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Chapter 1

Introduction

In 2008 the United States department of health and human services published
directions to provide information about the amount of physical activity rec-
ommended to keep health and physical aptitude. For substantial benefits, the
guidelines recommend that the majority of elderly people take part in at least
150 minutes of moderate aerobic activity, and 75 minutes of vigorous aerobic ac-
tivity, or an equivalent combination of both each week. The elderly should also
engage in strengthening activities involving all of the most important muscular
groups at least two times a week. Elderly people might be at risk of falling, and
in many cases such falls cause them important injuries.This population at risk
of falling can prevent falls by performing exercises to improve or keep balance
[1].

Providing these people with tools to exercise at home can greatly improve
the quality of their lives, this however presents a challenge from the engineering
point of view, since it becomes necessary to develop “a software artifact that ob-
serves the user’s execution of an activity and compares it to a specification.”[2].
Such a system should be capable of observing the execution of an activity by
the user, obtaining relevant information to characterize the performance of the
user, and then use a technique to perform the decision of either accepting or
rejecting the execution based on criteria previously learned either from repeti-
tions of the activities or from a formal specification (model). This verification
can be used to inform the user about the mistakes he is making and help him
adjust his movement so that it may be closer to the specification developed by
experts in physical therapy and conditioning, resulting in less risk of injury for
the user when performing the movements and increased benefits for his health
such as the increasing of his strength and his stamina.

1.1 Context

Physical activity is necessary for the well being of human beings, and this is
particularly true in the case of certain populations, such as the elderly. These
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CHAPTER 1. INTRODUCTION 10

people have obstacles to exercise due to the lack of appropriate scenarios and
dependency on other people for transportation or guidance. It makes sense then,
trying to reach these people with alternatives to exercise that must comply with
certain basic criteria: ease of use, non invasiveness, low risk of injury for the
user. If a system is to be developed to meet these criteria it becomes necessary to
know precisely the specification of the movements to be performed, maximizing
the benefits to the users health and minimizing the risk of injury.

1.2 Human Movement in Therapy and Physical
Conditioning

1.2.1 Movement Planes

For a complete description of human movement directional terms are used:
Superior and inferior, which describe being closer to the head or the feet,

respectively.
Anterior means towards the front of the body and posterior towards the

back of the body. Medial or lateral indicate positions or movements towards
and getting farther from the body.

A cardinal plane is one that divides the body in two equal parts. The
three cardinal planes of movement are the sagittal, frontal and transverse plane.
These planes are orthogonal, or perpendicular to each other. The sagittal plane,
also called median is vertical and divides the body into right and left halves.
The frontal plane (also called coronal or lateral) is another vertical plane, but
divides the body in anterior and posterior halves. The transverse plane (also
called horizontal plane) divides the body into superior and inferior halves.[3],as
is shown in Figure 1.1

Figure 1.1: Movement planes used in human motion analysis
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1.2.2 Types of Movement

Most of the descriptions of movements are based on what is called the anatomical
position, this means a person standing fully erect, with the arms relaxed on the
sides of the body and the feet and fingers together[3] as shown in figure 1.1

Depending on the plane on which the movement occurs, different terms are
used to classify it.

Abduction is a motion in a frontal plane that moves the segment away from
the anatomical position. Adduction is a frontal plane motion that returns the
segment to the anatomical position. Flexion is a motion in a sagittal plane, that
moves the limb away from the anatomical position. The angle that should be
visualized in this convention is the angle formed by the limb of interest and the
frontal plane, while in the anatomical position. Extension returns the segment
to the anatomical position in a sagittal plane and is described as increasing the
angle at the joint.Internal rotation at the shoulder (also called inward or medial
rotation) is motion of the arm segment that rotates it from the palms-forward
anatomical position to a posture in which the palms are facing more medially
and finally posteriorly.External rotation (outward or lateral) is the opposite
motion in which the segment is returned to or beyond the anatomical position
in a transverse plane. [3]

1.3 Artificial Vision in Human Motion Analysis

1.3.1 State of the Art

Several different technologies exist that allow for the tracking and characteri-
zation of movement in human beings. One of these technologies is the use of
IMU(Inertial measurement units), these are sensors that integrate a three axis
accelerometer, a three axis gyroscope and sometimes a three axis magnetometer.
Some of these systems are capable of tracking the full body of a person, such
as Noitom industries Perception Neuron[4]. The main downside of this technol-
ogy is that wearing the sensors all over the body can be uncomfortable. Other
technology that is very prominent in the field of understanding human motion
is Motion Capture (MoCap), these systems make use of a set of markers put on
important locations in the human body, usually on a suit that a person needs
to wear. The subject wearing the markers is placed in a room that is equipped
with several different cameras, and a software outputs the coordinates of the
markers, with millimetric precision. The main downside of this technology is
its high cost.[5] Markerless motion capture systems also exist that allow for the
tracking of body parts of a human being without the need of a special suit, these
systems however require a space without any object on it and an arrangement of
cameras.[6]. Again the main limitation to the use of these technology is its high
cost. In recent years the use of depth cameras for the task of human motion
tracking has gained popularity, because these sensors offer reasonable precision
at a price that is much less than other motion capture system[7],[8].
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In the case of video signals, several techniques use video signals as inputs
and try to recognize movements of limbs in human beings. One of them is
MHI (Motion History Image) and it is used by Javed et al [9]. The technique
consists in keeping a set of segmented images of a human being corresponding to
the different phases of the movement that wants to be observed, and calculating
gradients on the edges in order to determine a general direction of motion. Other
approaches use algorithms that build Markov chains with a given probability
distribution as stationary distribution, these algorithms are known as Markov
Chain Montecarlo (MCMC),Siddiqui et al [10] use them in data coming from
a depth sensor, and train an algorithm to recognize individual body parts, the
system however incurs in a high computational cost.

Sucar et al [11] use a system comprised of two RGB cameras placed per-
pendicularly in order to capture the trajectory of the hand of a human being in
three dimensions, such system is proposed as a tool for rehabilitation of patients
who have suffered strokes. A disadvantage of such system is that the tracking
of the hand is based on color segmentation, meaning that any object similar to
a user’s hand is erroneously detected and its position processed.

Burke et al [12] develop an exercise system for rehabilitation of patients who
suffered a stroke using a single RGB camera, color segmentation and tracking
of a persons hand.

The use of depth sensors has greatly expanded in the last years. This tech-
nology allows for the calculation of the distance at which an object stands in
front of the camera. This information facilitates the segmentation process on
images, and allows for estimation of the position of parts of the body, which
can be specified by x,y,z coordinates. The most widespread of such systems is
the Microsoft kinect, a low cost sensor that incorporates a vga camera, a depth
camera and an array of multiple microphones, it is also equipped with an em-
bedded algorithm that outputs coordinates of 20 relevant body parts at a rate
of 30 frames per second, the algorithm was developed by Shotton et al [13].

Dutta et al [14] evaluated the precision of the kinect sensor by comparing
with a vicon system, and found out that the average error made by the kinect was
comparable with the error associated to the movement of the markers commonly
used for Mocap systems when they move over the skin of the user, this means
that the sensor can be used to estimate posture in human beings.

Kurillo et al. [15] compared the precision of the kinect sensor with a move-
ment capture system in the task of detecting the frontiers of the volume in which
the upper limbs can move, and arrived to the conclusion that kinect data are as
precise and trustworthy as MoCap data and are promising for clinical evaluation
of upper limb movements applied to neurologic or musculoskeletal illnesses.

Obrdzalek et al [16] studied the precision of the data coming from the sensor,
by comparing it to MoCap systems, which use markers attached to the body
to determine the 3D position of important body parts of a person’s body. In
such study they arrive to the conclusion that for controlled positions (standing
in front of the sensor) the kinect offers a precision similar to that of the systems
used for motion capture. They also found that estimations would be improved if
an anthropometric model were to be applied to the data, because in each frame
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the skeletonization algorithm embedded in the device calculates the position
of relevant points ,in such a way that an error of 10 cm can be made when
calculating the length of the limbs if the person has rotated more than 45 degrees
with respect to the sensor. A similar study was conducted by Fernández-Baena
[17], it found out that the precision of the kinect sensor when estimating the
position of the main joints in the body is enough to make it a useful tool for
rehabilitation treatments. Zhao et al.[18] study the application of the sensor to
the evaluation of a series of physical activities and compare it to a cortex system
composed of 8 cameras and arrive to the conclusion that in the absence of severe
occlusions the systematic errors introduced by the skeletonization algorithm can
be compensated by adjusting the decision rules used for the activities.

Bonnechere et al[19] compared the repeatability of the measurements used
by kinect and a motion capture systems, finding that the intra-class correlation
coefficients were very similar for captures made on the same day and different
days, which indicates that the repeatability is similar for both the low cost
system and the MoCap system.

The same author [20] compared the precision of the kinect sensor and a
stereophotogrammetry system for estimation of the morphology of a human
being when measuring height, and the length of relevant segments of the hu-
man body, like legs and arms. This study found that the differences between
both systems were systematically correlated and allow for the use of regression
equations to correct the kinect results. The conclusion of the study was that
systems based on kinect sensors can be used for quick estimation of morphology
in human beings.

Van Diest et al [21] conducted a comparison study between kinect and a
Vicon 3D system in the case of movements of the body, and found that using
Principal Component Analysis (PCA) both systems captured 90% of the ob-
served variability using the first three principal components. The study arrives
to the conclusion that kinect can be used as a tool to measure balance in human
beings.

The kinect was used successfully by [22] to recognize signals made with flags
that represent characters in the japanese alphabet. A similar work was carried
out by Zahoor et al [23] to recognize characters of the american sign language,
in this study they used Hidden Markov Models, which are basically Markov
chains for which on every state there is a certain probability of emitting one of
several possible symbols.

Other studies have used the technology to recognize movement sequences
instead of fixed positions. Chaves et al[24] use this information to generate state
vectors, with the angles formed by the joints, these sequences are then compared
with the observed sequences in order to recognize specific movements. Liu et al
[25] use a similar method, generating a vector model invariant to translations or
anatomical variations. Similarity is quantified by calculating a sum of angular
differences with appropriate weights to compensate visual differences in the
perception of movement, the decision is finally taken by a neural network.

Movement sequences of the hand are of particular interest, Jaemin et al [26]
use the tracking provided by the device to isolate the silhouette of the human
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hand and recognize gestures using an HMM that outputs a mixture of gaussians.
An application of these techniques is found in control theory, Ye Gu et al [27]
report 89% of success in recognition of hand movements for control of a vehicle.

Coordinate data provided by kinect might be affected by considerable noise,
due to tracking errors and occlusions, Chaaroui et al [28] have used silhouette
data obtained with kinect to improve the recognition of actions in these cases,
by mixing these data with coordinate data. Bo et al [29] use data from inertial
sensors and kalman filters to improve the measurements taken by the kinect.

In the field of therapy and physical conditioning, numerous works have been
developed that use the kinect to create tools for patients who have suffered
strokes. Chang et al [30] report the development of an exercise system for
physical therapy aimed to be used by children with muscular dystrophy and
cerebral palsy.Pastor et al [31] report the development of an application to help
with the rehabilitation process of patients who have survived a stroke. A similar
tool has been proposed by Acosta et al [32]. A complete survey of the multiple
systems developed with the sensor for rehabilitation can be found in [33], where
the systems are classified into two categories: the ones who have been clinically
reviewed and the ones who have not. What is common to the vast majority
of these systems is their use in rehabilitation of patients who suffer from some
musculoskeletal or neurological disorder.

There are also commercial applications specifically made for physical condi-
tioning, but they are aimed to be used by healthy people, as is the case of the
videogame Nike Kinect Training [34], which uses the capabilities of a console to
process the kinect data and determine whether a person is executing an athletic
activity. Sato et al [35] report the development of exergames (exercise oriented
games) directed specifically to the elder, using kinect, and report the usefulness
of the system to improve functions like strength and the gait parameters in
this population. An application also aimed at the elder population that offers
stepping exercises and simultaneously measures stepping parameters useful for
predicting falls in elder people was developed by Garcial et al [36]. Kayama et
al [37] prove that the use of an application called dual-task Tai-Chi has positive
effects on indicator associated to the risk of falling.

Ravi [38] develops a recognition system focused in physical therapy activities
that provides real time feedback using kinect. The system tracks all of the joints
and uses quaternions to analyze if the movement was correctly executed, by
using a technique called Spherical Linear Interpolation(SLERP).

Paiement et al [39] propose a method to determine based on skeleton data
provided by the device whether the movements of a person going upstairs de-
viate from normality. They use a dimensionality reduction method based on
non-linear manifolds, and then create two statistical models, one for the fixed
poses that are observer while the person executes the movement and another to
model the dynamics of the movement. Both models are generated using Parzen
windows, which are non parametrical methods to estimate the probability den-
sity function of a single random variable.

