilt of the sensor and applying a fixed angle transfor-

mation (Mayagoitia et al., 2002, Moe-Nilssen, 1998b,a).

The values generated by the IMU are not comparable to a forceplate since the methods col-

lected are vastly different. This makes a couple assumptions such as the height of the individual

and ignores acceleration affects that will exaggerate the tilt. The tilt of the sensor on T2 will also
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stretch the projected surface.

R =
√

x2 + y2 + z2 (3.1)

cos(α) =
ax
R

cos(β) =
ay
R

cos(γ) =
az
R

(3.2)

The relative projected location based off the sensors are then described by the equations from

3.3. dz is the relative height of the sensor off the ground. The relative height is unknown so a

fixed estimate based off of the average height of an adult human is used in this case. This is a

relative metric and is thus not directly comparable to a pressure plate. dx is the projected point

on the ground relative to the Anterior/Posterior and dz is projected point on the medial/lateral.

This follows the assumption that the swept angle change by the accelerometer is small and the

distance from the accelerometer and the ground is constant.

D = − dz
cos(γ)

dx = D ∗ cos(β) dz = D ∗ cos(α) (3.3)

3.2.2 Driver Board Assembly

A small driver board was assembled for each tactors, and produced a signal at a fixed square

wave frequency from 0v-4.7v. The C2 tactor is an open voice coil type transducer (Yao & Hay-

ward, 2010). The contactor can be placed against the skin for a more localized tactile sensation.

For this use case, the backside of the tactor was placed against the subjects foot where the vi-

bration reverberates through the metal casting. The vibrations are adjusted to a point where the

subject was unaware if they were given the treatment or not. One key feature of applying the sig-

nal at a sub-threshold means the subjects were not aware they were being given the treatment or

not. Testing these noises at sub-threshold rules out confounding factors where the subject gives

more attention to the localized tactile sensation (Severini & Delahunt, 2018). SR was tested with

a control condition where no signal is provide, 260Hz and 280Hz.
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3.2.3 Calculation Parameters

Elliptical Area

The method that was used to find the elliptical area within a fixed confidence interval as de-

scribed by (Schubert & Kirchner, 2014). The area AE of an ellipse is calculated from the major

and minor axes of the ellipse (Schubert & Kirchner, 2014). This can be seen from equation 3.4.

The goal is to calculate the area of the ellipse that best represents the sampled data within a given

confidence interval.

AE = πab (3.4)

PCA is applied to reduce the complexity of the data down to its principle components. The

process of finding the correct values for the major axes involves finding Eigenvalues λ1 and λ2

from the sample covariance matrix. This can be described as |A− λI| where I is the identity.

The Eigenvalues can be found from the equation 3.5.

λ1 =
1

2

[
s2x + s2y +

√
(s2x − s2y)

2 + 42xy

]
λ2 =

1

2

[
s2x + s2y −

√
(s2x − s2y)

2 + 42xy

]
(3.5)

Final major and minor axis values are described by 3.6. This is a bi-variate area that covers

100(1− α)% probability of future observations. Each axe is described by Hotelling T-squared

distribution where a large value of n approaches the chi-squared distribution as described by

3.6 (Schubert & Kirchner, 2014). This region forms an elliptical mound where the counters of the

mound describe different confidence intervals. We used an α value of .95, .85, and .99 of cover-

age when evaluating the performance of the sensor in the student collected data.

ap =
√

χ2
2λ1 bp =

√
χ2
1λ2 (3.6)
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Circular Area

The circular area 3.7 is a circular area that is based on the average distance from the mean to ev-

ery sample point in the sample set. The area of coverage uses the area of a circle(πr2) to get the

coverage of sway.

ca = πr2 (3.7)

Path Length

The path length is calculated by summing up the individual segments from the projected path.

Postural velocity is calculated by dividing the total length of the path by the total time and aver-

age velocity is calculated by diving the length of travel by a fixed cutoff time. Postual velocity

isn’t too useful since the samples were all collected with the same amount of time. The average

velocity is just a scalar amount based off the total distance.

