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Abstract

A decentralized solution method to the AC power flow problem in power 
systems with interconnected areas is presented. The proposed methodology 
allows finding the operation point of a particular area without explicit 
knowledge of network data of adjacent areas, being only necessary to 
exchange border information related to the interconnection lines between 
areas. The methodology is based on the decomposition of the first-order 
optimality conditions of the AC power flow, which is formulated as a 
nonlinear programming problem. A 9-bus didactic system, the IEEE Three 
Area RTS-96 and the IEEE 118 bus test systems are used in order to show the 
operation and effectiveness of the distributed AC power flow. 
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Resumen 

Este artículo presenta un método de solución descentralizada para el problema 
de flujo de potencia AC en sistemas de potencia con áreas interconectadas. 
La metodología propuesta permite encontrar el punto de operación de un 
área en particular sin la necesidad de conocer explícitamente los datos de las 
áreas adyacentes, siendo sólo necesario intercambiar información de frontera 
relacionada con las líneas de interconexión entre áreas. El método se basa 
en la descomposición de las condiciones de optimalidad de primer orden del 
flujo de potencia AC, el cual se formula como un problema de programación 
no lineal. Un sistema didáctico de 9 barras, el sistema IEEE RTS-96 y el 
sistema de prueba IEEE de 118 barras se utilizan para mostrar la operación y 
eficiencia del flujo de potencia AC distribuido.

----- Palabras clave: Flujo de potencia descentralizado, sistemas de 
potencia multi-área, técnicas de descomposición

 Introduction
Real power systems are usually composed by 
interconnected areas controlled by different 
independent agents known as Regional Operators 
(ROs). Generally, to obtain the operating point of 
a particular area, the RO must know all network 
data, or use an approximate network equivalent for 
some regions of the system. However, under the 
new framework of competitive markets, each RO 
has to face confidentiality and security policies 
that restrict access to network information. Under 
this scenario, the concept of parallel computing 
emerges as a solution that provides flexibility 
and robustness to the mathematical procedures 
for coordination of multi-area Electric Power 
Systems (EPS). The basic idea consists in dividing 
the overall problem into several sub-regional 
problems associated with each area, where 
each RO solves its own optimization problem. 
Subsequently, an iterative process of global 
coordination exchanges strategic information 
between areas. The solution is the same that 
would be reached with a traditional centralized 
power flow. The main reasons for adopting a 
decentralized power flow framework are: 

• 	 Full knowledge of network or market data 
of adjacent areas is not required. Form the 
point of view of any RO, adjacent areas can 
be seen as “black boxes”. The only data 

required is related with border information 
of the lines interconnecting different areas. 

•	 The proposed multi-area approach constitutes 
an operational and mathematically robust 
methodology. If there is a difficulty in 
solving a regional problem or a failure in 
communication it is still possible to solve the 
other sub-problems. 

• 	 The algorithm is designed to be implemented 
using parallel processing techniques. Each 
RO is a processor that solves its own regional 
problem. 

• 	 A Distributed Power Flow (DPF) tool can be 
seen as a basic building block able to address 
a large number of problems under a multi-
area competitive market philosophy. 

There are several reports addressing the concept 
of multi-area power flow (PF) and optimal 
power flow (OPF) in the specialized literature. 
Some of the methodologies regarding multi-area 
OPF require the solution of a global PF, when 
this happens; the concept of parallel computing 
is lost. For instance, [1] provides a security-
constraint multi-area OPF using the Auxiliary 
Problem Principle (APP). However, the method 
is not fully distributed because it requires a 
global PF in each iteration of the coordination 
algorithm in order to identify possible congested 
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lines and various factors associated with post-
contingency constraints. In [2] a nonlinear DC 
model is used to solve the OPF problem. The 
algorithm is based on the Lagrangian relaxation 
decomposition procedure. In [3] a DC model 
is also used and the Decomposition of First-
order Optimality Conditions (DFOC) method 
presented in [4] and [5] is used. In a later paper 
the same authors presented an extension of 
their work using an AC model and a composite 
objective function [6]. In [7] and [8], Kim 
et al. propose an approach that is suitable for 
distributed implementation using the APP 
method and a linearized augmented Lagrangian 
approach to improve convergence. In [9] two 
OPF decomposition methods are compared: one 
based on an adjustment procedure at a common 
interface, and the other based on the passing 
of adjacent variables. The performance of the 
last one is enhanced by introducing a master-
slave principle. In [10] a decomposition method 
considering overlapping areas is presented. In 
this case, the authors include the operation and 
control of FACTS devices in the modeling. 

