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We study the scalar potential and the mass spectrum of the supersymmetric extension of a three-
family model based on the local gauge group SU(3)C ⊗ SU(3)L ⊗ U(1)X , with anomalies canceled
among the three families in a nontrivial fashion. In this model the slepton multiplets play the role
of the Higgs scalars and no Higgsinos are required, with the consequence that the sneutrino, the
selectron and six other sleptons play the role of the Goldstone bosons of the theory. By introducing
an Abelian anomaly-free discrete symmetry and aligning the vacuum in a convenient way, we get
a consistent mass spectrum for the scalars and for the spin 1/2 quarks and charged leptons, where
only the top and charm quarks and the tau lepton acquire tree level masses while the remaining
ordinary charged fermions acquire radiative hierarchical masses.

PACS numbers: 12.60.Jv, 12.60.Cn, 12.15.Ff

I. INTRODUCTION

Among the unsolved questions of the standard model
(SM), which is a theory based on the local gauge group
SU(3)c ⊗ SU(2)L ⊗U(1)Y [1], the elucidation of the na-
ture of the electroweak symmetry breaking remains one
of the most challenging issues. If the electroweak sym-
metry is spontaneously broken by Higgs scalars, the de-
termination of the value of the Higgs mass MH in the
context of the SM becomes a key ingredient. By direct
search LEP-II has set an experimental lower bound for
a neutral scalar, member of a pure SU(2)L doublet, of
114.4 GeV [2] .

Today, supersymmetry (SUSY) is considered as the
leading candidate for new physics. Even though SUSY
does not solve all open questions, it has attractive fea-
tures, the most important one being that it protects the
electroweak scale from destabilizing divergences, that is,
SUSY provides an answer as to why the scalars remain
massless down to the electroweak scale where there is
no symmetry protecting them (the “hierarchy problem”).
This has motivated the construction of the minimal su-
persymmetric standard model (MSSM) [3], the super-
symmetric extension of the SM, that is defined by the
minimal field content and minimal superpotential nec-
essary to account for the known Yukawa mass terms of
the SM. At present, however, there is no experimental
evidence that Nature is supersymmetric, and the only
experimental fact that points toward a beyond the SM
structure lies in the neutrino sector, and even there the
results are not final yet. So, a reasonable approach is
to depart from the SM as little as possible, allowing for
some room for neutrino oscillations [4].

In that direction, over the last decade several vari-
ants of the SM extension based on the local gauge group
SU(3)c ⊗ SU(3)L ⊗ U(1)X (hereafter called the 3-3-1
structure), where anomalies cancel by an interplay be-
tween the three families, have received special attention.
In some of them the three known left-handed lepton com-

ponents for each family are associated to three SU(3)L

triplets as (νl, l
−, l+)T

L, where l+L is related to the right-

handed isospin singlet of the charged lepton l−L in the SM
[5] . In other models the three SU(3)L lepton triplets
are of the form (νl, l

−, νc
l )

T
L where νc

lL is related to the
right-handed component of the neutrino field νlL [6, 7].
There are also models in the literature with SU(3)L lep-
ton triplets of the form (l−, νl, L

−)T
L , where L−

L is an
exotic charged lepton with electric charge −1 [7, 8]. In
the first model anomaly cancellation requires quarks with
exotic electric charges −4/3 and 5/3 which in turn im-
ply double charged gauge and Higgs bosons, while in the
other models the exotic particles have only ordinary elec-
tric charges.

As it is shown in Ref. [7], there are just a few dif-
ferent non-supersymmetric three-family models based on
the 3-3-1 local gauge structure which are free of chiral
anomalies and do not include particles with exotic elec-
tric charges. These models share in common not only
the same gauge boson sector, but also the same scalar
sector. In this paper we are going to construct a consis-
tent SUSY extension of a three-family model which is the
simplest one with regard to the three-family 3-3-1 models
introduced in Ref. [7].

Our main motivation lies in the 3-3-1 SUSY one-family
model presented in Ref. [9], in which the left-handed lep-
ton triplets and the Higgs scalars needed to break the
symmetry down to SU(3)c⊗U(1)Q, have the same quan-
tum numbers under the gauge group, and may play the
role of the superpartners of each other. As a result, in the
one-family model several consequences follow [9]: first,
the reduction of the number of free parameters as com-
pared to supersymmetric versions of other 3-3-1 models in
the literature [10]; second, the result that the sneutrino,
selectron and six other sleptons do not acquire masses
in the context of the model constructed playing the role
of the Goldstone bosons; third, the absence of the µ-
problem, in the sense that the µ-term is absent at the
tree level, arising only as a result of the symmetry break-
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ing, and fourth, the existence of light CP-odd scalars
which may have escaped experimental detection.

Our aim in this paper is to explore the possibility to
construct a realistic three-family 3-3-1 SUSY model as far
as the particle mass spectrum is concerned; the price we
have to pay is an alignment of the vacuum state and the
introduction of a discrete symmetry, as we will show in
due course. The paper is organized as follows: in Sec. II
we briefly review the non-supersymmetric version of the
model, in Sec. III we comment on its supersymmetric
extension and calculate the superpotential, in Sec. IV
we calculate the mass spectrum (excluding the squark
sector), and in Sec. V we present our conclusions.

II. THE NON-SUPERSYMMETRIC MODEL

The model we are going to supersymmetrize is based on
the local gauge group SU(3)c⊗SU(3)L⊗U(1)X . It has 17
gauge bosons: one gauge field Bµ associated with U(1)X ,
the 8 gluon fields Gµ associated with SU(3)c which re-
main massless after breaking the symmetry, and another
8 gauge fields associated with SU(3)L and that we write
for convenience as [7]

1

2
λαA

µ
α =

1√
2





Dµ
1 W+µ K+µ

W−µ Dµ
2 K0µ

K−µ K̄0µ Dµ
3



 ,

where Dµ
1 = Aµ

3/
√

2+Aµ
8/

√
6, Dµ

2 = −Aµ
3/

√
2+Aµ

8/
√

6,

and Dµ
3 = −2Aµ

8/
√

6. λi, i = 1, 2, ..., 8, are the eight
Gell-Mann matrices normalized as Tr(λiλj) = 2δij .