Agathocleus [40] report the development of a system for physical training,
using a kinect sensor, and performs real time validation of the user movements
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using a model based on finite state machines. A user must pass through all
of the states if the movement is to be recognized as completed. Maung et al
[41] define clearly an XML grammar associated to the recognition of movements
relevant for physical therapy and implement it too, using a model based on a
finite state machines, where each movement to be recognized is one such state
machine and these are executed in parallel.

Velloso et al[42] explore the use of Programming by Demonstration (PbD)
techniques to develop a system that determines a model for movements based
on a demonstration performed by an expert and that can determine whether
a new user executes the movement closely enough to the demonstration. The
authors use a kinect sensor and characterize the movements in terms of the
angles formed with the coordinate planes commonly used in kinesiology [43].

Da Gama et al [44] report the development of a system for movement recogni-
tion for physical therapy using kinect, in this work the authors calculate vectors
normal to the movement planes defined in physical therapy and kinesiology, to
make sure that the movement takes place in a single plane. Kitsunezaki et al
[45] evaluate the precision of a similar system to measure angles in the human
body by comparing them with manual measurements taken by an expert with
a goniometer. The angles calculated by the kinect are obtained estimating a
vector normal to the body using the data provided by the device.

After reviewing the approaches in the literature we identify two basic ap-
proaches: the use of algorithms of artificial intelligence and the use of movement
models, usually implemented as state machines. In general the first approach
works well for the problem of recognizing gestures coming from a dictionary,
while the second approach is favored when the problem is evaluating the perfor-
mance of a subject when executing a movement. This happens for two reasons,
the first one is the impossibility of offering real - time feedback to the person
using the system by using machine learning algorithms, since these algorithms
only reach a decision once the whole activity has been performed, and the second
one is the fact that the use of state machines facilitates increasing the number
of movements to be evaluated without having to collect an extensive database.

1.4 The Kinect Sensor �

The kinect sensor is an array of sensors comprising a RGB camera, a depth sen-
sor and an array of microphones. The depth sensor allows acquisition of images
in varying light conditions, thanks to an infrared projector and a monochro-
matic CMOS sensor. The sensor can recognize up to six people but can only
skeletonize two of them.



CHAPTER 1. INTRODUCTION 16

1.5 Objectives of this work

This works will contribute to the field of automated movement evaluation by :

1. Creating a database of relevant physical therapy and conditioning exercises
with real subjects executing the movements.

2. Proposing a set of characteristics that can be used to define such move-
ments.

3. Proposing a methodology by which movements may be considered to be
correctly or incorrectly executed.

4. Implementing a software prototype to characterize and evaluate the per-
formance of a human being when he tries to execute the movements.

1.6 Summary

This chapter discussed the need for people to exercise in order to improve the
quality of their lives, and how computer vision technology can provide them
the means to accomplish this. It reviews several different technologies that
exist to address the issue of accurate human movement tracking, to focus on
a low cost, reliable alternative, the Microsoft kinect. It reviews proposals to
apply this technology for physical therapy and conditioning, for persons ranging
from severely-ill patients to healthy adults. Finally it presents some of the
characteristics of the sensor itself, that will be used as the main acquisition
device for the discussions presented in the next chapters.



Chapter 2

Databases and
characteristics used in this
study

The following is the description of the databases that were collected during the
present study.

2.1 Database Description

2.1.1 Normal activities database

First a database was built which consisted of repetitions of the activities as close
to the specification detailed by the expert in physical therapy as possible. The
number of participants was 14. They were asked to perform three repetitions
of each of the ten activities of interest.

2.1.2 Dual Kinect database

Experiments performed with an system consisting of two kinects were carried out
with 6 participants. They were asked to perform each one of the ten activities
of interest three times. This was repeated for each one of the four angles formed
between the kinects and each one of the four possible orientations of the persons
with respect to the sensor. In order to have samples of the movements according
to the specifications of the expert,

2.1.3 Errors database

For each one of the ten activities of interest two deviations from normality were
defined. Ten people were asked to perform each one of the deviated movements
ten times, meaning that a total of 100 samples of erroneous movements were

17
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simulated for each one of the defined deviations. The deviations are described
below:

For abduction movements the simulated errors were:
error1: moving the limb away from the frontal plane towards the front of the
body.
error2: moving the limb away from the frontal plane towards the back of the
body.

For extension and flexion movements the errors were:
error1: moving the limb with respect to the sagittal plane away from the body.
error2: moving the limb with respect to the sagittal plane towards the body.

For rotation movements the errors were:
error1: moving the limb deviating from the transverse plane towards the floor.
error2: moving the limb deviating from the transverse plane towards the ceiling.

2.2 Set of Activities

In the following we show the set of activities to be evaluated, selected in agree-
ment with the physicians who adviced the development of this work. The criteria
for selecting the activities were: the order in which a person normally executes
a strengthening routine, beginning with the upper limbs and following with the
lower limbs, and the use of the most important muscle groups of the limbs.

In chapter Real Time Kinect Evaluation of Therapeutical Gestures two
databases were collected:

� A database was taken comprising the following ten physical activities:
shoulder abduction, hip abduction, shoulder flexion, shoulder extension,hip
flexion, hip extension, shoulder internal rotation, shoulder external rota-
tion, elbow flexion and, elbow extension. The database aims at providing
data to compare the performance of a dual kinect array with a single
kinect. Two parameters are varied, the first one is the angle formed by
the array of two kinects used for data acquisition, the second one is the
orientation of the subject with respect to a single sensor. Three repetitions
of each activity were recorded.

� A database was taken with 14 people performing each one of the ten
physical activities three times. This time a single sensor is used, and only
the orientation of the person with respect to the sensor is varied.

In chapter HMM and DTW for Evaluation of therapeutical gestures using
kinect a single database is taken:

� A database of common errors in the performance of the activities. Two
kinds of errors are considered for each type of movement: for abduction
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Graphical Description Detailed Description Comments

[46]

Begins in the anatomical po-
sition, the elbow must not be
flexed.
The arm is raised until a 90 de-
gree angle is formed with the
body.
The arm is slowly returned to
the initial position.

The user must stand straight.
Unlike the picture, people are
asked to perform the move-
ment until an angle of 90 de-
grees is formed to prevent in-
juries.

Table 2.1: Shoulder Abduction

Graphical Description Detailed Description Comments

[46]

Begins in the anatomical po-
sition, the elbow must not be
flexed and the thumb must me
up.
The arm is raised until a 90 de-
gree angle is formed with the
body.
The arm is slowly returned to
the initial position.

The graph varies from the ac-
tual exercise suggested by the
expert in physical therapy in
that the expected angular vari-
ation in our case is 90 degrees.

Table 2.2: Shoulder Flexion



CHAPTER 2. DATABASES AND CHARACTERISTICS USED IN THIS STUDY 20

Graphical Description Detailed Description Comments

[46]

Starts in the anatomical posi-
tion.
The elbow is flexed to form a
90 degree angle, this is consid-
ered the initial position.
The hand is rotated outwards,
around the body.
The hand is slowly to the ini-
tial position.

The elbow must remain in con-
tact with the body during the
performance of the activity.
This exercise is performed with
both hands simultaneously as
recommended by the expert in
physical therapy.

Table 2.3: Shoulder External Rotation
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Graphical Description Detailed Description Comments

[46]

Starts in the anatomical posi-
tion.
The elbow is flexed to form a
90 degree angle, this is consid-
ered the initial position.
The hand is rotated towards
the center of the body, around
it.
The forearm must remain par-
allel to the floor.
The limb is slowly returned to
the initial position.

The expected angular displace-
ment is 30 degrees.

Table 2.4: Shoulder internal rotation
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Graphical Description Detailed Description Comments

[46]

Starts in the anatomical posi-
tion, the elbow must not be
flexed.
The arm is moved towards the
back of the body keeping the
elbow extended.
The arm slowly returns to the
initial position.

The user must stand straight.

Table 2.5: Shoulder Extension

Graphical Description Detailed Description Comments

[46]

Starts in the anatomical posi-
tion, with the elbow extended.
The elbow is flexed until the
hand almost reaches the shoul-
der.
The elbow slowly returns to
the initial position.

While the activity is being per-
formed, the elbow must remain
on one side of the body, still.

Table 2.6: Elbow Flexion
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Graphical Description Detailed Description Comments

[46]

Begins in the anatomical posi-
tion. The elbow forms a 90 de-
gree angle. This is considered
the initial position for the ac-
tivity.
The forearm is lowered until it
stays on the side of the body.
The forearm is slowly returned
to the initial position.

While the activity is performed
the elbow must remain still on
the side of the body.

Table 2.7: Elbow Extension

Graphical Description Detailed Description Comments

[46]

Starts with the person stand-
ing straight.
The knee is flexed until it forms
a 90 degree angle.
The leg is returned to the ini-
tial position.

Unlike the figure, the user per-
forms the activity standing.

Table 2.8: Knee Flexion
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Graphical Description Detailed Description Comments

[46]

Stars with the user standing
straight.
The leg is moved towards the
side of the body until a 45 de-
gree angle is formed.
The leg is returned to the ini-
tial position.

The leg must be extended dur-
ing the whole performance of
the activity.

Table 2.9: Hip Abduction

Graphical Description Detailed Description Comments

[46]

Starts with the person stand-
ing straight.
The leg is moved towards the
front, while keeping the knee
unbent.
The leg is returned to the ini-
tial position.

The user must stand straight
during performance of the ac-
tivity.

Table 2.10: Hip Flexion
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Graphical Description Detailed Description Comments

[46]

Stars with the user standing
straight.
The leg is moved towards the
back of the body, while the
knee is unbent.
The leg returns slowly to the
initial position.

The user must stand straight
during the whole performance
of the activity.

Table 2.11: Hip Extension

movements, error type 1 is defined as moving the limb of interest towards
the front of the body. Error type 2 consists in moving the limb towards
the back of the body. For flexion and extension movements error type 1 is
defined as moving the limb away from the body, and error type 2 consists
in moving the limb towards the body. For rotation movements error type
1 consists in moving the limb keeping it pointing towards the floor, and
error type 2 consists in moving the limb while it points upwards. 10 people
took part in the study, each one performing 10 repetitions of each kind of
mistake, for a total of 200 different erroneous sequences.

In chapter Extension to continuous HMM and comparison between different
populations a new database is introduced:

� 8 people between the ages of 65 and 75 were asked to perform the 10 activ-
ities of interest in front of the sensor, repeating each one three times. This
database was used to determine whether measurements for this population
varied significantly from measurements taken from younger subjects.

2.3 Characteristics used in this study

The experiments presented in the present work used two sets of characteristics:

� The first ones are the coordinate measurements taken by a kinect sensor
and normalized according to the height of the subject.

� The second set of characteristics are the angles formed by the limb of
interest with each of the planes of motion,as defined in chapter Human
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Movement in Therapy and Physical Conditioning. Both sets of character-
istics are used and compared throughout the following chapters, in order to
determine which one offers the best accuracy when analyzing performance
in human movement.



Chapter 3

Real Time Kinect
Evaluation of Therapeutical
Gestures

Results showing the comparison between the use of a dual kinect array and
a single sensor to evaluate movement sequences were published in the 20th
Symposium on Signal Processing, Images and Artificial Vision, STSIVA-2015,
that took place in Bogotá, Colombia in September 2-4, 2015.[47]

3.1 Introduction

In this chapter we study the repeatability of the angles formed with estimates
of the frontal, sagittal and transverse planes for limbs of interest across a wide
set of movements defined by an expert in physical therapy. We also assess the
robustness of these measures relative to rotations of the person with respect
to the sensor, already several works have compared the tracking of the device
with marker based systems used as ground truth, proving that it is acceptable
for rehabilitation systems.[17],[48],[49]. In this chapter we focus on comparing
the results yielded by a stereo system with a single kinect, to determine whether
there is an improvement for the characteristics of interest. We propose a software
implementation to evaluate the conditions determined by an expert in physical
therapy and test it for the case of shoulder abduction.

3.2 Related Work

The use of several kinect sensors as tools for reconstruction of a 3d full human
body was studied by Tong et al. [50], the authors use 3 kinect sensors, one to
scan the upper part of the body, one for the lower part and one for the middle
part, an propose a method of non-rigid alignment to obtain a 3D model of the

27
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user. Jo et al [51] develop a system based on an array of four kinect sensors
aimed at tracking the motion of a single individual in scenarios where various
people are moving, they focus their attention however on tracking the hip center
of each person. Azis et al.[52] propose the use of two kinect sensors for the task
of human action recognition. One of the sensors is located in front of the user
and another one sideways. The strategy used to determine the optimum position
of the 3d joints consists in replacing the coordinates of those joints with non-
tracked as tracking state with the coordinates of the joints given by the other
sensor converted to the common frame of reference. Yeung et al [53], use an
optimization which consists in minimizing the sum of the differences of the joint
positions with the estimated positions subject to the condition that the bone
lengths must remain constant.