Regarding to methodologies that aim to solve 
an AC-PF in a distributed or decentralized 
fashion, it is possible to classify the solution 
techniques in literature into two groups: i) using 
network equivalents and ii) using mathematical 
decomposition techniques. Associated with the 
first group, in [11] a distributed algorithm for 
security static analysis of a multi-area system is 
proposed. A reference node is defined for each area 
of the system, and consequently, it is necessary to 
use a synchronization process of angles between 
the reference nodes in different areas. An 
assessment of different network equivalent types 
for the implementation of a decentralized control 
scheme for multi-area systems is presented in 
[12]. The main drawback when using a network 
equivalent is that the optimization process 
performance is highly dependent on the type 
of equivalent chosen. Additionally, various 
network equivalent types can be found for one 
system, and different adjustment procedures are 
necessary to reduce the errors introduced by the 
approximations of each equivalent.

In what regards mathematical decomposition 
techniques, few references are found in which the 
PF problem is solved (most of them are applied to 
the OPF problem instead). In [13] A decentralized 
DC-PF using the APP is presented. The goal is 
to preserve network data confidentiality for each 
RO in an open and competitive electricity market.

The algorithm presented in this paper is an 
application of the Lagrangean decomposition 
method proposed in [5]. The AC-PF is modeled 
as a non-linear programming problem, so that 
the equivalent model can then be physically 
decoupled around the tie- lines. Subsequently, a 
regional model using DFOC is obtained and the 
Newton system is built to be solved iteratively 
at each regional problem. The goal is not 
computational-efficiency improvement of the PF. 
Most significant in this paper is to provide a tool 
to solve the multi-area AC-PF maintaining an 
independent operation of each RO to achieve the 
same operating point found by a centralized AC-
PF. With regard to the decentralized power flow 
model using DFOC as proposed in this paper, no 
reference was found in the literature. 

Results show that the system operating point 
obtained by the centralized PF, is the same as that 
obtained by the DPF, maintaining the independent 
operation of each area. The centralized scheme 
generally presents better computational times 
than the one obtained by the distributed scheme. 
However, it is worth to mention that the main 
focus of this paper is not to reduce computational 
time, but to provide an approach for a DPF. 
Nevertheless, to reduce the computational time of 
the DPF, the following actions are recommended: 
i) Using decoupling techniques ii) Implementing 
parallel processing techniques, in which each 
OR is a processor. iii) Incorporating strategies 
that approximate search directions without the 
need of reaching the optimality of each regional 
problem. iv) Developing coordination strategies 
to accelerate the voltage angle convergence. 

Feasible solution of an AC-PF

The AC-FP formulation presented in this paper 
uses the polar representation described in [14]. 
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For a system of N nodes there will be N nodal 
equations given by (1). 

	  ( )
=1

= ; = 1,2, ,
Nj jk m

k km km m N Nk km
V e G jB V e P jQ k Nθ θ−

+ −∑ K	
(1)

	
( )

=1
= ; = 1,2, ,

Nj jk m
k km km m N Nk km

V e G jB V e P jQ k Nθ θ−
+ −∑ K

Where Vk and θk are the voltage magnitude 
and angle respectively. Gkm + jBkm is the nodal 
admittance matrix element related to nodes k and 
m. 

kNP and 
kNQ  are the net active and reactive 

power injected in node k respectively. Defining 
the active and reactive power injections as 
functions of the voltage magnitude and angle as 
shown in (2), equation (1) can be divided into

N2 real nodal equations as shown in (3) and (4).
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	 ( ) NkPVP
kNk ,1,2,=0=, K−θ  	 (3)

	 ( ) NkQVQ
kNk ,1,2,=0=, K−θ 	 (4)

Equations (3) and (4) represent the power balance 
on a typical node. Defining X as the unspecified 
variables vector (X = [V,θ]T), the system of 
equations (3)-(4) can be represented as shown in 
(5). 

