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Abstract- Photodetectors are sensors, which respond to the electromagnetic radiation of the spectrum. Their 

spectral response depends on many factors of the manufacturing process, e.g. the type of diode that is used 

or, in some cases, the optical elements that are added to limit the response band. In this paper, we propose 

an experimental methodology to obtain the spectral response of a photodetector by constructing the 

characteristic curve using the monochromatic response. For this purpose, we use a broadband source as 

input of the monochromator to vary the wavelength each five nm. The characteristic curves of one 

commercial color sensor were obtained (including the loss) using the output ratio of the monochromator. 

Via the numerical expression of the response curve, it is possible to model the actual response of the 

photodetectors to known or simulated spectra of electromagnetic radiation, and thus to generalize 

photometric measurements. Previously we have demonstrated the importance of obtaining such 

measurements to study light sources. Finally, this newly developed method helps studying the behavior of a 

photodetector in detail; hence, it enables the derivation of photometric measurements from known data or 

simulations. 

Index terms: Photodetector, monochromator, broadband light sources, XYZ color space, RGB sensors. 
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I. INTRODUCTION 

 

Photodetectors are sensors that convert electromagnetic energy into an electrical signal. Its 

function is to show a particular spectral region as output. They are almost always made of 

semiconductors that are responsive to photo-excitation and include optical filters to limit the 

response region among other methods of manufacture [1–3]. The visible light is a small segment 

of the electromagnetic spectrum comprised of wavelengths between 380 nm and 780 nm. 

Nowadays its research is one of the most important fields worldwide; its influence on our 

behavior has been widely demonstrated  [4–11] and the effect on multiple biological systems 

such as plants [12–14] and stem cells [15,16], or on food quality [17] is studied. The interest in 

the study of new applications [18] and the difficulty in taking measurements, which occurs in 

some cases, have sparked interest in novel models to perform experiments, and to develop light 

control applications more accurately and at a lower cost. The applications for photodetectors are 

manifold, the most common are varying photometric measurements [19–21], applications where 

infrared radiation is utilized [22–26] and where color measurement is required [27–33], 

intelligent lighting control [19,34–36], the derivation of measures such as CCT (Correlated Color 

Temperature) [37], the estimation of the CRI (Color Rendering Index) [38] and the determination 

of power measurements in more particular cases such as PAR (Photosynthetically Active 

Radiation) [39]. However, the response of low-cost photodetectors is not adjusted to the referred 

measurements and approximations or transformations are necessary, i.e. calibration models 

[27,32,33,40] that allow interpreting the output data as a reliable measure. However, this 

procedure involves extensive experimental work, which is usually done by taking one part of the 

sample space with known characteristics that allows obtaining the inverse model of the 

photodetectors. Said inverse model is difficult to generalize, due to the impossibility to determine 

the full sample space, as in the characterization of light sources [37,38], where it is not possible 

to include all possible and purchasable light sources while performing the training of the sensor. 

The same effect occurs when color charts or nonstandard light sources are used for calibrating the 

color sensors. A further problem is that the adaption of inverse models again requires 

experimental procedure. 

In this paper, a model was developed and implemented to obtain the characteristic curve of low-

cost photodetectors using a broadband light source, a monochromator and a high-resolution 
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spectrometer. Initially the light passes the monochromator and splits into two beams. One of 

them goes to the spectrometer to measure the power and the other one goes to the photodetector 

to assess the value of the output signal. This procedure is repeated varying the output wavelength 

of the monochromator in steps of 10 nm in the visible region absorption spectrum. For each 

photodetector 41 points are obtained, and then adjusted to compensate the losses occurring in the 

optical fiber. The monochromator, as well as the source response, are not completely flat; 

therefore, the beam is split and measured in the spectrometer. The adjusted data represents the 

spectral response or the characteristic curve of the sensor. The mathematically expressed 

characteristic curve allows implementing interpolation models of discrete measures from 

simulated spectra or from known reflectance functions, as in the case of color palettes. The 