3.3 Estimation of the planes of motion in real
time

Following the ideas presented in [44] and [45], a method is developed to estimate
vectors normal to the movement planes.

The Kinect Software Development Kit (SDK) provides the user with the
coefficients of the equation of the floor plane in the form of a vector [A,B,C,D]
such that AX + BY + CZ + D = 0. This vector is used to obtain a vector
perpendicular to the transverse plane.

Vtransverse = (A,B,C,D). (3.1)

It is important to note that this vector is directed from the floor towards
the ceiling.

A vector normal to the frontal plane is calculated by taking the cross product
of two vectors, one connecting the left shoulder to the shoulder center, and one
connecting the left and right shoulders. This is done to ensure that the direction
of the cross product is always from the person towards the sensor.

Vfrontal = (psc − pls)× (prs − pls) (3.2)

Where psc, pls and prs are the coordinates of the shoulder center, left shoul-
der and right shoulder as given by the sensor.

Finally a vector normal to the sagittal plane is calculated using the vectors
normal to the transverse and frontal planes. This vector is, according to the
definition of the previous vectors, oriented towards the left side of the body.

Vsagittal = Vfrontal × Vtransverse (3.3)

The calculation of the angle formed with each plane of motion is finally
done by taking a scalar product of these vectors and the vector of the limb that
represents the movement better.
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Frontal = 90− arccos
limb · Vfrontal
‖limb‖ ‖Vfrontal‖

(3.4)

Transverse = 90− arccos
limb · Vtransverse
‖limb‖ ‖Vtransverse‖

(3.5)

Sagittal = 90− arccos
limb · Vsagittal
‖limb‖ ‖Vsagittal‖

(3.6)

Where limb is the body segment in which we are interested.

3.4 Use of two kinect sensors to improve skele-
tonization

In order to obtain robust measures for the angles formed between the limb of
interest and the planes of motion, the use of two kinect sensors simultaneously
was explored, so that the loss of information due to inferred or not tracked states
by one device would be compensated by the information coming from the other
one. We start by applying a rotation to the joint positions provided by the
Kinect SDK. The rotation matrices relating positions in the coordinate systems
of Kinects KA and KB are found by using the Moore-Penrose pseudoinverse.

RB = A(BTB)−1BT . (3.7)

RA = B(ATA)−1AT . (3.8)

These equations suppose that the Kinect skeletons on both coordinate sys-
tems are expressed using homogeneous coordinates; A is the skeleton coordinates
on the system of Kinect A and B the set of coordinates on the system of Kinect
B. RB is the matrix that allows us to rotate a skeleton in the coordinate system
of Kinect B to the coordinate system of Kinect A.

The idea of having two skeletons is then to determine based on the infor-
mation of these sources the most probable locations of the points that form a
person’s skeleton. This is what we will call the real skeleton. This skeleton
should be close to both of the skeletons yielded by each one of the devices,
and in the cases were there was an incorrect tracking, then we should trust the
information provided by one device more than the other. If p∗i is the vector
representing the position of a joint in the new improved skeleton and pi , qi are
the positions given by the sensors KA and KB , and wAi and wBi are weights
assigned depending on the tracking state of the joint, then we have to rotate
the coordinates given by the sensor KB and translate them so that they become
coordinates in the system of coordinates of KA, and then we have to minimize
the distance of the improved skeleton to each of the skeletons. This can be
formulated as an optimization problem:
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min
∑
iεSA

wAi ||p∗i − pi||
2 + wBi ||p∗i − (Rqi + t)||2 (3.9)

Taking the partial derivatives and solving the corresponding linear systems
the following closed solution is found:

p∗i = (wAi pi + wBi (Rqi + t))/(wAi + wBi ) (3.10)

The weights are calculated according to the ideas exposed in [53]. Once
the optimization is done, the resulting skeleton is used to calculate the angles
formed by the limb of interest with respect to the three planes of motion: frontal,
transverse and sagittal. In order to deal with the noise in the calculated angles,
a median filter is implemented, since threshold based recognition is severely af-
fected by outliers. Empirical tests show that a length of 10 samples is enough
for the smoothing of the signal.

3.5 Noise Reduction

It is well known that the coordinate data produced by the sensor are affected
by noise, which appears as low intensity noise in all measurements and as noise
peaks for the instants in which the joint is no longer being tracked [54]. The
first type of noise affects all quantities derived from measurements taken by the
device, due to the random error propagation when applying arithmetic opera-
tions or trigonometric functions. The second form of noise greatly affects the
calculated quantities (like the vectors normal to the coordinate planes) in those
specific frames in which the tracking of the joints is not reliable. An example
of the noise found in the signals can be found in figure 3.1, this depicts the
calculated frontal angle for an instance of the shoulder abduction movement,
and the result of using kalman filtering on such angle.

Sources in the literature report the use of Kalman filters to tackle the prob-
lem of the noise peaks appearing in the signal [55] [56]. In order to improve
the precision of the system, kalman filtering is used for the measured angular
characteristics.
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Figure 3.1: Kalman filter applied to data given by the sensor

3.6 Framework for action evaluation

The strategy implemented to perform evaluation is based on a priori knowl-
edge of the correct form of the activities of interest. This knowledge allows for
recognition of essential characteristics like the number of phases of movement
to consider, and initial and final positions for each phase.

3.6.1 Evaluation of movement

Our approach follows the ideas presented in [57],but instead of defining for each
movement a different state machine, considers each relevant movement to be
composed of three stages, which are: an initial movement, a stationary stage
in which the user is supposed to hold the limb in position for a certain amount
of time, and a final movement, to go back to the initial position. This is done
according to the specification of an expert in physical therapy, who accompanied
us in the development of this project and considers that in order to strengthen
the muscles in the limbs the final position of the movement must be sustained.

Each one of the states implements another finite-state machine, which con-
sists of four states, a waiting state that checks for the initial position of that
specific phase of the gesture, an idle state in which the initial position has been
detected but real-time evaluation has not been triggered, an execution state in
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which the movement takes place and a final state in which the final position for
the movement has been detected. An error occurring in any of the states implies
going back to the start of the sequence an sending a message to the user. An
error in any of the states triggers a return to the initial state.

3.6.2 Evaluation of a simple action

A simple action can be one of the basic movements defined in biomechanics
(see section 1.2.2). In order to evaluate the performance of this action a finite
state machine is used. The state machine recognizes the initial position; makes
sure that the movement has actually started and validates two conditions that
must be true while the action is being performed, that the movement occurs
approximately parallel to one of the movement planes and that the movement
is taking place in the desired direction; the final condition to be checked is that
the person has reached the final position.

Start Idle Execution F inal
a b c

d
d

ā
b̄

Figure 3.2: State Machine used for recognition of a simple action.

In Figure 3.2 the variable a indicates whether the user has positioned himself
in what is considered to be the initial pose for the gesture, determined by ranges
of the angles of the limb of interest as well as angles that check the standing
position. Variable b is used to determine when the user has started moving, by
checking the angle that is supposed to vary the most during the execution of
the gesture. Variable c indicates when the user has reached the final position
of the movement, and when this happens the general state machine experiences
a transition to the next state. d represents the occurrence of an error during
recognition, which causes the whole system to reset.

3.6.3 Experimental calculation of thresholds

Besides random noise present in measurements taken by the device, an impor-
tant source of variability to be taken into account when implementing activity
models is the morphological and functional variability present in the human pop-
ulation. This variability is hard to model, making it necessary to collect samples
of different people performing the activities, in order to calculate intervals for
the angles of interest that define the activities that want to be evaluated.
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3.6.4 Experimental setup

Experiments were conducted to compare the reliability of angle measurements
taken with one and two kinect sensors, to determine the robustness of the mea-
surements with respect to different orientations of the user and to test the
usability of the proposed state machine based recognition scheme.

For the first experiment five people were asked to perform ten physical activ-
ities, these activities were described in chapter ??. The activities were selected
to include both the upper limbs and the lower limbs, as well as movements in
each of the planes of motion, the reason for this is that a normal exercise routine
includes a variety of movements happening in all planes of motion and involving
several different body parts. The complete description of the activities used in
this study can be found in the appendix at the end of this document.

Coordinates were recorded using three sensors, two of them forming a dual-
kinect system as shown in Figure 3.3. α is the angle formed between the user
and a sensor located right in front of him. The values of alpha for which the
experiment was performed were α of 90◦ , 60◦, 30◦ and 0◦. φ is the angle formed
between the two kinect sensors that were used to improve the skeletonization
performance, the whole procedure was repeated for values of φ of 90◦,105◦, 120◦,
and 135◦.

(a) (b)

Figure 3.3: Experimental setup for data acquisition (a) acquisition with one
sensor (b) acquisition with two sensors, the acquisitions were performed simul-
taneously

For the second experiment fourteen people were asked to perform the same
ten activities, repeating them three times. This experiment was conducted
to assess the reliability of the angles measured across subjects, so a greater
sample was used. Each set of activities was performed four times, varying the
orientation of the person with respect to the sensor. Results exclude the case
of the person standing sideways with respect to the sensor, because in such
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case the tracking was not reliable for the most part. The third experiment was
conducted with eight people, who were asked to use the system after receiving
basic instruction about the execution of the shoulder left abduction. All the
experiments were performed with the sensor placed on a table 70 cm above the
floor, and the subjects were asked to stand at a distance of 1.8 m from the
sensors, so that their entire skeleton may be tracked by the device.

3.7 Results

This section shows comparisons of the performance of two sensors and a single
sensor, we also show the variation of the proposed angles when measured across
different subjects and different orientations.

The reliability of the measurements taken with two Kinect sensors and a
single Kinect was compared on the basis of the success rate of the tracking. A
tracking is successful if the calculated angles with respect to the three planes
show distinct repetitions and low noise, as shown in Figure 3.4.
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Figure 3.4: Example of both successful and unsuccessful tracking, the activity
performed was shoulder flexion, with the person in front of the sensor.

The results of the first experiment are shown in Tables 3.1 and 3.2, which
summarize the effect of varying the angle between the two Kinects and varying
the angles of the person with respect to the sensor. The angle shown in the
Table 3.2 is the angle formed between a vector normal to the frontal plane
directed towards the sensor and positive x axis, when the x axis is connecting
the shoulders of the user, and its positive direction is considered to be the right.
This means that an angle of 90◦ indicates a person standing in front of the
sensor, and an angle of 0◦ indicates a person that only shows his left side to
the sensor. The errors were maximum for the 0◦ rotation, because one of the
shoulders is occluded and the frontal plane can not be estimated accurately.
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Table 3.1 shows the effect of varying the angle between the two kinect sensors
on the success of the tracking. Each row corresponds to an activity, and the
percentage of success is displayed for each one of the four angles between the
sensors. Additionally the rate of success of a single sensor is presented, in
order to help the comparison, the result that is higher when comparing the dual
kinect system to a single kinect is highlighted.The success of the tracking with
two kinect sensors was hardly affected by this angle. In the case of activities
difficult to track like internal and external rotations, varying the angle between
the sensors did not offer any significant improvement.

