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Non-Bragg-gap solitons in one-dimensional Kerr-metamaterial Fibonacci heterostructures
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3Instituto de Fı́sica, Universidade Estadual de Campinas—Unicamp, Campinas, São Paulo, 13083-859, Brazil
(Received 18 November 2014; revised manuscript received 29 May 2015; published 23 June 2015)

A detailed study of non-Bragg-gap solitons in one-dimensional Kerr-metamaterial quasiperiodic Fibonacci
heterostructures is performed. The transmission coefficient is numerically obtained by combining the transfer-
matrix formalism in the metamaterial layers with a numerical solution of the nonlinear differential equation
in the Kerr slabs, and by considering the loss effects in the metamaterial slabs. A switching from states of
no transparency in the linear regime to high-transparency states in the nonlinear regime is observed for both
zero-order and plasmon-polariton gaps. The spatial localization of the non-Bragg-gap solitons is also examined,
and the symmetry properties of the soliton waves are briefly discussed.
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I. INTRODUCTION

The control and manipulation of light and its interaction
with condensed matter have received a lot of attention in the
last couple of decades. The study of photonic crystals (PCs) is
essentially associated with the area of a new class of optical
materials which display exciting and interesting properties
with considerable practical applications, e.g., the challenge of
constructing all-optical devices with the capability of replacing
electronic transistors. The experimental realization of metama-
terials [1] or left-handed materials (LHMs) [2] has opened up
interesting possibilities in the study of one-dimensional (1D)
plasmonic heterostructures. In this respect, both periodic and
quasiperiodic structures, made up of bilayers AB composed
of materials with positive (RHM) and negative (LHM) indices
of refraction, have been the subject of both experimental and
theoretical investigations [3]. Such periodic structures with
metamaterial inclusions exhibit a non-Bragg band gap associ-
ated with the 〈n〉 = 0 null average of the refractive index. Also,
at the interface of the metamaterial and positive-refraction
material, interactions between electromagnetic waves and the
electronic plasma at the surface of the metamaterial may result
in electromagnetic surface waves known as surface plasmon
polaritons (SPPs) [4]. Moreover, recent investigations on one-
dimensional RHM-LHM heterostructures have shown that,
for oblique electromagnetic incidence, longitudinal bulklike
plasmon polaritons (PPs) may be excited along the growth
direction of the heterostructure with the non-Bragg PP gap
showing up in the corresponding transmission spectra [5].

Theoretical studies on nonlinear layered systems have also
revealed novel results [6,7]. Bragg-gap soliton solutions have
been reported [8] for frequencies at the edge of the linear
gap, in right-handed nonlinear materials in 1D superlattices
which alternate linear and nonlinear media. Also, investiga-
tions [9] on alternate stacks of nonlinear-Kerr metamaterial
have revealed the existence of a zero-order gap soliton: one
finds a soliton-mediated transparency switching, from a state
of no transparency in the linear regime to total transparency
in the nonlinear regime. Recently, multistability, transmission
switching, and n-soliton formation have been reported on
Kerr-metamaterial superlattices at the band edge of the PP
gap [10].

Properties intermediate between those of periodic and dis-
ordered systems are shown by quasiperiodic heterostructures.
The band structure of 1D periodic and quasiperiodic stacks
containing metamaterials strongly depends on the incidence
angle [11–13]. Up to now, however, there appear to have
been no investigations on the occurrence of transmission
switching and soliton formation in the region of the non-Bragg
〈n〉 = 0 and PP gaps of quasiperiodic photonic structures.
Considering that the symmetry-breaking aspect of quasiperi-
odic structures has revealed a richer structure than its periodic
counterpart, such as the unfolding of additional PP modes,
a thorough investigation of the transmission switching and
soliton formation phenomena in quasiperiodic metamaterial
heterostructures with nonlinear inclusions is clearly in order.

Based on the above discussion, in the present study we
investigate the nonlinear properties of non-Bragg 〈n〉 = 0
and PP gaps in 1D Kerr-metamaterial quasiperiodic Fibonacci
heterostructures. The work is organized as follows. Section II
presents the theoretical framework and numerical results are
given in Sec. III. Finally, the conclusions are in Sec. IV.