presented methodology reduces the necessity of experiments and allows constructing multiple 

models from the same photodetector’s curve. The datasets of spectra from light sources and 

reflectance functions of color charts are widely distributed, which allows turning the sensors into 

measuring devices based on the simulation. As a result of the proposed methodology, the 

response curve of the TCS3141CS sensor was obtained. The measurement data of the Macbeth 

color palette was directly obtained with the sensor and the estimated values were obtained with 

the curve using said methodology (simulated). As a result of the comparison an error below 3.6% 

error was found. This manuscript is organized as follows: In section 2, the photodetectors, the 

light source and the spectrometer used for the calibration, are described. Section 3 explains the 

experimental methodology and the scheme for obtaining the characteristic curve. Section 4 

discusses the implemented model and its features. In section 5, the process of interpreting the 

measurements and the interpolation model is exhibited in detail. And finally, in section 6 

conclusions and future prospects of the here presented work are drawn. 

II. MATERIALS 

a. Broadband source EQ-99 

The EQ-99 is a Laser-Driven Light Source (LDLS) UV-VIS-NIR manufactured by 

ENERGETIQ. This broadband source is specially designed for high brightness and high stability. 

The spectral output ranges from 170 nm to 2100 nm, with a Numerical Aperture (NA) up to 0.47 

and a typical bulb life longer than 5000 h. For the model presented in this article, it is crucial that 

the light source shows a flat spectral response. Figure 1 shows the spectral response of the LDLS.  
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Figure 1. Spectral response LDLS (The image is taken from the manufacturer’s datasheet).  

 

b. Monochromator - Mini-Chrom 

Mini-Chrom is a monochromator that uses a dial to select the output wavelength. A screw bar 

mechanism accurately guides the rotation of a diffraction grating, which positions the selected 

wavelength at the output. The wavelength is read directly in nanometers (nm) by a four-digit 

counter in all models. The operating range is 200 nm to 800 nm. SMA connectors will be adapted 

at the input and output for connecting plastic optical fibers. 

c. Spectrum Analyzer - AQ6373 

The AQ6373 is a Spectrum Analyzer that provides an accurate high-speed analysis of the 

wavelength range between 350 nm and 1200 nm. This OSA is well suited for general purposes. It 

also allows USB storage, which saves data in flat format for further analysis. 

d. Color sensors - TCS3414CS 

TCS3414CS is a color sensor manufactured by Texas Advanced Optoelectronic Solutions 

(TAOS). It comprises of an 8x2 array of filtered photodiodes, four of them have red filters, four 

blue, and four green ones; the remaining four are not filtered. Each of the four sensor channels 

(Red, Green, Blue, and Clear) delivers its output in a format of 16 bits using I2C protocol 

information at 400 KHz. The gain of the analog converter and the integration time are 

programmable. The sensor has a synchronization input (SYNC), which allows the precise control 

of integrated external sources. Table 1 shows some important features of TCS3414CS. 

 

 

 

. 
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.Table 1. Characteristic TCS3414CS 

Characteristic Value Units 

Sensor Photodiode [𝑁𝐴] 

Clock frequency 0 –  400 [𝐾𝐻𝑧] 

A/D Resolution 16 [𝑏𝑖𝑡𝑠] 

Operating voltage 2.7 − 3.6 [𝑉] 

Supply Current (𝑉𝐷𝐷 = 3.6) 8.7-11 [𝑚𝐴] 

Operating temperature −40 − 85 [°𝐶] 

Communication 𝐼2𝐶 [𝑁𝐴] 

Chanels R, G, B, clear [𝑁𝐴] 

 

e. Experiment 

In Figure 2 the explanatory diagram of the proposed experiment is presented. Below its parts are 

described:  

1. The system input is a white light source EQ-99 (polychromatic) with UV-VIS-NIR 

emission. 