Plength =
N∑
k=2

√
(xk − xk−1)2 + (yk − yk−1)2 Pv = Plength/T (3.8)

Power Frequency

Mean power frequency (MNF) is an average frequency, calculated as the sum of products of both

the power and frequency over the total power spectrum (Oskoei & Hu, 2008, Phinyomark et al.,

2013). The definition of the function is described by the equation 3.9. fj is the frequency value

of the spectrum for the given bin j and Pj in the power spectrum.

MNF =

∑M
j=1 fjPj∑M
j=1 Pj

(3.9)

Max power frequency describes the dominant frequency in the signal. The dominant frequency

is the index j index from the max power in the power spectrum when mapped against frequency.
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This is applied for AP, ML, and the scalar value of the AP and ML values. The power and fre-

quency spectrum is calculated using Scipy welches function with a segment length of 1205.

Root Mean Squared

xrms =

√√√√ 1

N

N∑
j=1

x2
j (3.10)

RMS or quadratic means is the square root of the mean value of x2
j .This is applied for AP, ML,

and the scalar value of the AP and ML values. RMS is used to calculated the dispersion of data

relative to the zero (Moe-Nilssen, 1998b). The average is influenced by negative values in the set

and lower the effective scale of numbers. RMS can describe the relative scale of the set regard-

less if the value is positive or negative. This is good in characterizing the relative scale of motion

when describing COP.

Data was collected from both the Xsens and mini-logger. The IMU data was collected at a rate

of 500hz from the mini-logger and 100Hz from the Xsens sensor. The mini-logger was mounted

on top of the Xsens so both sets of data can be comparable. The data is first filtered with a 3rd or-

der low-pass Butterworth filter at 8Hz cutoff frequency. The action of Pressing the button on the

mini logger produces a large spike on the acceleration so 1 second of the data is shaved off the

beginning of each set. For compatibility, the data was re sampled to 100Hz for the mini-logger.

The filtering for both sensors can be seen for Xsens for figure 3.3a and the mini logger for figure

3.3b. The mini logger has a lot more high-frequency noise when compared to the Xsens sensors

but this could be addressed by enabling the low pass filter that comes with the ICM-20948. The

final data from the mini-logger was resampled with fourier method so the final data matches up

with the xsens sensor.

21



(a) Filtered Xesns Data

(b) Filtered Mini Logger Data

Figure 3.3: Filtered IMU Data

3.2.4 Parameters

The engineered parameters included; 95_EllipticalArea, 99_EllipticalArea, RMS_COP, RMS_COP_ML,

RMS_COP_AP, SwayVelocity, CircularArea, DominantFreq_COP_R, DominantFreq_COP_ML,

DominantFreq_COP_AP, MeanFreq_COP_R, MeanFreq_COP_AP, and MeanFreq_COP_ML.

MANOVA analysis was run on the data using JMP pro software with a significance level with

a p < 0.05 for all analyses. Interaction affects related to the instrument are of particular interest

because in these cases the performance of the sensor can influence the outcome of the results.

3.3 Result

RMS_COP is significant between mini_logger and Xsens and shows that the variance for the

mini_logger is much higher then xsens. We found that the mean frequency for both AP and ML

was much lower for mini_logger.

An interaction between SwayVelocity was significant with a difference (p < 0.0001) when
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looking at sway velocity relative to eye condition. Specifically, there was the most significant

difference between EC UES (x̄ = 0.0218) and EC ES (x̄ = 0.008).

SwayPath length was also a factory with a significant difference (p<0.001) when looking a

sway path length relative to eye condition. Specifically, there was a significant difference be-

tween EC UES (x̄ = 0.8745) and EC ES (x̄ = 0.32022).

we found RMS of signals when using StepRight (reduced proprioceptive conditions) at 0Hz

(x̄ = 0.035) were significantly higher (p=0.0155) when compared to the condition when using

StepRights at 200Hz (x̄ = 0.026). However, no differences were observed at 260Hz.

Figure 3.4: Comparison of mini logger and xsens for a given trial.
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3.4 Discussion

To identify if wearable sensors are sensitive to varying proprioceptive, tactile inputs and visual

inputs. A combination of 12 postural conditions were tested among 10 healthy subjects as shown

in Table 3.1. This study investigates the effect of various frequencies of stochastic resonance on

the postural sway of healthy young adults during quiet stance under conditions challenging their

three sensory systems.