Activity Sensors Angle (◦)
90 105 120 135

Hip 2 65 65 70 60
Abduction 1 80 90 60 95
Shoulder 2 90 80 80 85
Abduction 1 80 85 80 80
Hip 2 55 60 75 60
Extension 1 60 60 70 70

Elbow 2 95 95 90 90
Extension 1 85 90 90 95
Shoulder 2 70 90 65 75
Extension 1 65 90 75 75
Hip 2 45 40 40 65
Flexion 1 50 60 55 75
Elbow 2 95 85 80 90
Flexion 1 95 95 90 90
Shoulder 2 90 75 80 70
Flexion 1 60 65 55 50
Shoulder 2 45 50 20 25
Ext. Rotation 1 25 35 30 20
Shoulder 2 30 40 15 20
Int. Rotation 1 20 40 10 60
Average 2 68 68 61,5 64

1 62 71 61,5 71

Table 3.1: Successful tracking percentage for different orientations of the two
sensors

Table 3.2 shows the effect of the rotation of the person with respect to the
kinect sensor in the success of the tracking. Each row corresponds to an activity,
and the percentage of successful tracking is shown for each rotation, both for
two sensors and a single sensor, the best result between the dual kinect system
and a single sensor is highlighted. Improvements when using two sensors were
found for shoulder flexion. The one sensor approach yields better results when
trying to track movements of the lower limbs.
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Activity Sensors Angle (◦)
90 60 30 0

Hip 2 90 80 75 25
Abduction 1 100 85 90 70
Shoulder 2 90 90 95 60
Abduction 1 100 100 75 35
Hip 2 75 70 70 35
Extension 1 85 70 60 45

Elbow 2 85 95 100 85
Extension 1 85 100 100 80
Shoulder 2 80 95 90 55
Extension 1 100 90 85 50
Hip 2 80 80 35 0
Flexion 1 90 100 50 20

Elbow 2 100 95 90 65
Flexion 1 100 100 95 75
Shoulder 2 95 75 90 55
Flexion 1 5 90 75 60
External 2 35 35 35 5
Rotation 1 55 30 30 20
Internal 2 40 40 20 5
Rotation 1 20 30 40 10
Average 2 77 75,5 70 39

1 74 79,5 70 46,5

Table 3.2: Successful tracking percentage for different orientations of the person
with respect to the sensors

The means of the angle variation measured for each activity are presented
in Table 3.3. These are calculated by taking the difference between the mean
of the angle formed in the final stage of the activity and the mean of the angle
formed in the initial stage of the activity.
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Activity Angle (◦) Mean angle variation and standard deviation
Frontal Transversal Sagittal

Hip 0 2.1± 6.8 26.4± 4.4 30.8± 4.7
Abd. 30 8.3± 8.7 29.6± 6.3 34.0± 6.9

60 11.3± 9.2 29.9± 7.0 37.3± 7.1
Should. 0 3.9± 6.4 80.7± 5.9 64.7± 4.5
Abd. 30 9.8± 7.4 74.0± 7.0 58.0± 4.8

60 14.8± 10.7 72.1± 8.0 43.0± 29.0
Hip 0 21.6± 8.6 26.9± 7.4 6.7± 4.3
Ext. 30 23.0± 5.1 30.1± 5.7 12.6± 6.5

60 34.3± 2.1 36.1± 2.4 12.0± 7.2
Elbow 0 67.7± 9.9 79.8± 11.1 1.3± 8.3
Ext. 30 69.2± 6.6 71.2± 7.2 13.45± 8.4

60 62.0± 6.6 74.2± 4.2 20.6± 12.2
Should. 0 43.4± 6.8 42.2± 5.0 10.3± 5.8
Ext. 30 30.7± 7.6 34.6± 9.6 15.2± 7.2

60 25.7± 5.0 29.0± 9.0 13.8± 8.1
Hip 0 39.7± 7.2 33.1± 4.5 4.7± 3.8
Flex. 30 35.1± 6.1 30.4± 6.9 5.4± 4.9

60 31.9± 8.1 31.4± 16.7 2.2± 5.4
Elbow 0 24.1± 5.8 128.2± 4.8 2.8± 9.0
Flex. 30 37.2± 8.3 124.4± 6.5 12.3± 9.0

60 32.0± 5.1 122.7± 8.6 12.9± 9.5
Should. 0 54.8± 4.6 68.8± 5.6 14.3± 8.0
Flex. 30 72.1± 9.9 83.1± 7.0 6.5± 7.5

60 82.9± 6.7 77.1± 4.8 21.2± 16.4
Ext. 0 40.4± 10.7 5.4± 13.1 41.7± 11.9
Rot. 30 40.2± 16.2 7.7± 14.3 34.6± 27.6

60 32.6± 5.2 3.8± 11.2 31.2± 9.7
Int. 0 38.7± 17.1 19.9± 19.1 31.6± 8.0
Rot. 30 41.3± 10.9 27.1± 14.2 18.2± 17.1

60 39.1± 13.2 16.7± 12.3 26.1± 14.8

Table 3.3: Means of the angle variation for different activities

Together with the standard deviation of the final positions the values of the
final angles measured can be used to determine the thresholds for the recogni-
tion using Finite State Machines, so long as the standard deviation observed is
relatively small. The standard deviations observed for the angles measured in
what is considered the final position of the movement are presented in Table
3.3. As expected, even though the amplitudes of the movements do not vary
significantly, the measurement error increases when the subject is not standing
in front of the sensor, this is manifested in an increase in the standard deviation.
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Activity Angle (◦) Initial Final
Hip Transversal equal µ3 > µ2

Abduction µ3 > µ1

Sagittal µ1 > µ3 µ1 > µ3

µ2 > µ3 µ2 > µ3

Shoulder Transversal equal equal
Abduction Sagittal µ1 > µ3 equal

µ2 > µ3

Hip Frontal µ2 > µ3 equal
Extension Transversal equal µ3 > µ1

µ3 > µ2

Elbow Frontal equal µ2 > µ3

Extension Transversal equal µ3 > µ2

Shoulder Frontal µ2 > µ1 µ2 > µ1

Extension µ3 > µ1 µ3 > µ1

Transversal µ2 > µ3 µ2 > µ1

µ2 > µ3

Hip Frontal equal µ1 > µ2

Flexion µ1 > µ3

µ2 > µ3

Transversal equal equal
Elbow Flexion Frontal equal equal

Transversal equal equal
Shoulder Frontal µ2 > µ1 µ2 > µ1

Flexion µ3 > µ1

Transversal µ3 > µ1 µ3 > µ1

µ2 > µ1 µ2 > µ1

External Frontal µ1 > µ2 equal
Rotation Sagittal equal µ1 > µ2

Internal Frontal µ1 > µ2 µ1 > µ2

Rotation µ3 > µ2 µ3 > µ2

Sagittal equal µ1 > µ2

µ1 > µ3

Table 3.4: Repeated measures ANOVA result for relevant angles with respect
to rotations of the subject

To determine how sensitive the calculated angles are to the rotation of the
person in front of the sensor, it is necessary to know whether the means of the
angles for the different orientations are statistically different. Since measure-
ments are done over the same subjects for the different orientations, repeated
measures ANOVA was performed, the results are shown in Table 3.4. There,
µ1 stands for the mean of the angle when the person is standing in front of the
sensor, while µ2 and µ3 are the means for rotations of 30◦ and 60◦. An angle is
considered robust to small rotations when µ1 and µ2 are not statistically differ-
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ent. It was found that for both shoulder and hip abductions the transverse and
frontal angles were robust to small rotations. The angles for shoulder extension
varied in great extent between the orientations of the user. For flexion move-
ments it was found that the frontal angle is not robust, and recognition would
depend on the transverse angle. Shoulder rotations yielded the worst results,
since even small rotations cause great variations in the measured angles, making
it impossible to determine recognition intervals invariant to rotations.

Results of the third experiment results are summarized in Table 3.5. The
table shows for each one of the subjects the number of times that the activity
was correctly executed, which in all cases was 10, and the number of times that
the software correctly identified them as according to the specification. Only for
one subject it was found that the normal movement of the arm was outside the
thresholds found by taking the mean of the angles in the database and extending
intervals of 2 standard deviations around these means. Errors were usually due
to sudden increases in the calculated angles, or incorrect determination of the
tendency of the angles either to increase or decrease.

Subject Score Subject Score
1 7/10 5 5/10
2 7/10 6 8/10
3 8/10 7 10/10
4 7/10 8 7/10

Table 3.5: Success rate of the recognition for different subjects

3.8 Conclusion

Experiments were conducted to determine whether the use of two kinect sensors
can improve the stability of angles formed with the planes of motion for physical
activities common in coaching and therapy. The repeatability of such angles
was also studied across different subjects with respect to rotations of the person
relative to the sensor.

The use of two kinect sensors offered a marginal improvement when com-
pared to the use of a single sensor. It proved to be especially useful for shoulder
flexion, in which the limb moves towards the camera. It remains interesting
to determine whether different optimization approximations could yield better
results.

For the case of shoulder flexion, and rotations the proposed angles were not
found to be robust enough, this is due to the movement of the arm towards the
camera and the occlusions arising from it. For these cases other characteristics
must be used.

The evaluation of movement using Finite State Machines proved to be reli-
able in finding the mistakes made while performing the tested activity.



Chapter 4

HMM and DTW for
Evaluation of therapeutical
gestures using kinect

Results regarding the ability of the proposed approach to detect abnormal move-
ment sequences were published in the 11th International Symposium on Visual
Computing, that took place in Las Vegas, Nevada in December 14-16, 2015.[58]

This chapter presents a method for the detection of deviations from the
correct form in movements from physical therapy routines based on Hidden
Markov Models, which is compared to Dynamic Time Warping. The activities
studied include upper an lower limbs movements, the data used comes from a
kinect sensor. Correct repetitions of the activities of interest were recorded,
as well as deviations from these correct forms. The ability of the proposed
approach to detect these deviations was studied. Results show that a system
based on HMM is much more likely to determine if a certain movement has
deviated from the specification.

4.1 Introduction

Physical therapy is a common step in the rehabilitation process for many in-
juries and diseases. Movements used in therapy and conditioning routines are
well defined in order to strengthen specific body segments and prevent injuries.
The usual method by which one of these movements is evaluated is by having
a human expert observe it and give feedback to the person executing it. This
introduces subjectivity in the evaluation process and implies the need for expert
personnel in rehabilitation, increasing the costs for the health system. Develop-
ing a low cost, precise evaluation system for therapeutical gestures could help
ease the burden on health systems all over the world while increasing objectivity
in the measurements.

40
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Most of the research on the computer vision community focused on human
activities has been directed towards the recognition of activities on video se-
quences. An extensive review can be found in Mohamed et al[59]. In the case
of rehabilitation and therapy however the main focus lies on the quality of the
movement executed by the patient, and not in the identification of the activity.
This means that an automatic system must be able to determine whether the
patient has executed the movement according to the specification of an expert.

Several different problems arise however when trying to translate movement
specifications into software conditions, as clearly evidenced by the work of Vel-
loso et al [42], where several experts in weightlifting miscalculated the ideal
angles to be formed during execution of common exercises. Even for a clearly
defined activity there remains a set of problems to be tackled, like the noise
inherent to the measurements taken by the sensors used to monitor the activity,
and self-occlusions when using a computer vision system. Another problem lies
in the generalization of the evaluation approach to different subjects, given the
variability inherent in the human population.

Two widespread techniques used to measure the adjustment of an observa-
tion to a pattern of data in a time series are Dynamic Time Warping (DTW)
and Hidden Markov Models (HMM). The former consists in aligning a sequence
to another of different length by means of finding the path that minimizes the
sum of distances between all corresponding pairs of elements, the technique can
be extended to handle vector quantities by using euclidean distance between
vectors. HMM parametric statistical models, that can be trained using obser-
vations from a process evolving in time, the likelihood of any other sequence of
being generated by the model can then be calculated after training.

Most of the works based on the use of DTW to recognize quality of move-
ment do not present any experiment to validate the performance of the method
when applied to sequences that deviate slightly from the correct form. In this
work we use experimental data collected among 14 subjects who were instructed
to perform as set of physical activities according to the specifications of an
expert,data from ten different subjects who were instructed to deviate from
the correct performance for the activities was also collected. This was used to
test two evaluation approaches, one based on Multi-Dimensional Dynamic Time
Warping (MDDTW) and another based on Hidden Markov Models.

4.2 Related Work

Most proposals in the field of tele-health based on the tracking offered by the
Kinect device make use of Finite State Machines or Dynamic Time Warping
(DTW) [60] to determine if the performed movement is close to the specification
by the expert. An example of the first approach is Velloso et al.[42], who
developed a system to help evaluate movements in a physical therapy context,
by recording ten repetitions of a movement and then obtaining a model for the
activity. Then a direct comparison is used between such models and the observed
values to determine whether the activity has been correctly executed. The
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second approach has been used by Su et al. [61] who proposed recording a single
instance of an activity under supervision and using DTW to compare sequences
of coordinates of the hands. The degree of similarity is then determined by
using fuzzy membership functions, one for the DTW result and one for the
speed of the movement. Cuellar et al. [62] developed a system that aligns a
repetition of an activity with a template recorded by a therapist, obtaining a
score that is the average of scores for each frame of the sequence after aligning
them with DTW, the result becomes the input of an evaluation function which
is a Gaussian Function or a Gaussian Bell Function, used to assign a score to
the movement.

The use of classification methodologies has also been studied as a means to
detect mistakes, this is the case of Staab[63], who uses Support Vector Machines
with different kernels to recognize common mistakes for the case of three physical
activities. The main downside of this approach is the fact that it becomes
unfeasible to train classes for all the different kinds of errors that can appear
while performing a certain activity, as stated in [2].