( ) }
}

(3)
(4)
(3)

Equation For each node PQEquationg X
Equation For each node PV

 
   =    

	(5) 

Where [g(X)] represents a vector of size ndg 
equal to the number of equality constraints. 
Applying the first-order Taylor series expansion 
to (5), the set of linear equations given by (6) is 
obtained. The Newton method consists on the 
successive solution of equation (6), updating in 
each iteration the state variables as shown in (7). 

	 ( ) [ ] ( )[ ])(

)(=

= h

hXX

XgX
X
Xg

−∆⋅







∂

∂ 	 (6)

	 [ ] [ ] [ ]XXX hh ∆++ )(1)( = 	 (7)

In (6) the term [∂g/∂X] is known as the Jacobian 
matrix, denoted by Jg. The vector [g(X(h))] 
corresponds to the power errors. These errors 
are given by equations (8), (9) and (10). Where 
∆S = [∆P ∆Q] represents the vector of apparent 
power errors. Note that in this case the super 
index T stand for the transposed of the vector. 

	 ( )[ ] ( )[ ] [ ]Thh QPXgXS ∆∆−∆ ,== )()(  	 (8)

	 [ ] [ ] ( )[ ])()( ,= hh
N VPPP θ−∆ 	 (9)

	 [ ] [ ] ( )[ ])()( ,= hh
N VQQQ θ−∆  	 (10)

 Finally, equation (6) can be rewritten as shown 
in (11). 
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AC-PF as a nonlinear programming 
problem

The AC-PF described in the previous section 
can be formulated as a nonlinear programming 
problem (NLP), where the objective function 
consists in minimizing the sum of the squared 
power errors as shown in (12).

 	
( ) [ ] [ ]( )

[ ]

1= ( ) ( )
2

. :
( ) = 0

TMin f X g X g X
s t

g X

⋅
 	 (12)

The solution to this problem is subject to 
compliance with the nodal power equations (3) 
and (4). The unrestricted Langrangean function 
is presented in (13). Where [λ] is known as the 
Lagrange multiplier vector. 
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	 ( ) ( ) [ ] [ ])(=, XgXfXL Tλλ +  (13)

Applying the first order optimality conditions 
and solving by Newton method the system of 
nonlinear equations given by (14) is obtained. 
Where the Hessian matriz [H] and the vector of 
independent parameters [r] are given by (15) and 
(16) respectively.

	 	 (14)

	  [ ] ( )

( )==1
=
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h

g j g j hX Xj
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	 [ ] ( ) [ ]( )

( )=
hX X

Th
gr g X J λ

=
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 	 (16)

Where Hgj is the Hessian matrix of equality 
constraint j. Note that it is not necessary to 
calculate the Lagrange multipliers to solve the 
AC-PF. Consequently, to obtain the search 
directions ∆X from (14), it is only necessary to 
solve the system of equations given by (17). 

	 	 (17)

This system allows for a feasible solution of the 
AC-PF problem equal to that obtained in (6). 
In the DPF scheme the Lagrange multipliers 
become more important and should be calculated. 
These multipliers constitute important additional 
information associated with import and export 
costs of active and reactive power between 
the interconnected areas which can be used in 
electricity market applications.

Decomposition scheme

A necessary condition for a trivial decomposition 
of a NLP problem is that both, the objective 

function and the constraints are separable. That 
is, the variables of the NLP problem must be 
associated with only one of the sub-problems 
resulting from the decomposition process. In order 
to achieve a trivial decomposition of the EPS, 
a separation around the elements that connect 
the different areas (tie-lines) is implemented as 
illustrated in figure 1. 

(a) Three-area centralized system

(b) Duplication of boundary variables
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Figure 1 EPS Decomposition scheme

The decomposition is performed using fictitious 
generators representing flows through the tie-
lines. Four new variables per tie-line (border 
variables) are added to the original problem, 
as shown in figure 1b. These border variables 
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represent the necessary fictitious generation for 
the feasibility of the problem in area A. In general 
terms, this fictitious generation will be denoted as 

[ ]TA
F

A
F

A
F QPS ,= . If there is generation in the border 

bus, this bus is classified as PV, otherwise, as bus 
PQ. The equivalent NLP problem is described 
by equations (18), (19), (20) and (21) as shown 
bellow. 