Relying on just the acceleromter for the orientation of the sensor is not accurate in some cases.

The starting orientation of the IMU can heavily skew the data and correcting the orientation

with the average tilt is only a rough approximation. This method would be a lot better if this ac-

counted for a change in rotation from the gyroscope to correct for the change in tilt.

A small trial with subjects can verify the validity of the sensor along with identifying problems

with the setup and inform future works that builds on the existing setup. A synthetic step is nec-

essary to work out the validity of the setup and verify feasibility of the setup. Generally the built

part performs worse then the industrial standard but the sensor just has to perform well enough to

be able to identify the root cause at a significantly reduced price point.

3.5 Conclusion

We found that postural sway, as represented by RMS COP, increased across all conditions when

subjects were instructed to stand on StepRights (a condition with decreased proprioceptive in-

puts), compromising somatosensory information from the ground. However, our results revealed

that stochastic resonance during these somatosensory-compromised conditions improved postu-

ral sway compared to control groups without vibratory input. These results are in agreement with

previous research examining the effects of stochastic resonance on postural sway (Bagherzadeh Cham

et al., 2016, Cloutier et al., 2009, Bagherzadeh Cham et al., 2016, Postema et al., 2009, Costa

et al., 2007, Wei et al., 2012). We found significant improvements in COP measurements at vi-

bration frequency of 220Hz. Whereas no difference was observed between control trials and tri-
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Mini Logger

Eyes Condition

Eyes Closed Eyes Open

Somatosensory Condition Somatosensory Condition

Control StepRight Control StepRight

Tactor Tactor Tactor Tactor

0Hz 260Hz 280Hz 0Hz 260Hz 280Hz 0Hz 260Hz 280Hz 0Hz 260Hz 280Hz

95_EllipticalArea Mean 1.056 1.042 2.167 17.21 13.27 75.54 1.091 1.407 23.32 2.608 2.988 15.00

mm2 Std Dev 0.520 0.582 2.205 17.78 20.98 214.7 0.583 0.889 65.11 2.654 2.623 39.24

99_EllipticalArea Mean 1.623 1.602 3.331 26.45 20.40 116.1 1.677 2.162 35.84 4.009 4.594 23.05

mm2 Std Dev 0.799 0.895 3.390 27.34 32.26 330.0 0.897 1.367 100.1 4.079 4.032 60.33

RMS_COP Mean 0.030 0.025 0.032 0.038 0.028 0.029 0.027 0.027 0.032 0.038 0.033 0.025

mm Std Dev 0.029 0.021 0.024 0.039 0.022 0.017 0.017 0.022 0.023 0.040 0.031 0.015

RMS_COP_ML Mean 0.011 0.008 0.010 0.010 0.013 0.011 0.007 0.009 0.012 0.014 0.012 0.010

mm Std Dev 0.005 0.004 0.007 0.009 0.011 0.006 0.004 0.006 0.008 0.014 0.006 0.007

RMS_COP_AP Mean 0.026 0.022 0.030 0.035 0.024 0.025 0.026 0.025 0.028 0.032 0.029 0.021

mm Std Dev 0.030 0.022 0.024 0.039 0.021 0.020 0.018 0.022 0.024 0.040 0.033 0.017

Sway_Velocity Mean 0.003 0.003 0.004 0.011 0.009 0.008 0.003 0.003 0.006 0.004 0.004 0.005

mm/s Std Dev 0.002 0.002 0.002 0.008 0.007 0.008 0.002 0.002 0.008 0.002 0.002 0.004

Sway_Path_Length Mean 0.122 0.130 0.148 0.452 0.365 0.321 0.130 0.137 0.227 0.180 0.180 0.205

mm Std Dev 0.520 0.582 2.205 17.78 20.98 214.7 0.583 0.889 65.11 2.654 2.623 39.24

Circular_Area Mean 0.122 0.130 0.148 0.452 0.365 0.321 0.130 0.137 0.227 0.180 0.180 0.205

mm2 Std Dev 0.061 0.061 0.079 0.303 0.293 0.311 0.064 0.067 0.301 0.090 0.076 0.167

DominantFreq_COP_R Mean 0.175 0.102 0.194 0.166 0.102 0.111 0.157 0.083 0.102 0.120 0.104 0.166