Alternatives based on the use of statistical models to determine deviations
from normality have also been proposed, Paiement et al. [39] use such a model
to detect abnormalities in a sequence of movements of a person moving on stairs,
and determine empirically the threshold to consider an instance of observations
as normal.

Outlier recognition based on HMM is applied to fault detection in antennae
by Smyth et al. [64]. Yan et al. [65] propose a methodology based on the
Wavelet transform and HMM to detect outliers and test it on data coming from
depth measurements. Zhu et al [66] use a modified HMM model to detect faults
in industrial processes. The advantages of a system based on HMM to detect
abnormal movement sequences are that it can be trained only with repetitions
of movements considered to be normal, that it can model sequential data and
that depending on the training sequences it can be adjusted to be more or less
tolerant to deviations from normality.

4.3 Methods

This section shows the calculations performed in order to characterize the move-
ments taken into account in the database collected, it also presents the algo-
rithms used for evaluation of performance as well as the mechanism used to
determine whether a sequence is considered to be correct or not.

4.3.1 MDDTW

Let X and Y be two sequences, X = [x1, x2...xN ] Y = [y1, y2, ..., yM ]. The DTW
technique finds a matching of the two sequences that minimizes the distance
between the two, for this two warping functions wx and wy are defined such
that wx(1) = 1, wx(K) = N , wy(1) = 1, wy(K) = M , so that the elements of
the alignment would be pairs of corresponding warped entries (wx,wy).
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Let DTW (X,Y ) be the accumulated distance between two sequences. The
purpose is to find the alignment between the sequences that minimizes the
distance between the two:

DTW (X,Y ) = min
wx,wy

K∑
k=1

d(xwx
(k), ywy

(k)) (4.1)

The dynamic programming algorithm proposed by [60] computes the ele-
ments of the distance matrix between two sequences iteratively as

DTW (i, j) = min


DTW (i− 1, j) + d(i, j)

DTW (i, j − 1) + d(i, j)

DTW (i− 1, j − 1) + d(i, j)

(4.2)

This means that in each step the algorithm attempts to minimize the ac-
cumulated distance between the sequences. In order to avoid computing all of
the possible entries of the accumulated distance matrix, a restriction is usually
enforced between the pairs of values of the sequences being considered

j − r ≤ i ≤ j + r (4.3)

Multi-Dimensional Dynamic Time Warping is an extension of the DTW al-
gorithm in which the warping path and the distance between two sequences are
computed by taking the distance between two vectors on each step of the algo-
rithm. This allows the use of a pattern defined as a trajectory in an hyperspace
instead of a single valued function.

Let two example sequences be

S1 =

[
−0.60 −0.65 −0.71 −0.58 −0.17 0.77 1.94
−0.46 −0.62 −0.68 −0.63 −0.32 0.74 1.97

]
(4.4)

S2 =

[
−0.87 −0.84 −0.85 −0.82 −0.23 1.95 1.36 0.60 0.0 −0.29
−0.88 −0.91 −0.84 −0.82 −0.24 1.92 1.41 0.51 0.03 −0.18

]
(4.5)
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Figure 4.1: Example application of the implemented MDDTW algorithm ap-
plied to two toy sequences

Figure 4.1 shows the result of applying the technique to two example se-
quences. The two example sequences were taken from [67]

Given a set of trajectories considered as correct movements X1, X2, ..., XN ,
the idea is to extract from these set a trajectory that best represents the move-
ment of interest. This however poses a problem, due to the variability that can
be found in any human population. With this in mind, the trajectories were
normalized. The first problem with the normalization is that people might be
located differently with respect to the sensor. To account for this the origin of
coordinates is shifted, this is done by subtracting the coordinates of the shoulder
center from the coordinates of the limb of interest when the activity is performed
with the upper limb, and the coordinates of the hip center when the activity is
performed with the lower limbs.

Let a sequence of interest be Xi as defined by Equation 4.6.

Xi =


x1y1
z1

 ...

xmym
zm

 (4.6)

Then the coordinates of the shoulder center evolve in time to create an
analogous sequence, as is shown in Equation 4.7.

Sc =


Sc1xSc1y
Sc1z

 ...

ScmxScmy
Scmz

 (4.7)

The sequences are modified according to Equation 4.8, where the subtraction
is performed for each element of the sequences.

Xi = Xi − Sc. (4.8)

Other problem that arises is the fact that the limbs from different people
have different lengths. In order to deal with this the coordinates are divided by
the distance between the shoulders, when analyzing upper limb movements, and
by the distance between the hips for sequences of the lower limbs. Equations
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4.9 and 4.10 show the sequences of coordinates of both shoulders, from which a
new sequence D is obtained by subtracting each of the corresponding elements
of the sequence.

Rs =


Rs1xRs1y
Rs1z

 ...

RsmxRsmy
Rsmz

 . (4.9)

Ls =


Ls1xLs1y
Ls1z

 ...

LsmxLsmy
Lsmz

 . (4.10)

D = Rs − Ls. (4.11)

The final sequence Xi is obtained by dividing each element of Xi by each
element of the sequence D, as shown in Equation 4.12.

Xi = Xi/D. (4.12)

Once this is done MDDTW is calculated for all the possible pairs of se-
quences.

Then a trajectory is selected for which the sum of these distances is minimal,
this is considered the template for the activity under consideration.

Once this is done, the distance of all the sequences to the template is cal-
culated, and an interval constructed around the mean of this distance. For
evaluation the distance of the test sequences to the template is calculated, and
those whose distance lies within the interval are considered to be close enough
to the correct repetitions to be also considered correct.

4.3.2 HMM

Hidden Markov Models are stochastic models that consider an observed signal
as the result of the transition of a system between several states, in each of these
states there is a certain probability that one symbol might be observed. They
have been used in speech processing [68], and outlier detection[65] ,[66].

An HMM is characterized by:

� N,the number of states of the model, these states are hidden, meaning
that it is impossible to know precisely in which of the states the model is.

� M the number of observations, these are the symbols that are supposed
to be generated probabilistically in each of the states.

� A, the state transition probability distribution.

If the system has N different possible states S1, S2, ...SN and the state at
time t is qt, the elements of the transition matrix A describe the probability
of passing from one state to another.

aij = P [qt = Sj |qt−1 = Si] i ≤ N j ≤ N (4.13)
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� B, the observation symbol probability distribution in each state. The ob-
servation matrix B describes the probability of observing a certain symbol
while the system is in each of its states. If the system has N different pos-
sible states S1, S2, ..., SN and in each state M different symbols may be
observed, the elements of the observation matrix B are

bij = P [vj at t|qt = Si] i ≤ N j ≤M (4.14)

where v1, v2, ..., vM is the set of all the possible symbols that can be emitted
by the system.

� the initial state distribution π, is a vector that gives the probabilities of
the system being in one of the states for the initial observation.

π = P [q1 = Si] i ≤ N (4.15)

An HMM model is totally specified when the transition matrix A, the ob-
servation matrix B and the vector of initial states π are known.

Two broad categories of HMM models exist, the left-right HMM in which
the transitions between state have the property that it is impossible to pass from
one state to the previous one as shown in Figure 4.2, and the ergodic HMM in
which a transition can occur between any pair of states, as shown in Figure 4.3.

aij = 0 i ≤ j (4.16)

S1 S2 S3 S4

Figure 4.2: Example of a left-right HMM
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S1

S2

S3

S4

Figure 4.3: Example of an ergodic HMM

There are three fundamental problems associated to the use of HMMs.

� How to compute the probability that a given sequence was generated by
the model. This problem is solved by using the forward algorithm.

� How to know what was the sequence of states that the model went through
for a given observation sequence. This problem is solved by using the
Viterbi algorithm.

� How to adjust the parameters of the model so that the probability of
observing a given set of observation sequences. This problem has no exact
solution, but the Baum-Welch algorithm is used to arrive to local solutions.

In order to specify a certain movement by using HMMs we first determine
three characteristics of the movement which are the angles formed with each
of the three movement planes shown in Figure 1.1.To accomplish this, vectors
normal to the planes must be estimated first by using the data coming from the
sensor. These calculations are performed according to equations 3.1, 3.2, 3.3.
Once the vectors are estimated, the angles formed with each one of the planes
of motion can be estimated using the equations 3.4, 3.5, 3.6.

Once the sequences of angles are obtained, they need to be quantized in
order to use the discrete version of HMM, this quantization is done according
to Figure 4.6. This figure shows the coordinate system used by the sensor
and the planes of motion. Frontal angle values are considered positive when
the limb stands on the side of the frontal plane determined by the direction
of the positive z axis, and negative otherwise. Transverse angle values are
considered positive if the limb stands in the side of the transverse plane marked
by the direction of the positive y axis, and negative otherwise. Sagittal angle
values are considered positive if the limb stands in the side of the sagittal plane
marked by the direction of the positive x axis, and negative in the opposite
sense. Since the angle between a vector and a plane can be any value between
0 and 90 degrees, the quantizer considers a range of -90 to +90 degrees. For
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any angular value there exists a symbol assigned to it, so that the sequence of
angles becomes a discrete sequence, all of the possible values of the calculated
angles are considered, so that any observed sequence can be assigned a certain
probability. In order to account for the noise in the measurement a variation of
ten degrees was considered as sufficient to change the emitted symbol.

−100 −50 0 50 100
0

2

4

6

8

10

12

14

16

18

angle value

qu
an

tiz
ed

 v
al

ue

Figure 4.4: quantizer

Figure 4.5: coordinate system

Figure 4.6: Coordinate system and values for the quantizer

Once the sequences corresponding to the correct repetitions of the activities
have been quantized, they can be used to train the model, this means estimating
the structures of matrices A and B that maximize the probability of observing
such sequences. Baum -Welch algorithm is used for this purpose.

As an example we show these matrices for the case of Hip Flexion:

A =

0.9050 0.0950 0.0000
0.0031 0.9919 0.0050
0.0000 0.0706 0.9294

 . (4.17)

B =

0 0 0 0 0 0 0 0 0.9714 0.0286 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.0012 0.9988 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.0224 0.9776 0 0 0 0 0 0 0 0

 .
(4.18)

It is clear from the structure of the matrix A, that the HMM model generated
is a left-right model. This is due to the sequential nature of the movement data
used, in which the the signal values have a tendency to increase or decrease for
the whole duration of the training sequence.

Matrix B shows an important characteristic of the trained models, the fact
that they are being trained only with a single phase of the activity implies that
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Figure 4.7: Modified sequence containing an outlier

the symbols that the model can emit are very limited, and the probability of
emitting a different symbol becomes an extremely small number.

The model can be modified manually so that the presence of a single outlier
does not affect detecting the movement as occurring according to the specifica-
tion. This is achieved by modifying the structure of matrix B and recalculating
the probabilities for the sequences. Figure 4.7 shows a synthetic error sequence
containing a single outlier for the sagittal angle during a Hip Flexion movement.

Calculation of the probability of observing this sequence yields a numerical
error result on Matlab, owing to the fact that it is an extremely small number,
but upon modyfing matrix B to make it probable to emit 12 as a symbol as
shown in equation 4.19, the probability of observing the synthetic sequence
becomes finite, and is equal to −27.8073.

B =

0 0 0 0 0 0 0 0 0.9714 0.0286 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.0012 0.9988 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.0224 0.8 0.1776 0 0 0 0 0 0 0

 .

(4.19)
By taking all the sequences considered to be correct and calculating their

probabilities according to the trained HMM, an interval can be constructed of
two standard deviations around the mean, for this particular case the interval
found is [−28.9661 8.7130].The synthetic sequence then is classified as a se-
quence that might be generated by the model. This means that the manually
modified model is robust to the presence of a few outliers, in a scenario where a
threshold detection would have failed. Introducing two outliers, however, yields
a numerical error, meaning that the number is extremely small.

The identification of mistakes can be done by analyzing the symbols emitted
in the erroneous repetitions and comparing them with the symbols emitted
in the training repetitions.Symbols that are greater or smaller than the ones
present in the training repetitions indicate angles that are either too big or too
small. This allows for feedback expressed in terms of the angular quantities, at
the end of the recognition of each phase of the activities.

With the trained model all of the trained sequences are assigned a probability
by using the forward algorithm, and an interval is built around the mean of such
probabilities, by taking two standard deviations.

Evaluation of new sequences proceeds as follows: error sequences are quan-
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tized and then assigned a probability by using the forward algorithm. If this
probability lies on the interval built with the correct repetitions, the sequence
is considered to be correct.

4.4 Experimental Setup

Experiments were conducted to determine the effectiveness of the proposed al-
gorithms to reject sequences that constitute deviations from what is considered
a correct execution of the movements of interest.