The charge operator associated with the unbroken
gauge symmetry U(1)Q is given by

Q = T3L +
T8L√

3
+XI3, (1)

where TiL = λiL/2, I3 = Dg.(1, 1, 1) is the diagonal
3 × 3 unit matrix, and the X values are related to the
U(1)X hypercharge and are fixed by anomaly cancella-
tion. Eq. (1) is a particular case of the most general
expresion for the electric charge generator in SU(3)c ⊗
SU(3)L⊗U(1)X given by: Q = aT3L/2+2bT8L/

√
3+XI3,

where a and b are free parameters, and corresponds to
the choice a = 1 (in order for the weak isospin to be con-
tained in SU(3)L) and b = 1/2 (so that the model does
not contain exotic electric charges) [7].

The sine of the electroweak mixing angle is given by
S2

W = 3g2
1/(3g

2
3 + 4g2

1) where g1 and g3 are the cou-
pling constants of U(1)X and SU(3)L respectively, and
the photon field is given by

Aµ
0 = SWAµ

3 + CW

[

TW√
3
Aµ

8 +
√

(1 − T 2
W /3)Bµ

]

, (2)

where CW and TW are the cosine and tangent of the
electroweak mixing angle, respectively.

There are two neutral currents in the model which are
defined as

Zµ
0 = CWAµ

3 − SW

[

TW√
3
Aµ

8 +
√

(1 − T 2
W /3)Bµ

]

,

Z ′µ
0 = −

√

(1 − T 2
W /3)Aµ

8 +
TW√

3
Bµ, (3)

where Zµ
0 coincides with the weak neutral current of the

SM. Using Eqs. (2) and (3) we may read the gauge boson
Y µ associated with the U(1)Y hypercharge in the SM

Y µ =
TW√

3
Aµ

8 +
√

(1 − T 2
W /3)Bµ.

The quark content for the three families is the following
[7]: QiL = (ui, di, Di)

T
L ∼ (3, 3, 0), i = 2, 3, for two fam-

ilies, where DiL are two exotic quarks of electric charge
−1/3 (the numbers inside the parentheses stand for the
[SU(3)c, SU(3)L, U(1)X ] quantum numbers in that or-
der); Q1L = (d1, u1, U)T

L ∼ (3, 3∗, 1/3), where UL is an
exotic quark of electric charge 2/3. The right-handed
quarks are: uc

aL ∼ (3∗, 1,−2/3), dc
aL ∼ (3∗, 1, 1/3),

with a = 1, 2, 3, a family index, Dc
iL ∼ (3∗, 1, 1/3), and

U c
L ∼ (3∗, 1,−2/3).
The lepton content is given by the three anti-triplets

LαL = (α−, ν0
α, N

0
α)T

L ∼ (1, 3∗,−1/3), the three sin-
glets α+

L ∼ (1, 1, 1), α = e, µ, τ , and the vectorlike
structure (vectorlike with respect to the 3-3-1 gauge
group) L4L = (N0

4 , E
+
4 , E

+
5 )T

L ∼ (1, 3∗, 2/3), and
L5L = (N0

5 , E
−
4 , E

−
5 )T

L ∼ (1, 3,−2/3); where N0
s , s =

e, µ, τ, 4, 5, are five neutral Weyl states, and E−
η , η = 4, 5

are two exotic electrons.
With the former quantum numbers it is just a mat-

ter of counting to check that the model is free of the
following chiral anomalies: [SU(3)c]

3 (SU(3)c is vector-
like); [SU(3)L]3 (seven triplets and seven anti-triplets),
[SU(3)c]

2U(1)X ; [SU(3)L]2U(1)X ; [grav]2U(1)X (the so
called gravitational anomaly [11]) and [U(1)X ]3.

For this model the minimal scalar sector, able both
to break the symmetry and to give, at the same time,
masses to the fermion fields, is given by [12]: χT

1 =

(χ−
1 , χ

0
1, χ

′0
1 ) ∼ (1, 3∗,−1/3), and χT

2 = (χ0
2, χ

+
2 , χ

′+
2 ) ∼

(1, 3∗, 2/3), with vacuum expectation values (VEV) given
by 〈χ1〉T = (0, v1, V ) and 〈χ2〉T = (v2, 0, 0), with the hi-
erarchy V ≫ v1, v2. These VEV break the symmetry

SU(3)c ⊗ SU(3)L ⊗ U(1)Y −→ SU(3)c ⊗ U(1)Q

in one single step and so, the SM can not be considered
as an effective theory of this particular 3-3-1 gauge struc-
ture.

This model, even though scketched in Refs. [7, 12]
where it was named Model E, has not been studied in
the literature as far as we know. (A related model with-
out the vector-like structure L4L ⊕L5L and with a scalar
sector of three triplets instead of two, has been partially
analyzed in Ref. [6].)

Notice that in the nonsupersymmetric model, uni-
versality for the known leptons in the three families is
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present at the tree level in the weak basis, up to mixing
with the exotic fields. Since the mass scale of the new
neutral gauge boson Z ′ and of the exotic particles is of
the order of V , this mixing will suppress tree-level flavor
changing neutral currents (FCNC) effects in the lepton
sector. For the quarks, instead, one family transform dif-
ferently from the other two and, as a result, there can be
potentially large FCNC in the hadronic sector. Since it
is not our goal to discuss this issue here, the reader is
referred to the recent study presented in Ref. [13]. Let
us, notwithstanding, point out that the present model
is associated to the one called Model B in Ref. [13], for
which the constraints imposed by flavor changing phe-
nomenology in the quark sector are not so severe as for
other 3-3-1 models.

III. THE SUPERSYMMETRIC EXTENSION

When supersymmetry is introduced in the SM, the en-
tire spectrum of particles is doubled as we must intro-
duce the superpartners of the known fields. Also, two
scalar doublets φu and φd must be used in order to can-

cel the triangle anomalies; then the superfields φ̂u and

φ̂d, related to the two scalars, may couple via a term of

the form µφ̂uφ̂d which is gauge and supersymmetric in-
variant, and thus the natural value for µ is expected to
be much larger than the electroweak and supersymmetry
breaking scales. This is the so-called µ problem.

However, in a non supersymmetric model as the one
presented in the former section, in which the Higgs fields
transform as some of the lepton fields under the symme-
try group, the SUSY extension can be constructed with
the scalar and the lepton fields acting as superpartners of
each other, ending up with a SUSY model without Hig-
gsinos [9], which is automatically free of chiral anomalies.

For three families we thus have the following chiral

superfields: Q̂a, ûa, d̂a, D̂i, Û , L̂a, êa, and L̂η, plus
gauge bosons and gauginos, where a = 1, 2, 3 is a family
index, i = 1, 2, and η = 4, 5. The identification of the
gauge bosons eigenstates in the SUSY extension follows
the non-SUSY version, as it will be shown in Sec. IVA.