Hz Std Dev 0.277 0.037 0.272 0.220 0.037 0.042 0.221 0.000 0.037 0.060 0.059 0.190

DominantFreq_COP_AP Mean 0.083 0.092 0.102 0.092 0.231 0.111 0.166 0.083 0.083 0.111 0.083 0.102

Hz Std Dev 0.000 0.028 0.037 0.028 0.352 0.042 0.220 0.000 0.000 0.059 0.000 0.037

DominantFreq_COP_ML Mean 0.212 0.138 0.286 0.166 0.203 0.111 0.157 0.194 0.277 0.314 0.114 0.166

Hz Std Dev 0.266 0.072 0.322 0.220 0.269 0.042 0.192 0.212 0.345 0.387 0.043 0.190

MeanFreq_COP_R Mean 0.450 0.519 0.377 0.404 0.427 0.404 0.406 0.436 0.364 0.429 0.434 0.396

Hz Std Dev 0.223 0.299 0.218 0.211 0.186 0.218 0.237 0.155 0.138 0.202 0.195 0.147

MeanFreq_COP_AP Mean 0.309 0.391 0.315 0.341 0.361 0.307 0.411 0.383 0.332 0.362 0.323 0.330

Hz Std Dev 0.122 0.243 0.131 0.128 0.179 0.181 0.243 0.156 0.129 0.158 0.143 0.099

MeanFreq_COP_ML Mean 0.690 0.637 0.669 0.646 0.557 0.488 0.585 0.651 0.571 0.593 0.564 0.505

Hz Std Dev 0.243 0.205 0.272 0.217 0.184 0.196 0.195 0.208 0.212 0.169 0.136 0.156

Table 3.2: Mini Logger Results from MANOVA
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xsens

Eyes Condition

Eyes Closed Eyes Open

Somatosensory Condition Somatosensory Condition

Control StepRight Control StepRight

Tactor Tactor Tactor Tactor

0Hz 260Hz 280Hz 0Hz 260Hz 280Hz 0Hz 260Hz 280Hz 0Hz 260Hz 280Hz

95_EllipticalArea Mean 1.981 2.102 2.447 9.697 8.920 5.616 2.775 1.435 1.366 4.911 3.203 2.578

mm2 Std Dev 1.184 1.646 2.674 6.285 6.712 3.103 2.563 0.713 0.655 6.136 1.684 1.23

99_EllipticalArea Mean 3.046 3.231 3.761 14.91 13.71 8.634 4.265 2.206 2.101 7.549 4.923 3.963

mm2 Std Dev 1.821 2.530 4.110 9.662 10.32 4.771 3.940 1.095 1.007 9.432 2.589 1.891

RMS_COP (mm) Mean 0.029 0.023 0.027 0.031 0.022 0.026 0.023 0.026 0.026 0.035 0.030 0.024

Std Dev 0.028 0.019 0.019 0.034 0.018 0.016 0.015 0.022 0.020 0.037 0.031 0.016

RMS_COP_ML Mean 0.007 0.007 0.009 0.010 0.008 0.009 0.006 0.007 0.010 0.010 0.009 0.008

mm Std Dev 0.004 0.004 0.005 0.006 0.005 0.006 0.004 0.004 0.005 0.009 0.005 0.005

RMS_COP_AP Mean 0.027 0.022 0.024 0.028 0.019 0.022 0.021 0.023 0.022 0.032 0.027 0.021

mm Std Dev 0.029 0.019 0.020 0.035 0.020 0.020 0.016 0.024 0.022 0.036 0.032 0.018

Sway_Velocity Mean 0.013 0.013 0.012 0.042 0.035 0.026 0.014 0.012 0.012 0.019 0.018 0.017

mm/s Std Dev 0.007 0.008 0.007 0.029 0.020 0.012 0.008 0.006 0.006 0.010 0.008 0.009

Sway_Path_Length Mean 0.505 0.523 0.494 1.666 1.383 1.059 0.546 0.474 0.487 0.769 0.713 0.698

mm2 Std Dev 0.279 0.326 0.273 1.153 0.786 0.481 0.330 0.248 0.229 0.395 0.327 0.350