Correct repetitions of the activities were recorded by asking 14 subjects to
perform each one of the ten physical activities according to the specification
three times.The activities considered are exercises commonly found in physical
therapy and rehabilitation routines. The list of activities is shown in table 4.1.

Table 4.1: Activities of interest

1. Shoulder Extension 6. Hip Abduction
2. Shoulder Flexion 7. Shoulder Internal Rotation
3. Shoulder Abduction 8. Shoulder External Rotation
4. Hip Extension 9. Elbow Flexion
5. Hip Flexion 10. Elbow Extension

For a more complete description of the activities the reader can see appendix
2.2

This means that 42 repetitions were recorded for each one of the activities
of interest. Some of these were excluded from the analysis based on the noise
present in the signals, in order to obtain a pattern as well defined as possible.

A database of mistakes during the execution of activities was collected by
asking ten persons to perform the incorrect form of the activity ten times. This
gives us a total of 100 incorrect repetitions for each error considered. The
number of ways in which an activity can be incorrectly executed is potentially
infinite, so in this study we chose to select errors that corresponded to common
deviations in the normal performance of the activities. Since the evaluation is
based on differences between the observed sequences, it is logical to think that
much greater deviations than the ones considered here would be detected even
more easily by an algorithm able to detect the ones presented here.

The mistakes are explained as follows:
For the abduction exercises, Error 1 consists in deviating the limb of interest

towards the front of the body while performing the activity, increasing the angle
formed with the frontal plane, this is shown in figure 4.8.Error 2 consists in
deviating the limb towards the back of the body, decreasing the angle formed
with the frontal plane, this is shown in figure 4.9.
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Figure 4.8: Erroneous performance consisting in moving the limb towards the
front of the body

Figure 4.9: Erroneous performance consisting in moving the limb towards the
back of the body

For extension and flexion exercises Error 1 consists in deviating the limb
away from the body , increasing the value of the angle formed with the sagittal
plane, this is shown in Figure 4.10. Error 2 consists in moving the limb towards
the body, decreasing the angle formed with the sagittal plane, this is shown in
Figure 4.11.
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Figure 4.10: Erroneous performance consisting in moving the limb away from
the body plane

Figure 4.11: Erroneous performance consisting in moving the limb closer to the
body

For shoulder rotation exercises error1transversal consists in deviating the
limb towards the floor, decreasing the value of the angle formed with the trans-
verse plane,this is shown in Figure 4.12.error2transversal consists in deviating
the limb upwards, increasing the value of the angle formed with the transverse
plane, this is shown in Figure 4.13.



CHAPTER 4. HMM AND DTW 53

Figure 4.12: Erroneous performance consisting in moving the limb downwards

Figure 4.13: Erroneous performance consisting in moving the limb upwards

In our analysis of performance we have chosen to divide the activities per-
formed in two basic movement phases, one that consists in the limb of interest
moving away from the body and another that moves it back to the initial po-
sition. This allows an evaluation that is closer to the ideal of real-time perfor-
mance for such a system, since it would be frustrating for the user to receive a
negative evaluation of his or her performance once the complete movement has
been performed.

The first experiment was done in order to test the ability of a DTW based
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system to reject movements that deviate from the specification. It consisted
in determining using the correct repetitions for the activities both a template
and an interval of distances to consider a repetition as correct. The data used
in these experiments consists in coordinates of the limb of interest normalized
to take into account relative displacement to the sensor and person size. The
distance to the template is then calculated for all the incorrect repetitions on
both phases of the movement and if it lies within the interval, the repetition
can be considered correct.

The second experiment varied the data fed to the DTW recognition scheme,
by using the estimated angles with respect to the planes of motion. A sequence
of vectors containing the angles formed with these planes is used and a template
calculated that minimizes the distance to the other sequences. Similar angular
sequences are also calculated for the incorrect repetitions.

The third experiment consisted in training HMM models using the correct
repetitions of the activities, the data used to train the model consists in the
same coordinate sequences used for the first experiment. Since a model can be
trained using discrete sequences, an HMM model is trained for each one of the
characteristics of interest, for each one of the movement phases.This means that
for each phase of an activity, three HMM models are generated. The models
were then tested with the incorrect repetitions, by using the forward algorithm,
to determine the model’s ability to reject them.

The fourth experiment consisted in training HMM models varying the se-
quences used for training, this time the angular sequences from experiment two
are used. Once again an interval of probability values is obtained and the in-
correct repetitions are tested by determining whether the probability assigned
to them by the model lies within the interval.

4.5 Results

This section shows the recognition percentages for the errors taken into account
for each one of the ten activities and for the two methods studied.

Table 4.2 shows the results of the first experiment, the percentages corre-
spond to erroneous sequences within the error database that were detected as
such. Percentages of error recognition are shown for both the phases in which
the movement has been divided. Since the technique takes into account vectors
used to describe the trajectories, only one metric distance is obtained for each
error sequence and based on this distance the percentage of correctly refused
erroneous sequences is calculated.
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Table 4.2: Percentage of error detection using MDDTW with coordinate se-
quences (Experiment 1)

Phase 1 Phase2
Activity Error 1 Error 2 Error 1 Error 2
Shoulder Abduction 47 38,88 100 61,11
Hip Abduction 18,75 48,10 15 29,11
Shoulder Extension 22,73 6 0 1
Hip Extension 29,21 11 16,85 11
Elbow Extension 47,37 50 46,32 50
Shoulder Flexion 51 5,15 46 4,12
Hip Flexion 20 12,12 24 13,13
Elbow Flexion 47 71 44 60
Internal Rotation 71,59 7,29 9,09 16,67
External Rotation 52 40 49 14

Table 4.3 shows the results of the second experiment, percentages show the
success of the technique in rejecting erroneous sequences executed by the par-
ticipants.

Table 4.3: Percentage of error detection using MDDTW with angle sequences
(Experiment 2)

Phase 1 Phase 2
Activity Error 1 Error 2 Error 1 Error 2
Shoulder Abduction 34,29 7,78 62,9 18,89
Hip Abduction 22,5 11,4 13,75 2,53
Shoulder Extension 1,13 1 0 1
Hip Extension 3,37 0 4,5 2
Elbow Extension 22,11 30,21 8,42 11,46
Shoulder Flexion 12 1,03 3 1,03
Hip Flexion 0 1,01 0 0
Elbow Flexion 35 51 36 10
Internal Rotation 0 0 1,14 0
External Rotation 1 1 1 1

Table 4.4 show the results of the third experiment. A different HMM model is
trained for each one of the three angles of motion (sagittal, frontal and transver-
sal). Three results are then shown for each one of the phases of movement and
for each one of the types of errors considered. The highest result of the three can
be considered the actual recognition of errors accuracy for HMM based models.
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Table 4.4: Error Recognition Results for HMM using angle sequences

Phase 1 Phase 2
Activity Error1 % Error2 % Error1 % Error2 %
Shoulder
Abduction

90.0 92.9 21.4 34.4 96.7 26.7 77.1 75.7 82.9 52.2 78.9 92.2

Hip
Abduction

32.5 62.5 41.3 36.7 30.4 8.9 22.5 60.0 41.2 10.1 21.5 7.6

Shoulder
Extension

14.8 38.63 64.8 45.0 3.0 7.0 25.0 36.4 76.1 51.0 1.0 9.0

Hip
Extension

78.7 40.4 71.9 72.0 30.0 25.0 21.3 28.9 95.5 37.0 24.0 57.0

Elbow
Extension

17.9 35.8 54.7 26.0 57.3 21.9 63.1 28.4 87.4 79.2 32.3 98.9

Shoulder
Flexion

17.0 54.0 68.0 10.3 63.9 77.3 33.0 72.0 25.0 30.9 78.3 47.4

Hip
Flexion

12.0 7.0 99.0 27.3 16.2 29.3 0.0 7.0 97.0 22.2 11.1 28.3

Elbow
Flexion

89.0 89.0 99.0 90.0 81.0 25.0 19.0 46.0 78.0 18.0 78.0 55.0

Internal
Rotation

68.2 77.3 32.9 43.3 75.3 39.2 48,9 73.9 27.3 39.2 77.3 24.7

External
Rotation

16.0 88.0 25.0 17.0 68.0 38.0 30.0 91.0 43.0 38.0 38.0 59.0

Table 4.5 show the results of the fourth experiment. Three models are
trained, one for each one of the coordinates X,Y,Z of the sequence describ-
ing the activity. The highest percentage can be considered the recognition of
deviation from normality for HMM models under these circumstances.

Table 4.5: Error Recognition Results for HMM using coordinate sequences

Phase 1 Phase 2
Activity Error1 % Error 2 % Error1% Error2%
Shoulder
Abduction

95.7 17.1 84.3 96.7 12.2 98.9 94.3 61.4 75.7 98.9 30.0 97.8

Hip
Abduction

70 83.8 71.3 72.2 81.0 54.4 50.0 40.0 70.0 36.7 27.8 48.1

Shoulder
Extension

68.2 35.2 4.5 56.0 37.0 16.0 67.0 50.0 1.1 56.0 44.0 4.0

Hip
Extension

73.03 84.3 80.9 67.0 83.0 80.0 69.7 74.2 74.2 63.0 77.0 70.0

Elbow
Extension

36.8 7.3 14.7 62.5 13.5 14.6 14.7 7.4 10.5 15.6 12.5 15.6

Shoulder
Flexion

89.0 23.0 75.0 81.4 18.6 69.1 74.0 5.0 88.0 73.2 4.1 82.5

Hip
Flexion

81.0 0.0 1.0 52.5 4.1 0.0 52.0 0.0 2.0 34.3 3.0 5.0

Elbow
Flexion

94.0 66.0 49.0 94.0 79.0 71.0 84.0 6.0 73.0 91.0 7.0 86.0

Internal
Rotation

50.0 46.0 1.1 37.5 51.0 2.1 28.41 36.4 1.1 26.0 35.4 2.1

External
Rotation

0.0 31.0 2.0 1.0 41.0 2.0 0.0 75.0 3.0 2.0 81.0 9.0
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It is evident from tables 4.2 and 4.3 that the performance of MDDTW for
recognizing deviations is reduced when using angular characteristics instead of
normalized coordinates.

From Table 4.6 it can be seen that the performance of HMM is reduced
when using coordinate sequences, in comparison to the use of estimated angles
formed with the planes of motion.

Table 4.6: Average recognition percentages for each technique for each combi-
nation of factors

Phase 1

Coordinates
Error 1

HMM 71,3
DTW 40,6

Error 2
HMM 70,1
DTW 28,9

Angles
Error 1

HMM 78,1
DTW 13,1

Error 2
HMM 64,7
DTW 10,4

Phase 2

Coordinates
Error 1

HMM 65,5
DTW 35,0

Error 2
HMM 62,0
DTW 26,0

Angles
Error 1

HMM 81,3
DTW 13,0

Error 2
HMM 64,7
DTW 47,9

It was found that the average error recognition rate for HMM is consistently
higher than for MDDTW, in both phases of the activities and for any charac-
teristic, as can be seen in table 4.6. This table shows the average success rate
for each technique under each condition.

Generally speaking the best combination of characteristics and technique
was using HMM models together with estimated angles formed with the planes
of motion.

There were certain errors very hard to recognize with any combination of
technique and characteristics, this is the case for an error 2 in the second phase
of hip abduction (leg returning to its initial position), for which the maximum
recognition percentage was merely 48,1%.

4.6 Conclusion

Experiments were conducted to test the ability of two algorithms to detect
deviations from normality during the execution of activities common in physical
therapy routines. The movements tested comprise activities for both the upper
and lower limbs. For each one of the movements sequences corresponding to



CHAPTER 4. HMM AND DTW 58

correct executions and deviations from these were recorded. The deviations
considered afected the position of the limb only with respect to one of the
planes of motion. For abduction movements the deviation was introduced with
respect to the angle formed with the frontal plane, for flexion and extension
movements the deviation was introduced with respect to the angle formed with
the sagittal plane, and for rotation movement the deviation was introduced with
respect to the transverse plane.

While MDDTW is a useful tool to determine the similarity between time
series coming from observations of human beings executing movements, has
proven unable to reject sequences of movement which are similar to the standard
but deviate in one of the directions relative to the planes of motion.

HMM outperforms MDDTW for the task of detecting deviations in move-
ment sequences defined for physical therapy and rehabilitation. This is due to
the ability of these models to penalize heavily those sequences of symbols that
contain symbols not present in the sequences that were used to train the model,
and those sequences containing symbols that imply a very unlikely transition
between states.

For shoulder abduction, rotation and flexion results of the combination of
HMM and angles with the planes of motion were satisfactory. For shoulder and
elbow extension and hip abduction the proposed technique does not perform
well, probably due to the noise added with loss of precision of the sensor with
distance.