	 ( ( ))A

A
Min f X∑ 	 (18)

	 . . ( ) = 0As t g X   	 (19)

	 [ ] ( )[ ] 0=, AAA
linetie

A
F XXPP −−  	 (20)

	 [ ] ( )[ ] 0=, AAA
linetie

A
F XXQQ −−  	 (21)

Where Ptie-line and Qtie-line are vectors of calculated 
powers (active and reactive), that flow between 
interconnected areas. These powers are 
calculated, based on the current state variables 
values in the border buses of each area (XA = [VA, 
θA]T, XAA, = [VAA, θAA]T).

The constraints (20) and (21), known as coupling 
constraints, are necessary to coordinate the 
overall optimization process, and ensure that at 
the optimal point, problem (12) is equivalent 
to problem (18)-(21). Due to the fact that the 
coupling constraints are function of variables 
XAA, which belong to adjacent areas, the problem 
(18)-(21) cannot be separated in a direct or 
trivial way, being necessary to use a mathematic 
decomposition method.

Regional problem

The DFOC method is based on the decomposition 
of the optimality conditions of the original global 
problem given by (18)-(21). This decomposition 
is performed in such a way that the linear 
combination of the Karush-Kuhn-Tucker (KKT) 
optimality conditions of all regional problems 
in the k-th iteration of a global coordination 
process is identical to the KKT conditions of 
the original problem at the optimum point. In 

this iterative process, the values of the variables 
corresponding to the border bus from an adjacent 
area  are known from the 
previous iteration. Therefore, the NLP regional 
problem for the area A is given by (22). 

	  

,
( )

. .
( ) = 0

( , ) = 0

TA AA A
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A AX SF
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FF
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 Where f is the regional problem objective 
function. The vector [gF] represents the constraints 
sets (20) and (21) associated with the fictitious 
generation in the border buses. The second term 
of the objective function corresponds to the 
import costs of active and reactive power, which 
can be rewritten as in (23).

	

=

T T
AA A AA

F tie lineu S a �� � � � � �� � � � � �

� �,
A AA

tie lineP X X�� � �� �

� �,
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	 (23)

	 The Lagrange multipliers of the coupling 
constraints ( )A

linetiea −
 and ( )A

linetier −
 are the active 

and reactive power export costs from area A to other

adjacent areas AA [ ] [ ]( )TA
linetie

A
linetie

A rau −− ,= . Therefore 
the objective function of problem (22), aims to 
minimize the cost of importing active and reactive 
power from other areas. These multipliers are 
used by other areas as import costs for active and 
reactive power, in which case they are known 
from the previous iteration and denoted as 

AA
linetiea −  and AA

linetier − , respectively. To calculate the 
power flow from bus k, located in area A, to bus 
m, located in the adjacent area AA, equations (24) 
and (25) are used. Where Bsh is the tie-line shunt 
susceptance.
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	 	 (24)

	

	 ( ) ( ) ( ) ( )2
= cos sinA A AA A AA A AA A AA

tie line k km sh k m km k m k m km k mQ V B B V V B V V Gθ θ θ θ− − + + − − −

	( ) ( ) ( ) ( )2
= cos sinA A AA A AA A AA A AA

tie line k km sh k m km k m k m km k mQ V B B V V B V V Gθ θ θ θ− − + + − − −	 (25)

	( ) ( ) ( ) ( )2
= cos sinA A AA A AA A AA A AA

tie line k km sh k m km k m k m km k mQ V B B V V B V V Gθ θ θ θ− − + + − − −

Convergence criterion

The decentralized algorithm terminates when 
equations (26) and (27) are satisfied per tie-line 
of the overall system. For all KKT points, the 
equations must be satisfied with a tolerance eP 
(MW) and eQ (MVAR). These equations are the 
result of analyzing the active and reactive power 
flows on each tie-line, taking into account the 
power losses in the tie-line. 