Circular_Area Mean 0.505 0.523 0.494 1.666 1.383 1.059 0.546 0.474 0.487 0.769 0.713 0.698

mm2 Std Dev 0.279 0.326 0.273 1.153 0.786 0.481 0.330 0.248 0.229 0.395 0.327 0.350

DominantFreq_COP_R Mean 0.185 0.083 0.175 0.701 0.175 0.203 0.157 0.157 0.129 0.120 0.102 0.129

Hz Std Dev 0.123 0.000 0.128 1.493 0.140 0.195 0.077 0.113 0.094 0.084 0.037 0.111

DominantFreq_COP_AP Mean 0.175 0.111 0.194 0.720 0.249 0.175 0.148 0.148 0.129 0.111 0.120 0.129

Hz Std Dev 0.128 0.083 0.125 1.487 0.176 0.128 0.081 0.091 0.094 0.083 0.060 0.111

DominantFreq_COP_ML Mean 0.655 0.544 0.138 0.314 0.748 0.175 0.120 0.102 0.129 0.286 0.092 0.157

Hz Std Dev 1.445 1.353 0.117 0.284 1.549 0.201 0.084 0.037 0.138 0.405 0.028 0.113

MeanFreq_COP_R Mean 1.090 1.074 1.092 1.753 1.779 1.633 1.145 1.170 1.357 1.179 1.213 1.425

Hz Std Dev 0.634 0.610 0.728 1.189 1.007 0.924 0.980 0.586 0.700 0.641 0.697 0.687

MeanFreq_COP_AP Mean 0.754 0.913 0.880 1.353 1.356 1.210 0.955 0.822 0.838 0.909 0.878 1.077

Hz Std Dev 0.398 0.632 0.784 1.096 0.891 0.851 0.974 0.631 0.471 0.533 0.495 0.612

MeanFreq_COP_ML Mean 2.408 2.272 1.950 2.395 2.090 2.185 2.132 2.223 2.380 1.997 1.887 2.024

Hz Std Dev 1.383 1.204 1.179 0.965 0.696 0.717 0.989 1.215 1.140 0.662 0.672 0.524

Table 3.3: Xsens Results from MANOVA
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als with vibration frequency of 260Hz. These results suggest that there may be an ideal frequency

at which stochastic resonance can be applied in order to promote good standing balance.

We also found higher postural sway velocity and path length for young healthy adults when

standing on the StepRight with eyes closed. Whereas the use of the StepRight alone did not yield

any significant changes in the postural control of healthy adults, the additional task of closing

one’s eyes was significantly challenging their balance during quiet stance, as demonstrated by

marked increase in postural sway velocity and path length. As discussed, postural control and

balance depends on the integration of sensory inputs from our visual, vestibular, and somatosen-

sory systems (Shumway-Cook & Woollacott, 2006). In the case of decreased access to somatosen-

sory inputs provided by the StepRight, and the removal of visual input from eyes closed (EC)

condition with limited sensory systems and modified weighting (or dependence) on vestibular

and somatosensory inputs to maintain postural control. These changes in postural sway were sen-

sitively identified by IMU. Wearable sensors are widely being used for investigating fall risk as-

sessment and fall predictions (Liu et al., 2012, Ekvall Hansson et al., 2019).
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CHAPTER 4

Validation of Sway using Motion Capture Camera System and Inertial Sensors

4.1 Introduction

A synthetic benchmarks was used to identify the performance of the IMU for the use in quite

standing. The sensor was mounted to the grail motion system where the results of the Xsense (Bel-

lusci et al., 2018) is compared. Recurrence quantification analysis (RQA) was used to verify the

similarity between the two signals. RQA is a method of identifying important features in a sig-

nal through phase space reconstruction. It is possible to identify features in a one dimensional

time series by using time delayed copies as a stand-in dimension for unobserved values (Marwan

et al., 2007).

RQA is a powerful method used in analysing recurring relationships in complex dynamic sys-

tems (Schultz et al., 2015). deterministic systems, regardless of the time scale can be predicted

knowing the initial state. Even for chaotic systems with widely different outcomes, practically

these can be evaluated for the short-term.