2. The white light enters a mechanical UV-VIS-NIR monochromator (Mini-Chrom) that 

selects the desired wavelength. Adjusting said wavelength is carried out manually with a 

mechanical element at intervals of 10 nm in the visible spectrum (380-780 nm). 

3. The output of the monochromator must be demultiplexed into two identical outputs. One 

of them is led to the spectrometer, as a reference value, and the second one to the 

photodetector to be evaluated. 

4. The values obtained in the previous phase will allow to know, first, the gain of the 

photodetector at a certain wavelength and, second, the total VIS-NIR scan (point to point) 

to reconstruct the spectral response curve of the photodetector. 

 

 

Figure 2. Experiment of calibration 
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f. CIE standard observer matching functions 

Values in the color space 𝑋, 𝑌, 𝑍 of a surface can be obtained using the model shown in equation 

1. Where 𝐸(𝜆) represents the source, 𝑃(𝜆) the reflectance curve and 𝑥(𝜆), 𝑦(𝜆) and 𝑧(𝜆) the 

curve of the observer. 

𝑋 = 𝑘 ∑ 𝐸(𝜆) ∙ 𝑥(𝜆) ∙ 𝑃(𝜆)𝑑𝜆

780

𝜆=380

 

 

(1) 𝑌 = 𝑘 ∑ 𝐸(𝜆) ∙ �̃�(𝜆) ∙ 𝑃(𝜆)𝑑𝜆

780

𝜆=380

 

 

𝑍 = 𝑘 ∑ 𝐸(𝜆) ∙ �̃�(𝜆) ∙ 𝑃(𝜆)𝑑𝜆

780

𝜆=380

 

 

g. Color checker 

The color checker is a color palette with 24 samples arranged in 4 rows. The reflectance of the 

samples are known, allowing to use it as a reference standard. In the Figure 3 the distribution of 

the colors is shown. With the reflectance information of the Color Checker and given that the 

source spectrum is known, one can calculate the value of the XYZ space using Equation 1. 

 

 

Figure 3. Macbeth Chart 
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III. SOLUTION 

a. Spectral response of the sensor 

In principle and using the model described in Figure 2 in particular, the spectra are obtained at 

the exit of the monochromator. Measurements of spectra were taken every 10 nm in the range 

between 380 nm and 780 nm to a total value of 41 spectra and repeated four times. As shown in 

Figure 4 the spectra are narrow allowing for improved estimation of the response model to be 

generated. The peak values obtained in this step enable the estimation of the normalized response 

of the sensor (each channel) to each of the 41 points. With the normalized monochromator output 

values, the TCS3414CS sensor response was evaluated.  

 

Figure 4. Output monochromator - experimental result 

 

As mentioned, the values shown in Figure 4 (peaks) are needed to obtain the gain of each of the 

photodetectors for each one of the RGB channels. The spectral response curve obtained at the end 

of the process is presented in Figure 5. It corresponds to the one provided by the manufacturer. In 

total, there are 41 reference points per channel that can be used to perform simulations of the 

sensor response when they are stimulated with known spectra. 

 

Figure 5. Sensor Response - experimental result  
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To evaluate the data in the theoretical model, it is necessary to know the spectrum of the light 

source that will accompany the color sensor for measurement (Figure 6), i.e. 𝐸(𝜆) in (1).  

 

Figure 6. LED curve - experimental result  

 

Table 2 shows the values from the XYZ measurements using the sensor on the color checker 

(XM, YM, ZM) and using the response curve found with the proposed methodology (XE, YE, 

ZE). 