( )= , , ,A AA A AA A AA
km F F loss k m k k Pk m

P P P P V V θ θ e∆ + − ≤ 	 26)

( )= , , ,A AA A AA A AA
km F F loss k m k k Qk m

Q Q Q Q V V θ θ e∆ + − ≤ 	(27)

 are known
values obtained from the decentralized optimal 
solution of problem (22). An area Aconverges 

when the errors ∆Pkm and ∆Qkm, of all its tie-lines 
(k ∈ A y m ∈ AA), are within specified tolerances. 
Once an area A has converged, it is not necessary 
to solve the regional problem associated with this 
area in the next iteration of the global coordination 
process. 

Global coordination algorithm

The global coordination algorithm of the 
proposed multi-area AC-PF is described below:

Step 1. Define initial conditions in all areas: the 
initial values of the Lagrange multipliers as well 
as the fictitious generation in all areas can be zero.

Step 2. Solve problem (22) for the areas that have 
not converged. Solving this problem the state 
variables vector and the Lagrange multipliers are 
obtained. This process can be carried out using 
parallel computing techniques.

Step 3. Check convergence criterion evaluating 
equations (26) and (27). If the convergence 
criterion is satisfied by all areas, then the process 
ends; otherwise go to step 4.

Step 4. Exchange border variable information 
and Lagrange multipliers among all areas and go 
to step 2.

Newton system

The Newton system obtained from the 
optimization problem described by (22) after 
applying the same process done with problem 
(12) is presented in (28) and (29).
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( ) ( )

( )

( ) ( )

1 1
[ ] [ ] [ ] [ ]A h A h

j F j
A h
F

X X

ndg ndf
A h h

g j g j g
j j S

H J H Hλ µ
= =

= + +∑ ∑  	 (29)

Where , . Hgj 
and HgFj are Hessian matrices of each equality 
constraint. The major computational effort is 
solving the symmetric Newton system shown 
in (28). Since it is a sparse system, the sparse 
techniques presented in [15] and [16] can be used 
to save memory space and improve speed.

Results
This section presents the results obtained with 
three test systems: a 9 bus system, like the one 
shown in figure 1, the IEEE Three Area RTS96 
and the IEEE 118 bus test system. 

9-Bus test system

The centralized bus and branch data of this system 
can be consulted in [17]. Table 1 shows the state 
variables obtained using the centralized AC-
PF, with a tolerance of 1x10-6 p.u. This system 
operation point produces the power flows in the 
interconnection lines shown in table 2. Table 3 
shows the tie-line power errors and the convergence 
of each area. In this case the number 1 indicates 
the iteration in which an area has converged. The 
process ends when all areas meet the convergence 
criteria, which occurs in iteration 44. 

In the last three columns of table 3 it can be noted 
that the area A2 satisfies the convergence criterion 
repeated and successive times during the iterative 
process. When one or more areas converge at 
iteration k, it is not necessary to solve the regional 
problem for these areas during the next iteration. 

It was observed that the algorithm early reaches 
final values for the voltage magnitude (from 
iteration 21). Moreover, the nodal voltage angles 
convergence between all system areas requires a 
larger number of iterations because of the angle 
coordination with respect to the reference bus 
from area A1. The behavior of the errors ∆Pkm and 
∆Qkm in each tie-line is shown in figure 2. Tie-
lines 3-4 and 5-7 show similar behavior and reach 
acceptable errors levels of active and reactive 
power from iteration 21. These two tie-lines 
define the convergence of area A2, therefore the 
regional problem of this area is rarely executed 
after iteration 21. Tie-line 1-9 is part of the tie-
line set that define the convergence of areas A1 
and A3. This tie-line only reaches values within 
the tolerance at iteration 44. Using a tolerance 
equal to 1x10-6 p.u the DPF problem converges 
to the same operation point as the one shown in 
tables 3 and 4 after 106 iterations.