28



(a) RQA plots of iner al sensor sway signals
(b) RQA plots of marker sway signals

Figure 4.1: Recurrence Plot from synthe c mo on

4.1.1 RQA Analysis

RQA was used to validate the similarity between the two signals. This can be achieved through

analyzing the data into a higher dimension. This requires both finding the dimension to embed

the signal in and amount of time to delay the embedding. Two methods are used to find these two

methods; Average Mutual Information (AMI) and False Nearest Neighbor(FNN) function (Wal-

lot & Mønster, 2018, Marwan et al., 2007). RQA is used to quantify the duration and number of

recurrences in the time series. A matrix with both frequency and amplitude between both Xsens

and Vicon appear similar as seen in figure 4.1 and this can be verified with determinism where

the profiles of both signals we’re fairly similar as seen in figure 4.7.

4.1.2 Average Mutual Information

Average Mutual Information (AMI) is used to find optimal delay for embedding. Independence

is quantified by I(x(t), x(t + τ)) where τ is a constant that shifts the signal by some factor from

original x(t) and x(t + τ) (Wallot & Mønster, 2018). This problem can be evaluated by a nonlin-

ear generalization of the auto-correlation function and is given by equation 4.1 (Wallot & Møn-
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ster, 2018).

I(x(t), x(t+ τ)) =
∑
i,j

(pij(τ)log(
pij(τ)

pipj
)) (4.1)

4.1.3 False Nearest Neighbors

False Nearest Neighbors (FNN) is used to find the optimal embedding dimension of the sig-

nal (Wallot & Mønster, 2018). This is reconstructed by embedding the original one-dimensional

time series by taking time delayed signals (Wallot & Mønster, 2018). This is described by the

original time series y(t) and follows equation 4.2.

y(t) = (x(t), x(t+ τ), ..., x(t+ (D − 1)τ)) (4.2)

t and τ are integers that are indexed on the sample data (Wallot & Mønster, 2018). The embed-

ding dimension D can be estimated by examining the distance between points in phase space. If

the embedding distance between the two neighbors changes appreciably then the neighbors are

considered false neighbors and are true neighbors otherwise (Wallot & Mønster, 2018). This is

continued until the number of FNN drops to 0 (Wallot & Mønster, 2018).

4.1.4 Determinism

DET =

∑N
l=lmin

lP (l)∑N
l=1 lP (l)

(4.3)

P(l) is a measurement of diagonal lines segments l is the length of the line segment. P(l) is the

number of occurrences of the given line segment. Processes with weak correlation tend to have

shorter line segments (Marwan et al., 2007). Where processes with deterministic processes will

tend to have long diagonal line segments with fewer isolated points (Marwan et al., 2007). The

proportion of lmin points to all p(l) recurrence points is a measure of the predictability of the sys-

tem (Marwan et al., 2007).
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4.1.5 Recurrence Rate

RRτ =
N−τ∑
i=1

(Ri,i+τ ) (4.4)

The distance between diagonal lines in RP space is refereed to as the recurrence rate (RR).

Pτ (l) is defined as the number of points sampled on the diagonal line segment (Marwan et al.,

2007). The main diagonal for the RP plot is fixed across all the trials and is excluded when ex-

amining the RR. RRτ is described by 4.4 where τ = 0 is the main diagonal and τ > 0 is above

the main diagonal and τ < 0 is the below the diagonal (Marwan et al., 2007). This measure

directly relates to the likely hood that an event will occur again given some delay τ . This can

be generalized as a higher-order auto-correlation function as it is decadent on τ (Marwan et al.,

2007).

4.2 Methods and Materials

4.2.1 Grail Motion System

The grail motion system is a treadmill system used for patients with neurological problems, or-

thopedic patients, and elderly. The repetitive motion of the treadmill is ideal setup of verifying

the xsens IMU for standing motion. The Xsens and Vicon Tracking marker were both mounted

onto the handrail of the treadmill as seen in figure 4.3. The Tracking marker was mounted close

to the Xsens to ensure that the signals were comparable. The treadmill has 10 degrees of forward

and backward motion and 5cm of horizontal transnational motion. The generator for the rota-

tional axis is percent_magnitude ∗ 10 ∗ sin(percent_frequency ∗ TIME) and the transitional

axis is percent_magnitude ∗ .05 ∗ sin(percent_frequency ∗ TIME). percent_magnitude

is a percentage that modifies the maximum range for both transnational and rotational axes. per-

centages for both percent_magnitude and percent_frequency: 100%, 80%, 40%, 20%. This

translates to 10±, 8±, 4± and 2± degrees of rotational motion and 5±, 4±, 2±, 1± centimeters

of horizontal motion. It takes 6 seconds for a whole rotation with the default time and the ranges
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Figure 4.2: Sway Analysis Setup