A. The Superpotential

Let us now write the most general SU(3)c ⊗SU(3)L ⊗
U(1)X invariant superpotential for the model

W = hu
iaQ̂iûaL̂4 + hU

i Q̂iÛ L̂4 + hd
iabQ̂id̂aL̂b

+hD
ijaQ̂iD̂jL̂a + hd′

a Q̂1d̂aL̂5 + h′Di Q̂1D̂iL̂5

+he
abL̂aêbL̂5 +

1

2
λabL̂aL̂bL̂4 + µL̂4L̂5

+λ
(1)
abiûad̂bD̂i + λ

(2)
ai Û d̂aD̂i + λ

(3)
ijkQ̂iQ̂jQ̂k

+λ
(4)
abcûad̂bd̂c + λ

(5)
aij ûaD̂iD̂j + λ

(6)
ab Û d̂ad̂b

+λ
(7)
ij ÛD̂iD̂j , (4)

where summation over repeated indexes is understood,
and the chirality, color and isospin indexes have been
omitted.

The ûd̂D̂, Û d̂D̂, Û d̂d̂, ÛD̂D̂, ûd̂d̂, ûD̂D̂, and Q̂Q̂Q̂
terms violate baryon number and can lead to rapid pro-
ton decay. We may forbid these interactions by introduc-
ing an anomaly free discrete Z2 symmetry [14] with the
following assignments of Z2 charge q

q(Q̂a, ûa, Û , D̂i, d̂a, µ̂, L̂µ) = 1,

q(L̂e, L̂τ , ê, τ̂ , L̂4, L̂5) = 0, (5)

where we have used ê1 ≡ ê, ê2 ≡ µ̂, ê3 ≡ τ̂ , L̂1 ≡ L̂e,
L̂2 ≡ L̂µ, and L̂3 ≡ L̂τ . This is just one among several
anomaly-free discrete symmetries available. This sym-
metry protects the model from a too fast proton decay,
but the superpotential still contains operators inducing
lepton number violation, which is desirable if we want to
describe Majorana masses for the neutrinos in the model.

The Z2 symmetry also forbids some undesirable mass
terms for the spin 1/2 fermions which complicate unnec-
essarily several mass matrices. But notice the presence
of a µ term in the superpotential that, as we will show
in a moment is convenient to keep, in order to have a
consistent mass spectrum. So, contrary to the model in
Ref. [9], this model has a µ-term coming from the exis-

tence of the vectorlike structure L̂4L ⊕ L̂5L.

B. The scalar potential

The scalar potential is written as

VSP = VF + VD + Vsoft, (6)

where the first two terms come from the exact SUSY
sector, while the last one is the sector of the theory that
breaks SUSY explicitly.

We now display VF in Eq. (6), before implementing the
discrete Z2 symmetry

VF =

3
∑

a=1

∣

∣

∣

∣

∂W

∂L̃a

∣

∣

∣

∣

2

+

5
∑

η=4

∣

∣

∣

∣

∣

∂W

∂L̃η

∣

∣

∣

∣

∣

2

= (λ†λ)ab

{

(L̃†
aL̃b)|L̃4|2 − (L̃†

aL̃4)(L̃
†
4L̃b)

}

+ ẽ†aH
e
abẽb|L̃5|2 + (L̃T

a L̃5)(h
ehe†)abL̃

T
b L̃5

+
{

(λ†he)abL̃
∗
a · (L̃∗

4 × L̃5)ẽb + c.c.
}

+ |µ|2
(

|L̃4|2 + |L̃5|2
)

+
{

µ∗he
ab(L̃

†
4L̃a)ẽb + c.c.

}

+
1

4
λabλ

∗
cd

{

(L̃†
cL̃a)(L̃

†
dL̃b) − (L̃†

dL̃a)(L̃†
cL̃b)

}

+ he
abh

e∗
cd(L̃†

cL̃a)ẽbẽ
∗
d

+

{

1

2
µ∗λabL̃a · (L̃b × L̃∗

5) + c.c.

}

, (7)
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whereHe = (he†he) is an hermitian 3×3 matrix, and L̃a ·
(L̃b × L̃c) is a triple scalar product in the tridimensional
lineal representation of SU(3)L.

When the Z2 symmetry is introduced VF gets reduced
to the expression

VF =
∣

∣

∣λL̃3 × L̃4 + he
11ẽL̃5 + he

13τ̃ L̃5

∣

∣

∣

2

+
∣

∣

∣−λL̃1 × L̃4 + he
33τ̃ L̃5 + he

31ẽL̃5

∣

∣

∣

2

+
∣

∣

∣λL̃1 × L̃3 + µL̃5

∣

∣

∣

2

+ |he
22|2|L̃5|2|µ̃|2 + |he

22|2|L̃T
2 L̃5|2

+
∣

∣

∣he
11L̃

T
1 L̃5 + he

31L̃
T
3 L̃5

∣

∣

∣

2

+
∣

∣

∣
he

13L̃
T
1 L̃5 + he

33L̃
T
3 L̃5

∣

∣

∣

2

+ |µL̃4 + he
22µ̃L̃2 + (he

11ẽ+ he
13τ̃)L̃1

+(he
31ẽ+ he

33τ̃)L̃3|2, (8)

where λ = λ13 = −λ31 ≡ λeτ is the only λab parameter
which survives. This form of VF is crucial for the analysis
that follows.

For the second term in VSP we have

VD =
1

2
DαDα +

1

2
D2

=
1

4
g2
3

{

4
∑

α,β

(

|L̃†
αL̃β|2 −

1

3
|L̃α|2|L̃β |2

)

+

4
∑

α

(

2|L̃†
αL̃5|2 −

2

3
|L̃α|2|L̃5|2

)

+
2

3
|L̃5|4

}

+
1

18
g2
1

{(

3
∑

a

|L̃a|2
)2

+ 4|L̃4|4 + 4|L̃5|4

−8|L̃4|2|L̃5|2 + 4

3
∑

a

|L̃a|2|L̃5|2

−4

3
∑

a

|L̃a|2|L̃4|2
}

. (9)

The soft SUSY-breaking scalar potential is

Vsoft = m2
abRe(L̃†

aL̃b) +m2
4|L̃4|2 +m2

5|L̃5|2

+ m2
45Re(L̃T

4 L̃5) + Re(he′
abL̃

T
a L̃5ẽb)

+
ǫijk

2
Re (λ′abL̃aiL̃bjL̃4k)

+
M1

2
B̃0B̃0 +

M2

2

8
∑

a=1

ÃaÃ
a + . . . , (10)

where M1 is the soft mass parameter of the U(1)X gaug-
ino and M2 refers to the soft mass parameter of the
SU(3)L gauginos.
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FIG. 1: Radiatively induced VEV for φ0

5 and φ0

e.