It remains interesting as future work to determine if the use of quaternion
data coming from the sensor might yield even better results for the task of
detecting deviations from normality. Another future work might be the use of a
discriminative model such as Conditional Random Fields to be used as outlier
detectors.



Chapter 5

Extension to continuous
HMM and comparison
between different
populations

Results of the comparison in performance between continuous and discrete
HMMs were published in the 12th International Symposium on Visual Com-
puting, that took place in Las Vegas, Nevada in December 14-16, 2016.[69]

This chapter presents an extension of the methodology presented in the
previous one for the detection of deviations from the correct form in movements
from physical therapy routines based on Hidden Markov Models. Continuous
HMM are proposed as models to evaluate performance of subjects performing
the activities of interest. The same set of activities from the previous chapter
is used. A comparison is presented between continuous and discrete models.
Results show that the use of continuous HMM offers improvement in the ability
to recognize deviations in movements. In order to further test the ability of the
proposed method to detect deviations, it was tested on a dataset made public by
Velloso et al. and referenced in [2]. Finally a comparison of the measurements
taken with the kinect sensor is presented for the case of two samples taken
from different populations. One of the samples was a group of 14 young adults
between the ages of 20 to 30, and the other was a group of 8 elderly people with
ages between 65 and 75. Results show that for the majority of movements of
interest the measured characteristics are statistically equal in both populations.

5.1 Introduction

The recognition of the quality of performance in human movements has many
applications, especially in the fields of physical therapy and sports. This problem

59
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is essentially different from the task of human action recognition in the sense that
the idea is not to determine, out of a certain set of actions, which one is being
executed, but to measure how close to a certain specification is the performance
of a certain subject. When considered as a classification problem, it turns out
that the number of possible classes becomes infinite, due to the infinite possible
ways that a person can deviate a movement from the specification[2]. Most
works make use of distance measures to try to calculate a score that indicates
the success of a person while performing a physical activity[61],[62]. These
measured distance has to be calculated for each person attempting to use the
system, so that it has to be tailored to meet individual needs. Some other works
use finite state machines to model the desired movement and then determine
using thresholds if the execution is satisfactory[42]. These thresholds will be
highly dependent on the noise present in the data and also in the population
that was used to gather the data, so that some individuals may not comply with
the specifications. This can be solved by adjusting the thresholds depending
on each one of the users. The task of qualitative action recognition can be
accomplished by treating it like an anomaly detection problem. This means that
a model could be trained to capture the nature of the data that characterizes
the performance, and then the same model would have to be used to reject
the performances that do not comply with what is expected. A very powerful
approach to characterize sequential data coming from a noisy source are Hidden
Markov Models. Their power lies in their ability to adapt the model parameters
to maximize the likelihood of the observed sequences. This in fact means that
the likelihood of sequences different from the training ones is reduced, and allows
the model to be used to detect abnormal behaviors in data.

5.2 Related Work

The use of continuous HMM to detect outlier sequences of data has been ex-
plored by Wang et. al[70] in the context of wireless sensor networks. The
authors chose the model for its ability to detect what they call high semantic
outliers, which are long term deviations from normal behavior patterns. Allah-
dadi et. al.[71] also use continuous HMM models to detect abnormal behaviors
in 802.11 wireless networks, and found that the models are successful in identi-
fying several different kinds of deviations. Yang et al.[72] used continuous HMM
to model the behavior of people in video data, and then applied the model to
the task of recognizing unusual events by modeling the distribution of people
and its variation with time. This means that abnormal movements of a crowd
are assigned a small probability by the model. Cai et al.[73] use HMM for the
task of detecting abnormal movement patterns of objects in a video sequence;
the models are applied to filtered trajectories of vehicles, and a threshold is
calculated for the probabilites given by the model of new trajectories, whenever
the probability is below the threshold, an abnormal movement is considered to
have taken place. Yuan et al.[74] use a modified version of HMM models, called
Hidden Semi-Markov Model, to detect the changes in the land use in Beijing,
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this task is done by obtaining trajectories for the pixels in the image and then
calculate the likelihoods produced by the models previously trained, an impor-
tant drop in the likelihood signals a change in the characteristics of pixels on the
image. [75] used kinematic data, position, heading, speed and a timestamp, for
vessels entering and leaving Cape Town’s harbour, and trained HMMs to deter-
mine using the sequences of data what the behavior of new vessels is, however
the dataset used by the authors is limited.

5.3 Methods

This section presents the mathematical models and tools that were used for the
task of deviation detection in human movements.

HMM models can be used for observations that are continuous in nature
(e.g. kinect coordinates,accelerometer data). This means that there is no longer
a need to quantize the observations, and the degradation associated with the
quantization can be avoided. Such models consider the observations to come
from a multivariate normal distribution or a sum of such distributions. This
means that any value in a continuous interval has a certain probability of being
emitted by the model. Another advantage of this type of models is its ability
to model multivariate sequences, this in contrast to the approach presented in
chapter 3, which needed three models, one for each characteristic of interest, to
be trained. The general form of the probability density function used for each
one of the states of the model is

bj(O) =

M∑
m=1

cjmN (O,µjm,Σjm) 1 ≤ j ≤ N (5.1)

where the following restrictions apply:

M∑
m=1

cjm = 1 1 ≤ j ≤ N (5.2)

cjm ≥ 0 1 ≤ j ≤ N, 1 ≤ m ≤M (5.3)

bj(O) is the probability of observing the vector O in the state j. cjm is the
weight associated with the m − th element of the mixture of gaussians in the
state j.

The library pmtk3 [76] is used to train the models of interest. This library
provides an implementation of the Expectation Maximization Algorithm. This
essentially implements the equations presented in [68] for the reestimation of
the means and covariance matrices of each one of the gaussian pdfs as well as
the weights.

c̄jk =

∑T
t=1 γt(j, k)∑T

t=1

∑M
k=1 γt(j, k)

(5.4)
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µ̄jk =

∑T
t=1 γt(j, k) ·Ot∑T
t=1 γt(j, k)

(5.5)

Σ̄jk =

T∑
t=1

γt(j, k) · (Ot − µjk)(Ot − µjk)
′

(5.6)

γt(j, k) is the probability of being in state j at time t, with the k − th
component of the mixture of gaussians accounting for the observed vector Ot.

γt(j, k) =

[
αt(j)βt(j))∑N
j=1 αt(j)βt(j)

][
cjkN (Ot, µjk,Σjk)∑M

m=1 cjmN (Ot, µjm,Σjm)

]
(5.7)

In this work we use a single gaussian probability density function for each
one of the states of the models. Experimentally it was found that using more
than three states for each model yielded no significant increase in their ability
to label sequences as either according to the specification or deviated from it.
For the case of other sensor data it was found that increasing the complexity of
the model in terms of the number of its states improved its ability to classify the
sequences correctly, this however might lead to an arbitrarily complex model.
Experiments showed that 12 states were enough to achieve a high discrimination
ability.

The probability of a sequence being generated by the model is obtained by
using the forward algorithm, after estimating a matrix of emissions using the
logarithmic probability of each observation of the sequence of interest. Bij is
the probability that being in the state i, the j − th element of the sequence of
characteristics is emitted. This probability is obtained by first evaluating the
j− th vector belonging to the sequence in each one of the multivariate gaussians
found by the model, according to the following equation:

logf(x) = −k
2
log(2π)− 1

2
log |Σ| − 1

2
(x− µ)T (x− µ) (5.8)

The values obtained are then normalized and a matrix obtained by evaluating
the exponential function on each of them. This means that for each one of the
sequences of vectors a matrix B is obtained, which is then used in the forward
algorithm.

The models were tested both for the sequence of angles of interest and se-
quences of coordinates. Since it was found that the probabilities assigned to
the sequences did not always follow a normal distribution, the methodology by
which the success of the approach was tested was building an interval around
the mean of the probabilities for the training sequences, and then determining
for the testing sequences if the probability assigned by the model lied in this
interval or not. The interval is then expanded around the mean, until finally it
becomes the whole interval of probabilities possible for the training sequences.

Each one of the values of interval width allows for the calculation of a false
positive rate (FPR) and a true positive rate (TPR), and finally a ROC curve
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can be constructed showing the performance of the model seen as a two-class
classifier, with one class being the correct performance and the other one being
the specific deviation that we are interested in. The process is repeated 10 times,
this because the training sequences are randomly divided in 10 groups, and each
time 9 of these groups would be used for training while the other one would be
used for testing. This guarantees that only some of the correct sequences are
used to train the model, while some others are used for testing. The final ROC
curve is simply the average of the 10 curves obtained for each execution of the
algorithm.

Finally, the area under the curve is taken as a metric to give an idea of the
classification accuracy. The value of these areas is presented in table 5.3.
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Figure 5.1: Angles
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Figure 5.2: Coordinates

Figure 5.3: ROC curve using both angles (a) and coordinates (b), the activity
considered is shoulder abduction and the error is a type 2 error on the phase 2

For the comparison of the two populations of interest, four characteristics
were calculated based on the three movements each subject was asked to per-
form. Figure 5.4 illustrates one of the signals calculated using kinect data. Each
one of these signals is segmented after taking its Discrete Fourier Transform and
locating the first peak on the spectrum, this frequency is used to calculate the
value of the signal’s period, and for each one of the repetitions thus obtained
four quantities are calculated, these are, the mean of the angle value in the up-
per portions of the signal, the mean of the angle value in the lower portions, the
average and the amplitude of the repetition (which corresponds to the difference
between the mean of the upper portions and the mean of the lower portions).
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Figure 5.4: Transversal angle calculated for the Hip Flexion repetitions of a
subject

5.4 Experimental Setup

Initially, 14 people were asked to perform three repetitions of the activities of in-
terest. These are shoulder abduction, hip abduction, shoulder flexion, shoulder
extension,hip flexion, hip extension, shoulder internal rotation, shoulder exter-
nal rotation, elbow flexion and, elbow extension. They were asked to keep the
limb of interest for about five seconds in the final position of the activity before
returning it to the initial position. These database is considered as the basis for
training the models.

In order to obtain examples of deviation sequences, 10 people were asked to
perform movements close to the specification, but deviating from them in one
of the planes of motion1.1. In the case of abduction movements deviations were
introduced with respect to the frontal plane, which means that the subjects were
asked to extend their limbs towards the front of their bodies (error type 1) or
towards the back (error type 2). In the case of extension and flexion movements
the deviations introduced affected the movement with respect to the sagittal
plane, and people were asked to move the limb of interest either towards the
left or the right. This database is used to test the ability of the models to detect
deviations.
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In order to obtain data from an elderly population, 8 people between the
ages of 65 and 75 were asked to perform the following physical conditioning
activities: shoulder abduction, hip abduction, shoulder flexion, shoulder ex-
tension,hip flexion, hip extension, shoulder internal rotation, shoulder external
rotation, elbow flexion and, elbow extension. They were asked to perform three
repetitions of each one of the 10 activities, keeping the limb of interest still for
about five seconds before returning to the initial position. This database is used
to compare the measurements taken by the sensor for different age groups.

All measurements were performed with the sensor standing in a table 70 cm
above the ground. All of the subjects were standing at 1.8 m in front of the
sensor.

In order to test the validity of the proposed approach to detect deviations
from the correct movement, an additional dataset was analyzed. These data
comes from the work of Velloso et al.[2], in which a weightlifting exercise, uni-
lateral dumbbell biceps curl, is studied. Five different executions of the activity
are studied, class A is the execution of the activity according to the specifica-
tion, class B is the execution throwing the elbows to the front, class C is lifting
the dumbbell only halfway, class D is lowering the dumbbell only halfway and
class E is throwing the hips to the front. A total of six people were asked to
perform 10 repetitions of each one of the activities.

5.5 Results

This section presents the results of analyzing the performance of the models
trained to recognize sequences of movement, when the model is trained with
correct repetitions and tested with sequences of deviations.In the case of the
kinect data for each one of the two kinds of errors considered in each one of the
10 different activities of interest. Each one of the movements considered in the
database is segmented in two phases, one in which the limb is moving from the
initial position towards the final position, and another one that returns the limb
to the initial position, hence the existence of four kinds of errors, depending on
which one of the phases of the movement is being considered.

Results are presented both for discrete HMMs and continuous HMM.Also a
comparison between the performance of the two kinds of models is presented.

Results are also presented for the use of the methodology on the dataset
by Velloso et al. The ROC curves are presented, which prove that varying the
width of the probability interval obtained with correct performances does not
increase much the false positive rate (FPR), or in other words, that the model
trained for the correct performance is capable of detecting all the different kinds
of deviations introduced and label them as abnormalities.
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Table 5.1: Error detection accuracy for continuous HMM models

Type 1 phase 1 Type 2 phase 1 Type 1 phase 2 Type 2 phase 2
angles coord. angles coord. angles coord. angles coord.