 

Table 2. XYZ space Color Checker 

Color XE XM YE YM ZE ZM 

01 Dark Skin 0,136 0,134 0,119 0,120 0,082 0,081 

02 Light Skin 0,430 0,427 0,350 0,330 0,258 0,255 

03 Blue Sky 0,138 0,134 0,231 0,230 0,302 0,290 

04 Foliage 0,111 0,098 0,173 0,160 0,093 0,081 

05 Blue Flower 0,220 0,219 0,274 0,280 0,385 0,382 

06 Bluish Green 0,219 0,219 0,509 0,491 0,424 0,429 

07 Orange 0,467 0,475 0,290 0,280 0,100 0,093 

08 Purplish Blue 0,098 0,098 0,164 0,160 0,344 0,336 

09 Moderate Red 0,377 0,390 0,164 0,170 0,141 0,151 

10 Purple 0,096 0,098 0,082 0,090 0,127 0,127 

11 Yellow Green 0,305 0,329 0,495 0,501 0,164 0,185 

 12 Orange Yellow 0,505 0,524 0,424 0,420 0,119 0,127 

13 Blue 0,051 0,049 0,094 0,098 0,246 0,243 

14 Green 0,121 0,122 0,285 0,280 0,128 0,127 

15 Red 0,300 0,293 0,098 0,100 0,072 0,070 

16 Yellow 0,603 0,622 0,628 0,611 0,163 0,174 

17 Magenta 0,372 0,378 0,177 0,200 0,269 0,278 

18 Cyan 0,097 0,098 0,260 0,260 0,364 0,359 

19 White 0,756 0,792 1,000 0,981 0,878 0,881 

20 Neutral 8 0,490 0,512 0,654 0,661 0,581 0,603 

21 Neutral 6.5 0,308 0,317 0,415 0,410 0,368 0,382 

22 Neutral 5 0,175 0,171 0,233 0,220 0,204 0,197 

23 Neutral 3.5 0,089 0,085 0,121 0,120 0,108 0,104 

24 Black 0,039 0,037 0,052 0,050 0,047 0,046 
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Finally, in Table 3, the estimation error for each channel, and each sample is presented. The 

highest error value is 0.0036 (the error is normalized) and occurs in white color, the error is low, 

considering that was used a low cost sensor. The measurement error is expected due to the 

resolution of the spectral response curve (10 nm), however the experiment demonstrates the 

effectiveness of the curve to use simulated data and to interpolate measures with the sensor. 

 

Table 3. XYZ space Color Checker - error 

Color ER-X ER-Y ER-Z 

01 Dark Skin 0,000 0,001 0,001 

02 Light Skin 0,003 0,020 0,003 

03 Blue Sky 0,004 0,001 0,012 

04 Foliage 0,013 0,013 0,012 

05 Blue Flower 0,000 0,006 0,002 

06 Bluish Green 0,000 0,019 0,004 

07 Orange 0,008 0,010 0,007 

08 Purplish Blue 0,001 0,003 0,007 

09 Moderate Red 0,014 0,006 0,009 

10 Purple 0,002 0,009 0,000 

11 Yellow Green 0,024 0,005 0,021 

12 Orange Yellow 0,020 0,003 0,009 

13 Blue 0,002 0,004 0,003 

14 Green 0,001 0,005 0,001 

15 Red 0,008 0,003 0,003 

16 Yellow 0,019 0,018 0,011 

17 Magenta 0,006 0,023 0,009 

18 Cyan 0,001 0,001 0,005 

19 White 0,036 0,019 0,002 

20 Neutral 8 0,022 0,006 0,022 

21 Neutral 6.5 0,009 0,005 0,014 

22 Neutral 5 0,004 0,012 0,007 

23 Neutral 3.5 0,004 0,000 0,004 

24 Black 0,002 0,002 0,001 

 
0,009 0,008 0,007 

 

 

IV. CONCLUSIONS 

This paper presents a methodology for determining the spectral response of photodetectors. Its 

efficacy was demonstrated by measuring the color directly on a standardized color palette and 

comparing this data with the values obtained from the simulation using the photodetector 

response curve found with the proposed methodology, with the reflectance curves, and with the 

SPD of the light source. 
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The applications arising from knowing the characteristic curve of low-cost photodetectors extend 

to all problems where it is necessary to find transformation models for output values and the 

simulated stimulation data is known, for example, deriving models for measurements of CCT or 

CRI with a color sensor using simulated spectra. 
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