C. The vacuum

In this model we do not introduce Higgs scalars as it
is done for example in the MSSM. The duty of the spon-
taneous symmetry breaking is assigned to the neutral
sleptons which are present in the chiral supermultiplets
L̂α and L̂η for α = e, µ, τ = 1, 2, 3 and η = 4, 5.

To use the most general VEV structure available,
even when properly rotated, is a hopeless task. What
we propose here is to align the vacuum in the follow-
ing way: 〈φe〉 = 〈(φ−e , φ0

e, φ
′0
e )〉 = (0, 0, 0); 〈φµ〉 =

〈(φ−µ , φ0
µ, φ

′0
µ )〉 = (0, 0, 0); 〈φτ 〉 = 〈(φ−τ , φ0

τ , φ
′0
τ )〉 =

(0, 0, V ); 〈φ4〉 = 〈(φ0
4, φ

+
4 , φ

′+
4 )〉 = (v, 0, 0) and 〈φ5〉 =

〈(φ0
5, φ

−
5 , φ

′−
5 )〉 = (0, 0, 0), where we have introduced the

notation φα ≡ L̃α for the superpartners of Lα, and
φη ≡ L̃η for the superpartners of Lη. We also will use
φ′+e , φ′+µ , φ′+τ for the scalar superpartners of the singlets

e+L , µ+
L , τ+

L , respectively. In what follows we are going
to show that for V ≫ v ∼ 174 GeV (the electroweak
breaking scale), this alignment is enough to reproduce a
consistent mass spectrum.

The former VEV structure allows us to break the sym-
metry in the way

3 − 3 − 1
V−→ SU(3)c ⊗ SU(2)L ⊗ U(1)Y

v−→ SU(3)c ⊗ U(1)Q, (11)

which in turn allows for the matching conditions g2 = g3
and

1

g′2
=

1

g2
1

+
1

3g2
3

, (12)

where g2 and g′ are the gauge coupling constants for the
gauge groups SU(2)L and U(1)Y of the SM, respectively.

A further study of the superpotential in Eq. (4) and the
scalar potential VF in Eq. (8) shows that even if 〈φ0

5〉 =
〈φ0

e〉 = 0 at the tree level, they both develop a radiatively
induced VEV different from zero, as it is shown in Fig. 1.
In particular, the induced VEV for φ0

5 allows for small
mases for some spin 1/2 particles as, for example, for the
down quark d and for the electron e and muon µ, as we
will see.
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IV. MASS SPECTRUM

Masses for the particles are generated from the VEV
of the scalar fields and from the soft terms in the scalar
potential.

For simplicity we assume that the VEV are real, which
means that spontaneous CP violation through the scalar
exchange is not considered. Now, for convenience in read-
ing we rewrite the expansion of the scalar fields acquiring
VEV as

φ
′0
τ = V +

φ
′0
τR + iφ

′0
τI√

2
,

φ0
4 = v +

φ0
4R + iφ0

4I√
2

, (13)

where the subindexes R and I refer, respectively, to the
real sector (CP-even scalars) and to the imaginary sector
(CP-odd scalars or pseudoscalars) of the sleptons.

Using Eq. (13), the minimization of the scalar potential
produces the following constraints

|λ|2 − m2
33

v2
=

g2
3

6

(

2
V 2

v2
− 1

)

+
g2
1

9

(

V 2

v2
− 2

)

+λ
′

13

〈φ0
e〉

2vV
,

|µ|2 +m2
4 = V 2|λ|2 +

(

g2
3

6
+

2g2
1

9

)

(V 2 − 2v2)

+λ
′

13

〈φ0
e〉V
2v

,

m2
45 =

〈φ0
5〉
v

{

(

V 2 − 2v2
)

(

g2
3

3
− 4g2

1

9

)

− 2|µ|2

−2m2
5

}

,

vV

2
λ

′

13 = 〈φ0
e〉
{g2

3

6
(V 2 + v2) − g2

1

9
(V 2 − 2v2)

−m2
11

}

,

m2
13 = 0, (14)

where we have included, at the first order in 〈φ0
e〉 and

〈φ0
5〉, the radiative corrections coming from the induced

VEV shown in Fig. 1. Notice that by choosing m2
33 < 0

and of the order of V 2, the parameter λ can be as small
as desired.

Our approach will be to look for consistency in the
sense that the mass spectrum must include three light
spin 1/2 neutral particles (the neutrinos) with the other
spin 1/2 neutral fields having masses larger than or
equal to half of the Z0 mass, to be in agreement with
experimental bounds. The consistency of the model
also requires eight spin zero Goldstone bosons, four
charged and four neutral ones, out of which one neutral
must be related to the real sector of the sleptons (CP-
even) and three neutrals to the imaginary sector (CP-
odd), in order to produce masses for the gauge bosons
W±, K±, K0, K̄0, Z0 and Z ′0 after the breaking of the
symmetry.

A. Spectrum in the gauge boson sector

For the SUSY version of the model the gauge bosons
are the same 17 gauge bosons for the nonsupersymmetric
version. After breaking the symmetry with 〈φτ 〉 + 〈φ4〉
and using for the covariant derivative for triplets iDµ =
i∂µ − (g3/2)λαA

µ
α − g1XB

µ, we get the following mass
terms for the charged gauge bosons: M2

W± = (g2
3/2)v2

as in the SM, M2
K± = (g2

3/2)(v2 + V 2), and M2
K0(K̄0)

=

(g2
3/2)V 2. SinceW± does not mix with K±, and g2 = g3,

we have that v ≈ 174 GeV as in the SM.
For the neutral gauge bosons we get mass terms of the

form

Mn =
g2
3

2

{

V 2

(

2g1B
µ

3g3
− 2Aµ

8√
3

)2

+v2

(

Aµ
3 +

Aµ
8√
3
− 4g1B

µ

3g3

)2
}

.

This expression is related to a 3 × 3 mass matrix with
a zero eigenvalue corresponding to the photon Aµ

0 given
by Eq. (2). Once the photon field has been identified,
we remain with a 2 × 2 mass matrix for the two neutral
gauge bosons Zµ

0 and Z
′µ
0 defined in Eq. (3).