II. THEORETICAL FRAMEWORK

Here we are concerned with a heterostructured system
composed by the building blocks A and B, which are arranged
according to a Fibonacci sequence. The Fibonacci sequence
Sm of order m may be constructed from the inflation law Sm =
Sm−1|Sm−2 (m � 2), with the initial conditions S0 = B and
S1 = A. The symbol “|” represents a concatenation operation.
For instance, one has S2 = AB, S3 = ABA, S4 = ABAAB,
and so on. Alternatively, the Fibonacci sequence Sm may
be obtained by replacing A → AB and B → A in Sm−1.
A straightforward generalization allows one to see that the
sequence Sm may also be obtained from the simultaneous sub-
stitutions A → Sk+1 and B → Sk in the sequence Sm−k , where
0 � k � m. For example, S12 = S10|S9|S10, which results from
the replacements A → S10 and B → S9 in the sequence S3. In
the same way one may note that S12 = S9|S8|S9|S9|S8, etc.
A pictorial view of some Fibonacci sequences is displayed
in Fig. 1. The total number Fm of elements A or B in
the sequence Sm is determined by the general term of the
Fibonacci succession Fm = Fm−1 + Fm−2, with F0 = F1 = 1.
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FIG. 1. (Color online) Pictorial view of some sequences Sm. The
sequences �m resulting from suppressing the two last elements of Sm

(see the end of each sequence) are depicted as bold letters. Arrows
indicate the approximate position of the inversion center of each �m.
A schematic representation of the building blocks A and B, as well
as the Fibonacci heterostructure corresponding to the sequence S6, is
also displayed.

In addition, it is possible to see that the sequence �m, resulting
from suppressing the two last elements (AB or BA for even
or odd values of m, respectively) of Sm, has an inversion
center. This fact may be clearly observed from the schematic
representation of the Fibonacci heterostructure corresponding
to the sequence S6 that we have drawn in Fig. 1.

In a Fibonacci heterostructure associated with the sequence
Sm the symbols A and B represent slabs of different materials
stacked along a certain preferential direction, say the z axis,
and the building blocks A of width a and B of width b are made
of a nonlinear Kerr material and a dispersive metamaterial,
respectively. Here we note that, because of the quasiperiodic
order of the Fibonacci sequence, the building block A in Sm

may appear twice as AA, in which case the two corresponding
Kerr slabs of width a are considered as a single Kerr slab of
thickness 2a. Layers A (or AA) are characterized by a constant
magnetic permeability μA and an electric permittivity given
by

εA = ε0
A + α|E(z)|2, (1)

where E = E(z) is the electric-field amplitude of the electro-
magnetic field within the heterostructure. Slabs B represent
the metamaterial, whose frequency-dependent electric permit-
tivity and magnetic permeability are given by

εB = fε + Fε

βε − ν2 − iνγ
(2)

and

μB = fμ + Fμ

βμ − ν2 − iνγ
, (3)

respectively. In the above expressions [9,10], we have set
fε = 1.6, Fε = 40 GHz2, βε = 0.81 GHz2, fμ = 1.0, Fμ =
25 GHz2, and βμ = 0.814 GHz2; ν is the linear frequency and
γ is a phenomenological damping parameter which accounts
for absorption and loss effects in the slabs B, both expressed
in GHz.

Without loss of generality we have focused on the study
of transverse-electric (TE) electromagnetic modes in the
heterostructure. In this case one may show, by using the
Maxwell equations [14], that the electric-field amplitude of
the electromagnetic field satisfies the differential equation

− d

dz

[
1

μ(z)

d

dz
E(z)

]
−

[
ω2

c2
ε(z) − q2

μ(z)

]
E(z) = 0, (4)

where ε(z) and μ(z) are the position-dependent electric
permittivity and magnetic permeability of the heterostructure,
respectively, ω = 2πν, q = ω

c
sin θ is the x component of

the wave vector, and θ is the incidence angle relative to the
vacuum. One may note that both E and 1

μ
d
dz

E = 1
μ
E′ must

be continuous functions at each interface between different
materials. In the nonlinear Kerr material, Eq. (4) may be
rewritten as

d2

dξ 2
E(ξ ) + κ2

AE(ξ ) + ρ|E(ξ )|2E(ξ ) = 0, (5)

where κ2
A = μAε0

A − sin2 θ , ρ = μAα, and ξ = ω
c
z is the

reduced coordinate along the growth direction. In the meta-
material regions one has

d2

dξ 2
E(ξ ) + κ2

BE(ξ ) = 0, (6)

with κ2
B = μBεB − sin2 θ .