Table 1 State variables of the 9-bus test system 
(centralized approach)

Bus V Angle PG QG

1 0.9742 -8.9568 0.0000 0.0000
2 1.0500 0.0000 3.2658 0.4280
3 0.9583 -12.5240 0.0000 0.0000
4 0.9256 -29.4058 0.0000 0.0000
5 0.9539 -26.9135 0.0000 0.0000
6 1.0500 -26.7382 1.0000 1.5041
7 0.9639 -12.1999 0.0000 0.0000
8 1.0500 -2.9814 2.5000 0.5426
9 0.9751 -9.5020 0.0000 0.0000

Table 2 Tie-line power flows and losses of the 9-bus test system (centralized approach)

Tie-line Pij Qij Pij Qij Ploss Qloss

3-4 1.1695 -0.2370 -1.0144 0.5471 0.1550 0.3101

5-7 -0.0686 0.4504 0.1826 -0.4225 0.1140 0.0278

1-9 0.3388 -0.1763 -0.3374 0.1796 0.0014 0.0034



233 

Decentralized AC power flow for multi-area power systems using a decomposition approach...

Table 3 Tie-line power errors and overall convergence

Iter DP3,4 DQ3,4 DP5,7 DQ5,7 A1 A2 A3
1 1.245200 0.315520 0.055578 0.184520 0 0 0

2 0.525770 0.154900 0.055578 0.184520 0 0 0

3 0.334650 0.083274 0.056693 0.125140 0 0 0

…

21 0.009584 0.003472 0.001269 0.005977 0 1 0

22 0.007043 0.004570 0.000216 0.007099 0 1 0

23 0.008966 0.006072 0.000502 0.009558 0 1 0

…

42 0.006294 0.003704 0.000034 0.005323 0 1 0

43 0.006454 0.003825 0.000001 0.005561 0 1 0

44 0.006602 0.003921 0.000020 0.005766 1 1 1
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Figure 2 Errors ∆Pkm and ∆Qkm in the tie-lines of the 9-bus test system
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IEEE Three Area RTS-96 system

The second power system in which the proposed 
methodology was tested is the IEEE Three 
Area RTS-96 system. A full description of the 
configuration of this system, as well as branch, 
and bus data can be consulted in [18]. The DPF 
was run using a tolerance of εp = εp = 0.0001p.u. 
The problem converged after 29 iterations with 
the same accuracy as that obtained by a traditional 
centralized PF. The behavior of the errors in tie-
lines 223-318 and 123-217 during the iterative 
process is shown in figure 3. The convergence 
decreasing property of power errors is similar in 
all tie-lines of all systems studied, which shows 
good convergence characteristics of the DPF.
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Figure 3 ∆Pkm and ∆Qkm errors in the IEEE RTS-96 
tie-lines

IEEE 118 bus test system

The proposed methodology was also test with the 
IEEE 118 bus test system with two identical areas 
forming an equivalent system of 236 buses and 374 
branches. The areas were connected with tie-lines 
in buses 105-56 and 90-40 respectively. The DPF 
was run using a tolerance of εp = εp = 0.01 p.u. 
The problem converged after 18 iterations to the 
same operation point as obtained by a traditional 
centralized PF. The behavior of the errors in the 
tie-lines is presented in figure 4. It can be observed 
that for both tine-lines the convergence criteria is 
first met by the active power. 

a) Tie-line 105-56

5 10 15 20
0

1

2

3

4

.iter

105,56
PD

105,56
QD

0.01..
P Q

pue e==

b) Tie-line 90-40

5 10 15 20

2

4

6

8

10

.iter

90,40
PD

0.01..
P Q

pue e==

90,40
QD

Figure 4 ∆Pkm and ∆Qkm errors in the tie-lines of the 
two-area IEEE 118 bus test system

 Conclusions
A decentralized AC power flow approach for 
multi-area EPS was presented in this paper. The 
proposed methodology preserves confidentiality 
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of network data in each area, allowing an 
independent operation of each RO. Only border 
information of each area is exchanged. Also, 
the proposed AC-PF methodology constitutes a 
basic tool that can be used in different studies 
regarding planning and operation of EPS. In all 
test systems the DPF converged successfully, and 
the results reached the same level of accuracy 
as those obtained using a centralized AC-PF. 
The decomposition method used was shown to 
be mathematically robust and suitable for large 
systems. Future work will include the application 
of this methodology in voltage stability 
studies and the development of a decentralized 
probabilistic load flow among others. 
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