The physical neutral gauge bosons are defined through
the mixing angle θ between Zµ

0 and Z ′µ
0

Zµ
1 = Zµ

0 cos θ + Z ′µ
0 sin θ ,

Zµ
2 = −Zµ

0 sin θ + Z ′µ
0 cos θ,

where

tan(2θ) = − v2
√

3 − 4S2
W

2V 2C4
W − v2(2S2

W − 1)
, (15)

with θ −→ 0 in the limit V −→ ∞.
By using experimental results from the CERN LEP,

SLAC Linear Collider and atomic parity violation data,
bounds on the mass scale V of the new gauge bosons and
on the mixing angle θ have been calculated in Refs. [9,
12, 15]. Generically, V ≥ 1 TeV and θ ≤ 10−3.

B. Masses for the quark sector

1. Tree-level masses

For the up quark sector the first two terms in the su-
perpotential in Eq. (4) produce, when we take 〈L̃4〉 =
(v, 0, 0), the following tree-level mass terms

Lu
Y = v(hu

21u2Lu
c
1L + hu

22u2Lu
c
2L + hu

23u2Lu
c
3L

+ hu
31u3Lu

c
1L + hu

32u3Lu
c
2L + hu

33u3Lu
c
3L

+ hU
2 u2LU

c
L + hU

3 u3LU
c
L) + h.c.,

which imply bare masses only for the top (u3) and charm
(u2) quarks. By taking v ≃ 174 GeV and hu

22 ≈ hu
23 ≈
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hu
32 ≈ hu

33 ∼ 0.5, we can obtain appropriate values for
the masses of the top and charm quarks, the first one
of the order of v and the second one proportional to
v, but suppressed by the difference of Yukawa couplings
(hu

22h
u
33 −hu

23h
u
32). So, for the up quark sector and at the

tree level, the up quark u1 and the exotic SU(2)L singlet
U remain massless, even though their right handed com-
ponents mix with the massive up type quarks. Later we
will see how they can acquire proper masses; in special,
how the singlet U may acquire a large mass and the or-
dinary u can acquire a small mass in the context of the
superpotential given by Eq. (4).

For the down quark sector the third and four terms
in the superpotential produce, when we take 〈L̃τ 〉 =
(0, 0, V ), the following tree-level mass terms

Ld
Y = V (hd

213D2Ld
c
1L + hd

223D2Ld
c
2L + hd

233D2Ld
c
3L

+ hd
313D3Ld

c
1L + hd

323D3Ld
c
2L + hd

333D3Ld
c
3L

+ hD
223D2LD

c
2L + hD

233D2LD
c
3L + hD

323D3LD
c
2L

+ hD
333D3LD

c
3L) + h.c.,

which imply bare masses of the order of V for the two
exotic down quarks and tree-level mixing of the two ex-
otic down quarks with the right-handed components of
the three ordinary down quarks. In what follows we are
going to show how the ordinary down quarks can acquire
proper mass values.

2. One loop radiative masses

Let us see how the quarks U , b (bottom) and s
(strange) can get appropriate masses via one loop ra-
diative corrections.

First, by using the Yukawa couplings in Eq. (4) and the
parameters in Vsoft in Eq. (10) we can draw the diagram
in Fig. 2 which shows how the exotic quarkU gets a radia-
tive mass from the exotic down quark D2. Actually there
is another diagram similar to the one in Fig. 2, where
D3L and Dc

3L replace D2L and Dc
2L, respectively, and

two more diagrams involving the squarks (leptoquarks)

D̃iL and D̃c
iL, for i = 2, 3. Since V ∼M1 ∼M2 = Msusy

the four diagrams are of the same order of magnitude.
Even though Fig. 2 is a one-loop diagram, we can ex-

pect it to produce a mass value for the U quark larger
than 174 GeV (the top quark mass) due to the fact that
the mass generated is controlled by the three free, but
large parameters m2

45, V and |µ|, which are all at the
TeV scale. In the appendix we show how a reasonable
choice of the values of the parameters involved produces
a large radiative mass for the exotic quark U .

In a similar way we show in Fig. 3 how the two heavi-
est ordinary down quarks b and s get one-loop radiative
masses from the top quark. Because the top quark mass
is of the order of v ∼ 174 GeV, these masses are at least
one order of magnitude smaller than the U quark mass,
with the mass for the strange quark s suppressed by dif-
ferences of Yukawa couplings.
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FIG. 2: One loop diagram contributing to the radiative gen-
eration of the exotic up quark mass.
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FIG. 3: One loop diagrams contributing to the radiative gen-
eration of the bottom b and strange s quark masses.

Again there are four diagrams for each radiative mass,
with the other three ones involving the charm quark c in
the internal line, and the squarks t̃ and c̃.

3. Higher order radiative masses

Figs. 4 and 5 show how the quarks in the first family
acquire higher order radiative masses in the context of
the superpotential in Eq. (4). As a matter of fact, Fig. 4
shows how the up quark u gets a second order radiative
mass from the b quark (which already has a radiatively
generated mass), and Fig. 5 shows how the ordinary down
quark d acquires a mass via a triple mixing. Again, as
before, the diagrams shown are not the only ones con-
tributing to these masses, for example the fifth term in
the superpotential gives a mass for the down quark of the
form hd

1d1Ld
c
1L〈φ0

5〉 via the radiatively induced VEV for
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FIG. 4: A two loop diagram contributing to the radiative
generation of the up quark mass.
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FIG. 5: A three mixing diagram contributing to the radiative
generation of the down quark mass.

φ0
5 shown in Fig. 1.

C. Masses for neutralinos

The neutralino sector is the most sensitive to the par-
ticular values of the parameters, several of which are go-
ing to be fixed in this section by the use of experimental
constraints.

For this model the neutralinos are lineal combina-
tions of the eight neutral particles in Lα and Lη (for
α = e, µ, τ and η = 4, 5), and of the five neutral
gauginos. In the basis ψ = (νe, νµ, ντ , N

0
e , N

0
µ, N

0
τ ,

N0
4 , N

0
5 , B̃

0, Ã0
3, Ã

0
8, K̃

0, ˜̄K
0
), the tree-level mass matrix

is given by

M =

(

M8 M85

MT
85 M5

)

, (16)

where

M8 =























0 0 0 0 0 λv/2 λV/2 0
0 0 0 0 0 0 0 0
0 0 0 −λv/2 0 0 0 0
0 0 −λv/2 0 0 0 0 0
0 0 0 0 0 0 0 0

λv/2 0 0 0 0 0 0 0
λV/2 0 0 0 0 0 0 µ/2

0 0 0 0 0 0 µ/2 0























,

(17)

M85 =























0 0 0 0 0
0 0 0 0 0
0 0 0 −g3V 0
0 0 0 0 0
0 0 0 0 0

−
√

2g1V/3 0 2g3V/
√

6 0 0

2
√

2g1v/3 −g3v/
√

2 −g3v/
√

6 0 0
0 0 0 0 0























,

(18)
and from the soft terms in the scalar potential we read
M5 = Diag.(M1,M2,M2, A2×2), where A2×2 is a 2 × 2
matrix with entries zero in the main diagonal and M2 in
the secondary diagonal.