Shoulder
Abduction

0.774 0.915 0.912 0.830 0.800 0.952 0.882 0.835

Hip
Abduction

0.812 0.762 0.844 0.759 0.784 0.756 0.781 0.732

Hip
Extension

0.835 0.603 0.890 0.637 0.859 0.517 0.911 0.592

Elbow
Extension

0.851 0.943 0.776 0.907 0.835 0.896 0.744 0.895

Shoulder
Extension

0.878 0.612 0.858 0.572 0.886 0.684 0.905 0.609

Hip
Flexion

0.684 0.887 0.750 0.793 0.652 0.843 0.758 0.632

Elbow
Flexion

0.946 0.907 0.889 0.944 0.923 0.871 0.849 0.938

Shoulder
Flexion

0.885 0.908 0.722 0.903 0.912 0.912 0.771 0.941

External
Rotation

0.834 0.804 0.901 0.818 0.807 0.808 0.878 0.794

Internal
Rotation

0.876 0.799 0.872 0.719 0.869 0.800 0.837 0.752

It is clear from Table 5.1 that for most of the deviations in the database
the approach based on continuous HMM is capable of labeling the incorrect
sequences as such in about 80% of the cases by using either one of the sequences
of characteristics, be it angles or coordinates. In total four kinds of mistakes
were considered for each of the activities, and that means 40 different errors are
being considered. It was found that the approach based on angles was superior
to the one based on coordinates, in 24 of the 40 cases.

The continuous HMM approach can be compared to the discrete approach by
using the same metric (area under the ROC curve). Table 5.2 shows the result
of performing the same experiment but with discrete HMM models. Since it was
necessary to use three different models for each one of the activities under study,
the results presented in the table are the ones for the most informative model,
according to the error detection percentages that were presented in chapter 3.
For example, in the case of Hip Flexion, the analysis were carried out using the
sagittal model, which is more capable of labeling sequences as deviations from
normality.

Table 5.3 compares the best performance for any characteristic of the two
proposed approaches. It is found that the use of continuous HMM models allows
for a better detection of abnormal sequences in 27 of the 40 different errors for
the 10 activities that were considered.
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Table 5.2: Error detection accuracy for discrete HMM models

Type 1 phase 1 Type 2 phase 1 Type 1 phase 2 Type 2 phase 2
angles coord. angles coord. angles coord. angles coord.

Shoulder
Abduction

0.888 0.746 0.940 0.674 0.901 0.711 0.896 0.638

Hip
Abduction

0.768 0.385 0.584 0.180 0.708 0.451 0.544 0.231

Hip
Extension

0.810 0.214 0.717 0.293 0.859 0.925 0.781 0.839

Elbow
Extension

0.830 0.019 0.839 0.300 0.879 0.906 0.844 0.893

Shoulder
Extension

0.623 0.488 0.715 0.535 0.661 0.781 0.577 0.787

Hip
Flexion

0.664 0.907 0.564 0.813 0.673 0.833 0.508 0.812

Elbow
Flexion

0.721 0.844 0.746 0.825 0.604 0.937 0.756 0.929

Shoulder
Flexion

0.561 0.094 0.659 0.277 0.649 0.092 0.747 0.184

External
Rotation

0.624 0.909 0.636 0.900 0.597 0.223 0.691 0.283

Internal
Rotation

0.529 0.877 0.559 0.889 0.556 0.902 0.502 0.902
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Table 5.3: Comparison of continuous and discrete HMM performances

Type 1 phase 1 Type 2 phase 1 Type 1 phase 2 Type 2 phase 2
cont. discrete cont. discrete cont. discrete cont. discrete

Shoulder
Abduction

0.915 0.889 0.912 0.940 0.952 0.901 0.882 0.895

Hip
Abduction

0.812 0.786 0.845 .0584 0.784 0.708 0.781 0.544

Hip
Extension

0.835 0.810 0.999 0.717 0.859 0.925 0.911 0.839

Elbow
Extension

0.943 0.830 0.907 0.839 0.896 0.906 0.895 0.893

Shoulder
Extension

0.878 0.623 0.857 0.715 0.886 0.781 0.905 0.787

Hip
Flexion

0.887 0.907 0.793 0.813 0.843 0.833 0.758 0.812

Elbow
Flexion

0.945 0.844 0.944 0.825 0.923 0.937 0.938 0.929

Shoulder
Flexion

0.908 0.561 0.903 0.659 0.912 0.649 0.941 0.747

External
Rotation

0.834 0.909 0.901 0.900 0.808 0.597 0.878 0.691

Internal
Rotation

0.876 0.877 0.872 0.889 0.869 0.902 0.837 0.902
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Experiments were performed to determine if the measured characteristics
(the angles formed with respect to the planes of motion) were consistent both
in a group of young people (aged 20 to 30 years old) and in a group of elder
people (aged 65 to 75 years old). In order to do this the average value of 4
characteristics was calculated for each one of the subjects on each one of the two
databases. The characteristics of interest were the mean value of each one of the
angles on both the final and initial position of the activities, the amplitude of the
movement (that is to say, the difference between the final and initial positions)
and the mean of the angle sequence. For each one of the characteristics a two
tailed t-test supposing unequal variances was used to determine if there was
enough statistical evidence to reject the null hypothesis that the means of the
two populations were different. The importance of the analysis lies in the ability
to use data taken from a population and use it to create a model than can be
applied to both populations.

The results of the analysis are shown in table 5.4. The table shows for each
one of the activities of interest and each one of the angles calculated, and for
each one of the characteristics calculated if the means of the two populations are
equal or not. In the cases were there is no statistical evidence to reject the null
hypothesis that the means are different, the table shows equal. In the opposite
case the table shows different.
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Table 5.4: Result of the t-test for comparison of the features of interest between
the two populations

Activity Angle High Low Amplitude Mean

Hip Abduction
Frontal equal equal equal equal
Transverse equal equal different equal
Sagittal different equal different equal

Shoulder Abduction
Frontal equal equal equal equal
Transverse equal equal equal different
Sagittal equal equal equal equal

Hip Extension
Frontal equal equal different different
Transverse equal equal equal equal
Sagittal equal equal equal equal

Elbow Extension
Frontal equal equal equal equal
Transverse equal equal equal equal
Sagittal different equal different different

Shoulder Extension
Frontal equal equal equal equal
Transverse equal equal equal equal
Sagittal equal different equal equal

Hip Flexion Frontal equal equal equal equal
Transverse equal equal equal equal
Sagittal different equal equal equal

Elbow Flexion
Frontal different different equal different
Transverse equal different equal different
Sagittal equal equal equal different

Shoulder Flexion
Frontal different equal different different
Transverse different equal different different
Sagittal equal equal equal equal

External Rotation
Frontal different different equal different
Transverse equal equal equal different
Sagittal equal equal equal equal

Internal Rotation
Frontal equal equal equal equal
Transverse equal equal equal different
Sagittal equal different equal equal

Only for two activities, shoulder flexion and elbow flexion it was found that
there were statistically significant differences in all three characteristics, which
means that thresholds calculated using data taken from young people will not
work when it comes to using the system with elderly people.

Figure 5.7 shows the ROC curve for the model trained with repetitions of the
correct form. It is clear from the curves that the model is capable of detecting
those two kinds of mistakes, since the FPR does not increase consistently while
the width of the probability interval was varied, instead it remained at less
than 0.3. What this means is that The horizontal line was added to the graphs
because after the anaylisis ended it was found that the point (1,1) was never
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reached.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.5: Error type B
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Figure 5.6: Error type C

Figure 5.7: ROC curves for errors type B and C

Figure 5.10 shows the result of the model considered as a binary classifier
when analyzing error types D and E. Again it was found that the FPR did not
increase significantly when the width of the interval of probabilities is increased.
The TPR however reaches an acceptable value of about 0.9, meaning that the
vast majority of the sequences considered as correct are classified as such.
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Figure 5.8: Error type D
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Figure 5.9: Error type E

Figure 5.10: ROC curves for errors type D and E

5.6 Conclusion

It was found that it is possible to use continuous Hidden Markov Models to
detect deviations from the specification for movements in the field of physical
therapy and conditioning.

Experiments show that continuous Hidden Markov Models outperform dis-
crete Hidden Markov Models for the task of detecting deviations in movement
sequences. They also have the additional advantage of being able to deal with
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multivariate data, which means that they can be readily applied to abnormality
detection of any sequential process represented with multivariate series of data.

Experiments show that for a wide range of movements common in the fields
of physical therapy and conditioning the ranges of movement measured with the
kinect are statistically the same for elder people and young people. This vali-
dates the use of data gathered with young people for the purpose of developing
coaching applications for the elder, when it comes to training the models used
for recognition of correct performances.

The methodology proposed can also be applied to other sensor data and
renders good results, by being able to detect correctly sequences that correspond
to different kinds of deviations while at the same time successfully classifying
the correct sequences as such.



Chapter 6

Software prototype

?? and ?? are diagrams showing the matlab script integrating the characteri-
zation and evaluation tasks. The best technique according to the experimental
results was selected to perform the evaluation step, this is continuous HMM.
The idea is for these routine to be able to identify as many erroneous sequences
as possible.
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Figure 6.1: Workflow of the software prototype
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Figure 6.2: Workflow of the software prototype (continued)

It is important to note that part of the libraries developed during this study
were used as the core of a software aimed at providing the elderly with a tool to
exercise at home. The name of the software is SAMSOM (Sistema de Asistencia
al Mejoramiento Supervisado y Objetivo de la Movilidad). Figures 6.3 and 6.4
illustrate the developed software.
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Figure 6.3: SAMSOM

Figure 6.4: SAMSOM



Chapter 7

Conclusions and future
work

In this work several databases of human beings performing activities common in
the fields of physical therapy and conditioning were created. The first database
consists of 14 people performing the movements of interest three times. It was
created using both a single kinect system and a dual kinect array. The second
database consists of 10 people performing the same activities but introducing
deviations from the correct form, two error classes were defined for each one of
the activities. Finally a database of 8 elderly people performing the activities
was created, in order to compare their performances to those of the original
subjects.

In this work a set of characteristics was used, that consists in the angles
formed by the limb of interest with respect to the planes of motion commonly
used to define activities in the fields of physical therapy and conditioning. These
characteristics were tested and proved to be superior to the use of the coordi-
nates provided by the sensor for the task of defining a wide variety of movements,
even when these coordinates were normalized to account for the variability in-
herent in the human population.

The use of information coming from two kinect sensors was studied. This
was done to deal with self occlusion problems that are present in some of the
activities studied. It was found that an optimization scheme that minimizes the
distance between the coordinates of the sensors offers improvement when the
movements to track imply self-occlusions.

The use of distance measures was also studied, in order to try to define a
sequence that models the correct performance for a variety of people.

The use of statistical models for the task of abnormal performance recog-
nition was studied. These models have to be trained with samples of what
is considered normal instances of the activities. They are then able to assign
a probability to every new sequence arriving from the sensor and determine
whether this sequence corresponds to a normal or abnormal situation.
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Comparison between the distance approaches and statistical modeling showed
that the first approach is incapable of obtaining a model that might be used
for a variety of subjects. On the other side, statistical approaches can generate
models applicable to different subjects that yield an acceptable recognition rate
of deviations.

Two types of statistical models were studied in this work, discrete Hidden
Markov Models, and continuous Hidden Markov Models. Experiments show
that continuous Hidden Markov Models yield better results for the task of de-
tecting movements that deviate from the specification in human beings.

A methodology that consists in the acquisition of skeleton data from a kinect
sensor, calculation of the angles formed with the planes of motion, training
of a statistical model with repetitions that are considered to be correct and
evaluation of sequences by using these model was proposed and implemented
on Matlab�.

During this study it was found that commercial, affordable technology for
real-time skeletonization of a human being still lacks the ability to extract a
human being’s skeleton with accuracy when the person rotates in front of the
sensor. In the case of movements that take place while the persons remains
seated or is laying on his back, the technology used is incapable of extracting any
kind of skeleton from him. This limitation severely affects computer vision based
applications that aim to create tools for rehabilitation or physical therapy, due
to the existence of many activities of interest in such areas that are performed
laying on a hospital bed. Further research is needed in order to address this
limitation.

During this study it was found that statistical models used to model se-
quences of data can be used to detect abnormalities in sequences coming from
the performance of a physical activity by a human being. It still remains of
interest to determine if further processing might allow for the recognition of the
specific deviation that took place. This would mean that the statistical model
should be capable of labeling the sequences that are considered abnormal.
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