The transmission coefficient of the heterostructure may be
obtained by imposing radiative boundary conditions on the
electromagnetic field in the external regions, i.e.,

E(ξ ) =
{
Eie

iκ0(ξ−ξ0) + Ere
−iκ0(ξ−ξ0) if ξ < ξ0,

Ete
iκ0(ξ−ξ2N ) if ξ > ξ2N,

(7)

where ξ0 and ξ2N correspond to the reduced coordinates of
the beginning and end, respectively, of the Sm Fibonacci
heterostructure, whereas Ei , Er , and Et are the amplitudes
of the incident, reflected, and transmitted fields, respectively.
In the above equation, κ2

0 = μ0ε0 − sin2 θ , where μ0 and
ε0 are the magnetic permeability and electric permittivity,
respectively, of the medium surrounding the heterostructure.
In the following, we choose μ0 = ε0 = 1 and, hence, κ0 =
| cos θ |.

We are interested in obtaining the reflection and transmis-
sion coefficients at a given value of the frequency ω. To this
end, it is necessary to compute the amplitudes Ei and Er

for a given value of Et [15,16]. In this way, one may solve
both Eqs. (5) and (6) in the Kerr-material and metamaterial
regions, respectively, and then apply the above-mentioned
boundary conditions for the electric field at the interfaces. Let
us exemplify this procedure for a Fibonacci heterostructure of
even order m. In this case the Fibonacci sequence Sm always
begins with the symbol A and ends up with the symbol B,
and the reduced positions of the interfaces between different
materials are labeled as ξ0,ξ1, . . . ,ξ2N , where N = Fm−2.
One may note that ξ0 corresponds to the interface between
vacuum and the first Kerr-material slab, whereas ξ2N is the
position of the interface between the last metamaterial slab and
the vacuum region. Here we assume, for simplicity, ξ0 = 0.
The intervals (ξ2j−2,ξ2j−1) with j = 1,2, . . . ,N correspond
to single (A) or double (AA) Kerr-material slabs, whereas
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the intervals (ξ2j−1,ξ2j ) (j = 1,2, . . . ,N ) correspond to the
metamaterial regions. Of course, ω

c
b = ξ2j − ξ2j−1 = b̄.

In the metamaterial slabs, Eq. (6) may be solved analyti-
cally, and the corresponding solutions read

Ej (ξ ) = Cje
iκB(ξ−ξ2j−1) + Dje

−iκB(ξ−ξ2j−1), (8)

where Cj and Dj are the corresponding integration constants
and j = 1,2, . . . ,N . In the Kerr-material slabs, Eq. (5) may be
solved numerically. Let us denote as fj (j = 1,2, . . . ,N ) the
corresponding solutions for the electric field in the nonlinear
regions. By taking into account the continuity of both E and
1
μ
E′ at the interfaces, it is possible to show that

[
Ei

Er

]
= − i

2κ0

[
iκ0 1
iκ0 −1

][
f1(ξ0)

1
μA

f ′
1(ξ0)

]
(9)

in the first interface at ξ0. In the interior of the heterostructure
one has [

fj (ξ2j−1)
1

μA
f ′

j (ξ2j−1)

]
=

[
1 1

i κB
μB

−i κB
μB

][
Cj

Dj

]
(10)

with j = 1,2, . . . ,N , and[
fj (ξ2j−2)

1
μA

f ′
j (ξ2j−2)

]
=

[
eiκBb̄ e−iκBb̄

i κB
μB

eiκBb̄ −i κB
μB

e−iκBb̄

][
Cj−1

Dj−1

]
(11)

with j = 2,3, . . . ,N . By combining Eqs. (10) and (11) one
may obtain[

fj (ξ2j−1)
1

μA
f ′

j (ξ2j−1)

]
=

[
cos(κBb̄) −μB

κB
sin(κBb̄)

κB
μB

sin(κBb̄) cos(κBb̄)

]

×
[

fj+1(ξ2j )
1

μA
f ′

j+1(ξ2j )

]
, (12)

where j = 1,2, . . . ,N − 1. Moreover, by applying the bound-
ary conditions for the electric field at the two last interfaces
one may see that[

fN (ξ2N−1)
1

μA
f ′

N (ξ2N−1)

]
=

[
cos(κBb̄) −μB

κB
sin(κBb̄)

κB
μB

sin(κBb̄) cos(κBb̄)

]

×
[

1 1
iκ0 −iκ0

][
Et

0

]
. (13)

From Eqs. (9)–(13) it is possible to build a simple procedure
to find the transmission coefficient. First we propose a value for
Et and obtain from Eq. (13) both fN (ξ2N−1) and f ′