This 13× 13 mass matrix is controlled by the parame-
ter λ in the sense that this parameter must be very small
in order to have only three light states, with the rest
of them having masses larger than half of the measured
mass of the Z0 neutral gauge boson. As a matter of fact,
this mass matrix has two eigenvalues equal to zero, asso-
ciated with a massless Dirac neutrino. Two more Dirac
neutrinos are associated with the values λv and µ and
there are seven Majorana masses different from zero, with
only one of them of the see-saw type. By using v = 0.174
TeV, g3 = 0.65 and g1 = 0.38, as impossed by the low
energy phenomenology, we must tune the parameter λ
to lie in the range λ ∼ 10−9 and use for the other pa-
rameters the optimal values V ∼ 2 TeV, M1 ∼ M2 ∼ 1
TeV, and |µ| ≈ 10 TeV (as we will show shortly, |µ| ≥ 10
TeV). With these values we obtain three light neutri-
nos: one Dirac neutrino with a mass of the order of
the electron-Volts, one see-saw Majorana neutrino with
a mass of the order of the tenths of electron-Volts and a
zero mass Dirac neutrino (the former without including
radiative corrections which may introduce changes in this
tree-level mass spectrum). All the remaining eigenvalues
are above 500 GeV.

D. Masses for the scalar sector

For the scalars we have three sectors, one charged
and two neutrals (one real and the other one imaginary)
which do not mix, so we can consider them separately.

1. The charged scalar sector

For the charged scalars, in the basis (φ−e , φ−µ , φ−τ , φ′−e ,

φ′−µ , φ′−τ , φ−4 , φ−5 , φ′−4 , φ′−5 ) and after using Eq. (14) in
the tree level approximation, we get the squared mass
matrix Mcs with the following nonzero entries

(Mcs)11 =

(

−|λ|2 − g2
3

6
+
g2
1

9

)

V 2

+

(

g2
3

3
− 2g2

1

9

)

v2 +m2
11,
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(Mcs)22 = m2
22 −

(

g2
3

6
− g2

1

9

)

V 2

+

(

g2
3

3
− 2g2

1

9

)

v2,

(Mcs)33 =

(

|λ|2 +
g2
3

2

)

v2,

(Mcs)44 = |he
31|2V 2,

(Mcs)66 = |he
33|2V 2,

(Mcs)88 = |µ|2 −
(

g2
3

6
− 2g2

1

9

)

V 2

−
(

g2
3

6
+

4g2
1

9

)

v2 +m2
5,

(Mcs)99 =

(

|λ|2 +
g2
3

2

)

V 2,

(Mcs)1010 = |µ|2 +

(

|he
31|2 + |he

33|2 +
g2
3

3
+

2g2
1

9

)

V 2

−
(

g2
3

6
+

4g2
1

9

)

v2 +m2
5,

(Mcs)14 = (Mcs)41 = 2he
11µv

(Mcs)16 = (Mcs)61 = he
13µv,

(Mcs)18 = (Mcs)81 = −λµV,
(Mcs)34 = (Mcs)43 = he

31µv,

(Mcs)36 = (Mcs)63 = he
33µv,

(Mcs)39 = (Mcs)93 =

(

|λ|2 +
g2
3

2

)

vV,

(Mcs)46 = (Mcs)64 = he
31h

e
33V

2,

(Mcs)48 = (Mcs)84 = λhe
11vV,

(Mcs)49 = (Mcs)94 = he
31µV,

(Mcs)410 = (Mcs)104 =
1

2
he′

13V,

(Mcs)68 = (Mcs)86 = λhe
13vV,

(Mcs)69 = (Mcs)96 = he
33µV

(Mcs)610 = (Mcs)106 =
1

2
he′

33V. (19)

This mass matrix has two zero eigenvalues which cor-
respond to the four Goldstone bosons needed to give
masses to the gauge bosons W± and K±. By using
he

11 = he
13 = he

31 = he
33 = 1, he′

13 = he′
33 = 1 GeV,

m2
11 = m2

22 = m2
5 = −m2

33 = 1 TeV2, and with the
numerical values for the other parameters as stated be-
fore, we obtain that all the nonzero eigenvalues are above
850 GeV and so, contrary to other models, there are not
charged scalars at the electroweak scale in the model an-
alyzed here, which is something expected due to the fact
that the members of the isospin doublet in φ4, which are
absorbed by W±

µ , are the only charged scalars available
at the electroweak scale. This result is in agreement with
the so-called “extended survival hypothesis” [16] which
consists in assuming that the components of the Higgs
representations required for the breaking of a particular
symmetry are the only ones which are not superheavy

(“scalar Higgs fields acquire the maximum mass compat-
ible with the pattern of symmetry breaking” [16]).

2. The neutral scalar sector

For the neutral CP-even scalars, in the basis
(φ0

eR, φ
0
µR, φ

0
τR, φ

′0
eR, φ

′0
µR, φ

′0
τR, φ

0
4R, φ

0
5R) and after using

Eq. (14) in the tree level approximation, we get the
squared mass matrix Me with the following nonzero en-
tries

(Me)11 =
1

2

{

m2
11 −

(

g2
3

6
− g2

1

9
+ |λ|2

)

V 2

−
(

g2
3

6
+

2g2
1

9
+ |λ|2

)

v2
}

,

(Me)22 =
1

2

{

m2
22 −

(

g2
3

6
− g2

1

9

)

V 2

−
(

g2
3

6
+

2g2
1

9

)

v2
}

,

(Me)44 =
1

2

(

m2
11 −m2

33

)

,

(Me)55 =
1

2

{

m2
22 +

(

g2
3

3
+
g2
1

9

)

V 2

−
(

g2
3

6
+

2g2
1

9

)

v2
}

,

(Me)66 =

(

g2
3

3
+
g2
1

9

)

V 2,

(Me)77 =

(

g2
3

3
+

4g2
1

9

)

v2,

(Me)88 =
1

2

{

|µ|2 +m2
5 −

(

g2
3

6
− 2g2

1

9

)

V 2

+

(

g2
3

3
− 4g2

1

9

)

v2
}

,

(Me)18 = (Mch)81 =
λ

2
µV,

(Me)67 = (Mch)76 = −
(

|λ|2 +
g2
3

6
+

2g2
1

9

)

vV.