Figure 4.3: Treadmill Sensor Moun ng
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(a) filtered marker data (b) filtered accelera on data

Figure 4.4: Filtered x and y data from Xsens and Vicon from synthe c mo on

translates to 6, 7.5, 15, and 30 seconds. The range of percentages allows the sensors to be vali-

dated against both the frequency and magnitude of motion.

The Xsens is mounted onto the handrail of the treadmill with a vicon tracking marking placed

on top of the xsens senosor. The close proximity of

4.3 Results

4.3.1 Signal Evaluation

The filtered paths can be seen 4.4. The raw data is filtered with a 4th order low pass butterworth

filter with a cutoff at 8. the tracking marker used on the grail is a relatively fixed path so fre-

quency does not play a strong factor. The relative path does not change with the frequency of

the system where xsens is affected by this factor. The tracking marker is relative to a fixed frame

of reference where the xsens is a local frame of reference local to the mounting of the sensor on

the treadmill. Gravity plays a much larger factor that determines the rotational axis of the tread-

mill. The amplitude for the xsens plays a much larger factor in affecting both the rotational and

transitional motion. the signal to noise ratio improves with a higher amplitude.
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Figure 4.5: RQA subset from figure 4.1

4.3.2 Recurrent plots

The diagonal structure in the recurrence plots (RP) tend to suggest that the time series function

has period to quasi-periodic recurrent structures (Marwan et al., 2007). This can be seen the with

4.5 where the distances between diagonal lines segments are fairly regular (Marwan et al., 2007).

This regularity in the structure suggest that the signal source repeated at a fixed interval (Mar-

wan et al., 2007). more quasi-period systems will have variations in the distance between diag-

onal segments (Marwan et al., 2007). The source for the signal was a fixed sin wave so this is

expected when reviewing the RP data.

4.3.3 Recurrence Rate

The horizontal axis captures the sampled data and the vertical axis captures the rate of recur-

rence. A fixed signal was used in each trial so there is an expected period where the signal should

repeat. The data from 4.6 was captured at a rate of 20% which translates to 15 second intervals

from the first section. Xsens captures a lot of other residual noise where the peeks in the RP are
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Figure 4.6: Recurrence rate

not as clean.

4.3.4 Determinism

Figure 4.7: Determinism rela on to frequency using a minimum diagonal length of 5 units. Vicon and Xsens shows similar
profiles when combina on of amplitude and frequency are combined, but xsens suffers more from signal noise.
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A value of 6 was chosen for lmin and the results can be seen with 4.7. xsens tends to have shorter

segments because the signals tends to have more stochastic noise where the diagonal segments

tend not to be as long. Determinism tends not to change a lot between ranges. Acceleration data

is more sensitive to noise and this can be seen where determinism is below .8 where a tracking

marker is closer to .9. This means that a large proportion of the segments are grater then lmin.
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Amplitude Frequency Variable Vicon Y Xsens X
20 20 Determinism 0.885527 0.725615

Recurrence Rate 0.035679 0.026902
40 Determinism 0.859467 0.666460

Recurrence Rate 0.016114 0.016657
80 Determinism 0.983201 0.735870

Recurrence Rate 0.038141 0.032424
100 Determinism 0.985716 0.678274

Recurrence Rate 0.033623 0.029954
40 20 Determinism 0.913222 0.730500

Recurrence Rate 0.018916 0.018309
40 Determinism 0.988114 0.813703

Recurrence Rate 0.021462 0.018803
80 Determinism 0.973281 0.784074

Recurrence Rate 0.022922 0.015991
100 Determinism 0.983564 0.790227

Recurrence Rate 0.015653 0.014428
80 20 Determinism 0.988763 0.793039

Recurrence Rate 0.011061 0.009636
40 Determinism 0.981553 0.823598

Recurrence Rate 0.013097 0.009109
80 Determinism 0.990064 0.879170

Recurrence Rate 0.008971 0.007712
100 Determinism 0.986077 0.787656

Recurrence Rate 0.010335 0.007327
100 20 Determinism 0.991442 0.773800

Recurrence Rate 0.011006 0.007722
40 Determinism 0.979951 0.874375

Recurrence Rate 0.010308 0.007359
80 Determinism 0.978718 0.721071

Recurrence Rate 0.008687 0.005937
100 Determinism 0.512095 0.675977

Recurrence Rate 0.000870 0.000399

Table 4.1: result for determinism and recurrence rate
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4.4 Discussion