N (ξ2N−1),
which are used as boundary conditions to solve Eq. (5) in
the interval (ξ2N−2,ξ2N−1). Next we successively apply, from
j = N − 1 to j = 1, Eq. (12) to find fj (ξ2j−1) as well as
f ′

j (ξ2j−1), and then compute the electric field by solving Eq. (5)
in the interval (ξ2j−2,ξ2j−1). Finally, once the functions f1(ξ )
and f ′

1(ξ ) are obtained, we use Eq. (9) to find the value of Ei .
The transmission coefficient may then be obtained through the
expression

T =
∣∣∣∣Et

Ei

∣∣∣∣
2

. (14)

Notice that the reflection coefficient (results are not shown
here) may be calculated as R = |Er

Ei
|2, where Er may also be

found from Eq. (9). Moreover, Eqs. (10) and Eqs. (11) may be
used to obtain the coefficients Cj and Dj and, therefore, the
electric field in the metamaterial regions through Eq. (8). For
Fibonacci heterostructures of odd order the procedure to find
the transmission and reflection coefficients is essentially the
same. In such a case the Fibonacci sequence Sm always ends
up with a letter A, and the last interface is located at ξ2N , with
N = Fm−2 + 1.

III. RESULTS AND DISCUSSION

Let us begin by investigating the nonlinear properties of
Fibonacci heterostructures in the frequency region around the
zero-order gap. It should be noted here that the 〈n〉 average of
the refractive index, for a Fibonacci sequence Sm, is defined
as [11,12]

〈n〉m = τmnAa + nBb

τma + b
, (15)

with τm = NA
NB

, where NA (NB) is the number of A (B)
layers in the Sm Fibonacci sequence and when m → ∞,
τm → τ , with τ = 1+√

5
2 being the Fibonacci-sequence golden

mean. In this way, the 〈n〉m = 0 gap for an Sm Fibonacci
sequence occurs around the frequency satisfying the condition
τmnAa + nBb = 0 (see, for example, Fig. 4 by Bruno-Alfonso
et al. [11]). One may notice that the 〈n〉 = 0 frequency for
the limiting condition in the case of large m is given when
the optical paths in media A and B are in the golden ratio,
i.e., b|nB|

anA
= τ . We have displayed in Fig. 2 the photonic band

structure of periodic heterostructures with unit cells satisfying
the Fibonacci building rule. Calculations were performed for
normal incidence and obtained in the linear regime, with
parameters εA = ε0

A = 2 and μA = 1 in layers A. Absorption
effects have not been considered in slabs B [γ = 0 in both
Eqs. (2) and (3)]. It is apparent from Fig. 2 that the zero-order
(〈n〉 = 0) gap stabilizes as the Fibonacci order m of the
elementary cells increases, which agrees with predictions from
Eq. (15) in the limit τm → τ as m increases.

-1 0 1
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H
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zero-order gap

FIG. 2. (Color online) Photonic band structure, for normal in-
cidence, of periodic heterostructures with unit cells satisfying the
Fibonacci building rule with a = b = 10 mm. Results were obtained,
in the vicinity of the zero-order (〈n〉 = 0) gap, by using εA = ε0

A = 2
[i.e., α = 0 in Eq. (1)] and μA = 1 in layers A, and γ = 0 in Eqs. (2)
and (3) for slabs B. Solid, dashed, and dotted lines correspond to S12,
S10, and S8 Fibonacci heterostructures in the unit cell, respectively.
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FIG. 3. (Color online) Transmission coefficient as a function of
the wave frequency, for the same set of parameters used in Fig. 2.
Dashed and solid lines correspond to the Fibonacci heterostructures
S10 and S12, respectively, with a = b = 10 mm. The vertical dashed
line is located at ν = 3.0557 GHz in the vicinity of the lower
edges of the zero-order (〈n〉 = 0) gaps of the S10 and S12 Fibonacci
heterostructures. At this frequency value the transmission coefficients
of the S10 and S12 heterostructures coincide (T = 0.1458).

Having defined the frequency region where the zero-order
gap is located for all m, we now calculate the transmission
spectra for linear nondissipative systems in the case of an
electromagnetic wave normally incident upon S10 and S12

Fibonacci heterostructures, whose building blocks A and B
have equal widths, i.e., a = b = 10 mm. Results are displayed
in Fig. 3; they were obtained by setting α = 0 in Eq. (1) and
γ = 0 in Eqs. (2) and (3). The vertical dashed line in Fig. 3
is at ν = 3.0557 GHz in the vicinity of the lower edges of
the 〈n〉 = 0 gaps of the S10 and S12 Fibonacci heterostructures
where the transmission coefficient T = 0.1458 is the same for
both of them.