(20)

The matrix Me has one eigenvalue equal to zero, corre-
sponding to one Goldstone boson. The nonzero eigenval-
ues, which can be calculated analitically, are

m2
e1 = (Me)22,

m2
e2 = (Me)44,

m2
e3 = (Me)55,

m2
e4 =

1

2

{

(Me)11 + (Me)88

+
√

[(Me)11 − (Me)88]2 + 4[(Me)18]2
}

,

m2
e5 =

1

2

{

(Me)11 + (Me)88
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−
√

[(Me)11 − (Me)88]2 + 4[(Me)18]2
}

,

m2
e6 =

1

2

{

(Me)66 + (Me)77

+
√

[(Me)66 − (Me)77]2 + 4[(Me)67]2
}

,

m2
e7 =

1

2

{

(Me)66 + (Me)77

−
√

[(Me)66 − (Me)77]2 + 4[(Me)67]2
}

, (21)

where me7 is associated with the lightest CP-even Higgs
scalar h. By introducing the numerical values for the
parameters as calculated in the previous sections, we ob-
tain me7 = mh ≈ 85 GeV which is a bit larger than the
lowest bound on the lightest CP-even Higgs scalar in the
MSSM [3]. All the remaining eigenvalues are above 750
GeV.. Notice that the scalar h is a mixture of φ0

4R and
φ′0τR, as it should be according to the “extended survival
hypothesis” [16], and because of this it partially decou-
ples from the Z0 of the SM at high energies, since it is
a mixture of a singlet and a doublet under SU(2)L, with
the singlet having an U(1)Y hypercharge equal to zero.

For the neutral CP-odd scalars, in the basis
(φ0

eI , φ
0
µI , φ

0
τI , φ

′0
eI , φ

′0
µI , φ

′0
τI , φ

0
4I , φ

0
5I) and after using

Eq. (14) in the tree level approximation, we get the
squared mass matrix Mo with the following nonzero en-
tries

(Mo)11 = (Me)11,

(Mo)22 = (Me)22,

(Mo)44 = (Me)44,

(Mo)55 = (Me)55,

(Mo)88 = (Me)88,

(Mo)18 = (Mo)81 = (Me)18. (22)

This mass matrix has three zero eigenvalues, which cor-
respond to three additional Goldstone bosons. The five
nonzero eigenvalues, at the tree level, are

m2
o1 = m2

e1, m2
o2 = m2

e2,

m2
o3 = m2

e3, m2
o4 = m2

e4,

m2
o5 = m2

e5, (23)

equal to five of the eigenvalues in the real sector as a con-
sequence of our assumption that there is not CP violation
in the neutral scalar sector. Notice, by the way, that this
model does not have a light pseudoescalar particle.

The four Goldstone bosons associated to the neutral
scalar sector will provide masses for the gauge bosons
K0

µ, K̄0
µ, Z0

µ, and Z
′0
µ .

E. Masses for charginos

The charginos in the model are lineal combi-
nations of the ordinary charged leptons, the two
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FIG. 6: Radiatively induced VEV contributing to the e and
µ masses.

exotic electrons and the two charged gauginos.
In the gauge eigenstate basis ψ± = (e+, µ+, τ+,

E+
4 , E

+
5 , W̃

+, K̃+, e−, µ−, τ−, E−
4 , E

−
5 , W̃

−, K̃−) the
tree-level chargino mass terms in the Lagrangian are of
the form ψ±Mchψ

± where

Mch =

(

0 M7

MT
7 0

)

, (24)

and

M7 =



















0 0 0 0 he
31V 0 0

0 0 0 0 0 0 0
0 0 0 0 he

33V 0 0
−λV 0 0 µ 0 −g3v 0

0 0 0 0 µ 0 −g3v
0 0 0 0 0 M2 0
0 0 −g3V 0 he

31V 0 M2



















. (25)

This mass matrix has two eigenvalues of the order of the
µ scale, two other eigenvalues of the order of the SUSY
scale (M2 ∼ 1 TeV), two eigenvalues equal to zero, and
one see-saw eigenvalue of the order of 2M2

2v
2/µ2, which

for µ ≫ M2 ∼ V can account for the tau lepton mass.
Notice that the tau mass is related to the mass parame-
ter M2 of the corresponding gaugino, but it is suppressed
by the parameter µ. So, at the tree-level only the elec-
tron e and the muon µ remain massless, but they pick
up radiative masses . In fact, the seventh term in the su-
perpotential produces immediately the diagram in Fig. 6
which shows how both, e− and µ−, get finite masses via
the radiatively induced VEV for the scalar field φ0

5 shown
in Fig. 1. (This mechanism has been used in the litera-
ture in Ref. [17] in order to generate masses for charged
fermions. See also Ref. [18].)

V. GENERAL REMARKS AND CONCLUSIONS

We have built the complete supersymmetric version
of a 3-3-1 model for three families, the simplest one we
have been able to imagine. Contrary to the MSSM which
has two Higgs doublets at the electroweak energy scale,
in this model there is only one SU(2)L Higgs doublet
acquiring a non-zero VEV (the one associated to φ4).
So, the MSSM is not an effective theory of the model we
have constructed.

For the model presented in this paper the slepton mul-
tiplets play the role of the Higgs scalars and no Higgsinos
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are required, which implies a reduction of the number of
parameters and degrees of freedom, compared to other
3-3-1 supersymmetric models in the literature [10].

For our analysis we have taken the simplest VEV pos-
sible, able to break the symmetry and give, at the same
time, masses to the fermion fields in the model. The
choice of this simple VEV structure was dictated not only
by simplicity, but also by paying due attention to the
general mass spectrum of the particles. The most gen-
eral VEV structure for this model is of the form: 〈φe〉 =
(0, ve, Ve), 〈φµ〉 = (0, vµ, Vµ), 〈φτ 〉 = (0, vτ , Vτ ), 〈φ4〉 =
(v4, 0, 0) and 〈φ5〉 = (v5, 0, 0), which, even when prop-
erly rotated (ve = Vµ = 0), gives a very messy scalar
sector and can dramatically change the mass spectrum
presented here. Obviously, there are in this general VEV
structure a lot of free parameters to play with, some of
them able to solve possible inconsistencies in the mass
spectrum calculated.