RQA was utilized to visualize the behavior of trajectories in n-dimensional phase space, which

could represent dynamics of the moving platform. The RQA provides measures based on diag-

onal structures (Webber & Zbilut, 1994). A signal is deterministic if there is no uncertainty with

respect to its value at any instant of time. Recurrence plots can be generated which show for each

moment in time, the times at which a phase space trajectory visits roughly the same area in the

phase space (Fig 4.5). We found that recurrence plots are sensitive to the change of signal prop-

erties in the course of time, and are affected by high frequency noise. We performed RQA of the

movement signals for 4 different frequencies and 4 different amplitude combinations of sway.

We found that recurrence rate was highly dependent on noise and was affected by the noise in

Mini-Logger, but determinism was found to be same for both the systems (Table 4.1 ). This study

validated the measured signals originated from a common source.

4.5 Conclusion

The data was collected from a system with a cyclic pattern of motion. The xsens is collected

from a local frame of reference where acceleration is heavily affected by noise and vicon is from

a global frame a referenced from a tracked point. The data was validated from both xsens and Vi-

con to verify the relationship between the motion and the method of data collection. RQA was

able to capture the cyclic nature of the signal and the clear diagonal lines in the RQA plots show

that there is a strong recurrent nature to the data. The equal spacing between lines suggest that

the signal is very predictable.
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CHAPTER 5

Conclusion

The platform that was built around the sensor has several limitations. The process of pressing a

tactile button introduce noise into the data and extracting the SD card and saving the data intro-

duce extra human error. Future work will correct some of these flaws in the protocol. The pro-

tocol and process for developing such a sensor is provided as a good starting point and should

inform future work that attempts to improve on this model. There is a lot of space for improve-

ment along with different methods that should produce a better outcome. Future work will exam-

ine other configurations such as a more compact design and wireless communcation would better

appropriate the IMU.

There are other features for the ICM-20948 that can be tweaked to improve performance char-

acteristics such as using the low band pass filter that comes with the IMU given that the the band-

pass filter on the IMU can sample from a much higher sample rate then after the fact. Generally

the performance can be improved by augmenting the data with other signals such as a pressure

sensor, compass, or Magnetometer. the IMU can be paired with AK09916(magnetometer) and

this should in theory also improve performance of the IMU. Atmega328 only has 32kb of space

and a fairly low end 8Mhz processor. the process of reading the writing the data to the SD card
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was pushing the limits of the Atmega processor and a better alternative would be needed.

Relying on just the acceleromter for the orientation of the sensor is not accurate in some cases.

The starting orientation of the IMU can heavily skew the data and correcting the orientation

with the average tilt is only a rough approximation. This method would be a lot better if this ac-

counted for change in rotation from the gyroscope to correct for the change in tilt for an improve-

ment in postural sway assessment.

A small trial with subjects can verify the validity of the sensor along with identifying problems

with the setup and inform future improvements. an iterative step is necessary to work out the va-

lidity of the setup and verify feasibility of the setup. Our works concludes that wearable sensors

developed in laboratories can be a cheap option for determination of postural sway and for the

detailed fall risk in fall prone older population.
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Appendix

Schematics & Hardware

Designator MPN Qty

U2 TLV70218DBVT 1

U4 ICM-20948 1

D3 APT1608VBC/D 1

Y1 CSTNE8M00G550000R0 1

U3 ATMEGA328-AU 1

U1 MIC5205-3.3YM5-TR 1

SW2 B3U-1000P 1

J5 DM3AT-SF-PEJM5 1

D1 APT1608SGC 1

U5 PCA9306DCUR 1
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