There are in the model three mass scales: The elec-
troweak scale v ≈ 174 GeV (a value dictated by the
weak W± gauge boson mass), which is the same mass
scale associated with the SM; the SUSY-(3-3-1) mass
scale M1 ∼ M2 ∼ V ∼ 1 − 2 TeV, which is the same
scale associated with the MSSM; and the µ scale which
can be as large as the Planck scale, but whose value is
fixed (by the tau lepton mass) to lie in the range 10 TeV
≤ µ ≤ 100 TeV. As can be realized, for this model we
have the same µ problem that is present in the MSSM,
and it should find an explanation outside the context of
the analysis presented here.

We have aligned the vacuum in the way enunciated in
the main text, inspired in the non-SUSY model presented
in Sec. II; this alignment produces a consistent mass spec-
trum for quarks and charged leptons in the following way:
First, the exotic down quarks and leptons get masses of
the order of the SUSY scale; then the top and charm
quarks get tree-level masses at the electroweak energy
scale, with the mass for the charm quark suppressed by
differences of Yukawa couplings. The exotic up quark U
gets a one-loop radiative mass which, for specific values
of the Yukawa couplings, can be made larger than 174
GeV, the top quark mass (see the appendix). The bot-
tom quark and the strange quark get one loop radiative
masses, with the mass of the strange quark suppressed by
differences of Yukawa couplings; then the up quark and
the down quark get higher order radiative masses. For
the known charged leptons only the tau gets a tree-level
mass at the electroweak scale, but suppressed by a see-
saw mechanism, with the electron and muon acquiring
loop masses via radiatively induced VEV. The analysis
for the neutrino sector has not been completed yet, but
the preliminary analysis presented in the main text does
not show inconsistencies.

The vector-like structure L4L⊕L5L, which seems irrele-
vant for the non-SUSY model presented in Sec. II because
it does not contribute to the anomaly constraint equa-
tions, is mandatory in this SUSY version of the model
because without its presence it is not possible to provide
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FIG. 7: Zee mechanism for neutrino masses.

with masses for the lepton sector.
The scalar sector of the model presented here is so

rich that even with the simple VEV used, it is able to
reproduce a consistent mass spectrum for the spin 1/2
particles by using different radiative mechanisms, some
of them new. For example, the way how the mass for
the down quark d is generated via a three-mixing loop
diagram plus a radiatively induced VEV has not been
used in the literature yet, as far as we know.

Even though the algebra involved in all the equations
related with the scalar sector (Secs. III B and IVD) is
quite tedious, the final results are simple, with mass ma-
trices that admit analytic solutions and neat physical in-
terpretations. This is just a byproduct of the Z2 symme-
try introduced in Sec. III A, whose reason of being is the
suppression of proton decay, with its final form dictated
by discrete anomaly cancellation constraint relationships,
and by the mass spectrum for the lepton fields.

In the main text we have also calculated the mass
value, at the tree level, of the lightest CP-even Higgs
scalar h which is larger than the lowest bound on the
lightest CP-even Higgs scalar in the MSSM, in spite of
being a mixture between a member of a pure SU(2)L

doublet φ0
4R and the singlet φ′0τR.

To conclude, let us say that we feel a little unpleasant
with the small value λ ∼ 10−9, which seems unnatural
and may require some sort of fine tuning. We can avoid
this inconvenience by letting φ5, instead of φ4, to acquire
the zero order VEV (v, 0, 0). Then no tree-level mass
terms for the neutrinos show up, but two of the neutri-
nos do acquire a two-loop radiative mass via a kind of
Zee mechanism [19] as depicted in Fig. 7, which are two
among other graphs, and show that the Zee mechanism is
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automatically present in the model discussed here. The
price we have to pay if we want to use this mechanism in
order to generate neutrino masses is the explanation of
the mass spectrum for the entire up quark sector which
must be generated via radiative corrections. In any case,
the mass scale for the neutrinos is controlled by the pa-
rameter λ which is not present in the quark sector of the
model.
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APPENDIX

In this appendix we calculate the diagram in Fig. 2
and analyze its numerical value. The algebra shows that
this diagram is finite and proportional to

∆ = N [M2m2
c4 log(M2/m2

c4) −M2m2
c5 log(M2/m2

c5)

+ m2
c4m

2
c5 log(m2

c4/m
2
c5)], (A.1)

where N = h′D2 hU
2 m

2
45M/[16π2(m2

c5 − m2
c4)(M

2 −
m2

c4)(M
2 −m2

c5)], M = hD
223V is the mass of the heavy

exotic down quark D, and mc4 and mc5 are the masses
of φ′+4 and φ′−5 , respectively. To estimate a value for ∆
we use the following values obtained in Sects. 4.3 and
4.4 of this paper: mc4 ≈ (Mcs)99 ≈

√

g2
3/2V, mc5 ≈

(Mcs)1010 ≈ |µ| ≈ 10 TeV, and m2
45 ≈ −2〈φ0

5〉|µ|2/v.
Notice that the value of ∆ is a function of the dimen-
sionless parameter 〈φ0

5〉/v and of the Yukawa couplings
hD

223, h
′D
2 and hU

2 . We are going to put the three Yukawa
constants equal to a common value h. The point now
is to assign values to h and also to the radiative correc-
tion 〈φ0

5〉/v which, being a radiative correction to scalar
masses in a supersymmetric model, can be large. Table
I shows the numerical evaluation of ∆ (the mass of the
exotic quark U) as a function of these parameters.

TABLE I: Radiative mass ∆ for the exotic quark U

〈φ0

5〉/v h ∆ (GeV)

0.1 4.1 203.5

0.2 3.0 207.8

0.4 2.2 206.0

0.6 1.9 219.2

So, by a reasonable choice of the values of the param-
eters involved in the calculation of the diagram in Fig. 2,
we can obtain a radiative mass for the exotic up quark
U larger than the top quark mass.
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Note added in proof: After the completion of the first
draft of this manuscript, we became aware of the exis-
tence of a related paper by J.C. Montero, V. Pleitez and
M.C. Rodriguez entitled “Supersymmetric 3-3-1 model
with right-handed neutrinos” [20]. Even though the
gauge and quark sectors are the same in the two papers,
they differ in the lepton and scalar sectors due to the
fact that in our model we introduce the vector-like struc-
ture L4L ⊕ L5L. As a consequence, and contrary to the
Montero, Pleitez and Rodriguez analysis, we avoid the
introduction of Higgssinos in our study. Because of this
the results are different in the two papers, conspicuously
enough in the three scalar sectors.