Let us now include both nonlinearity and absorption and
loss effects and study the transmission coefficient depicted in
Fig. 4 as a function of the nonlinearity, at the particular fre-
quency ν = 3.0557 GHz where the transmission coefficient is
negligible in the linear regime. It is clear that the transmission-
switching phenomenon occurs for both generations, i.e., S10

and S12, although multistability is exhibited only in the case
of the higher S12 generation sequence. In Fig. 5, the gap
solitons corresponding to the first three points of maximum
transmission for the S10 generation are plotted. For the lowest
nonlinearity value a one-soliton distribution is clearly shown,
although with low amplitude. The defocusing associated with
the second point of maximum transmission gives rise to a
two-soliton distribution, whereas defocusing corresponding to
the third point of maximum transmission does not produce a
clear three-soliton profile anymore. The effect of absorption
in the case of γ = 10−2 GHz washes out soliton formation.
In contrast, for the S12 generation soliton formation is much
clearer (see Fig. 6), and a comparison with the previous S10

generation results indicates that the S12 heterostructure system
has been efficiently tuned so that the first three points of
maximum transmission [cf. Fig. 3(b)] lead to one-, two-, and
three-soliton solutions, respectively, even in the presence of

FIG. 4. (Color online) Transmission coefficient for normal inci-
dence, as a function of the defocusing nonlinearity power, corre-
sponding to the Fibonacci heterostructures (a) S10 and (b) S12, with
a = b = 10 mm. The linear parameters are the same as the ones used
in Fig. 3. Results were obtained for ν = 3.0557 GHz, in the vicinity
of the bottom of the zero-order (〈n〉 = 0) gap (cf. the vertical dashed
lines in Fig. 3). Calculations were performed for phenomenological
loss and absorption parameters γ = 0, γ = 10−3 GHz, and γ = 10−2

GHz. In each panel, for each value of γ , dots are at the local
maxima of the transmission coefficient. In the inset of (b) we have
enlarged the interval of the defocusing nonlinearity power in order to
display the three first local maxima of the transmission coefficient for
γ = 10−2 GHz.

absorption. Such solutions are quite robust to surface pertur-
bations of a finite size and, in the present case, to perturbations
induced by the quasiperiodicity of the structure. Therefore,

FIG. 5. (Color online) Zero-order (〈n〉 = 0) gap soliton for nor-
mal incidence corresponding to the first, second, and third local
maxima [(a), (b), and (c), respectively] of the transmission as a
function of the defocusing nonlinearity power [cf. Fig. 4(a)] in the S10

Fibonacci heterostructure with a = b = 10 mm at ν = 3.0557 GHz.
Solid, dashed, and dotted lines correspond to phenomenological loss
and absorption parameters γ = 0, γ = 10−3 GHz, and γ = 10−2

GHz, respectively. Results for γ = 10−2 GHz are not depicted in (b)
because of the absence of the two-soliton peak in Fig. 4(a) for this
level of absorption.
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FIG. 6. (Color online) Zero-order (〈n〉 = 0) gap soliton for nor-
mal incidence corresponding to the first, second, and third local
maxima [(a), (b), and (c), respectively] of the transmission as a
function of the defocusing nonlinearity power [cf. Fig. 4(b)] in the S12

Fibonacci heterostructure with a = b = 10 mm at ν = 3.0557 GHz.
Solid and dashed lines correspond to phenomenological loss and
absorption parameters γ = 0 and γ = 10−3 GHz, respectively.
Results for γ = 10−2 GHz are not displayed because of the absence
of the one-soliton, two-soliton, and three-soliton peaks in Fig. 4(b)
for this level of absorption.

they should correspond to intrinsic resonance levels of the
structure [8]. Actually, Chen and Mills [8] have demonstrated
that, as the structure size decreases, one needs a higher
threshold for the input power to excite the soliton, a fact that
imposes a limiting size for observation of the soliton solution
but that otherwise shows their existence in long enough finite
systems.

Here, it is important to discuss the localization properties of
solitons in the Fibonacci heterostructure. In that respect, let us
introduce the inversion operator Îz0 such that Îz0f (z − z0) =
f (z0 − z), where f is an arbitrary continuous function. One
may easily see that the eigenvalues of the inversion operator
are ι = ±1 and, therefore, its corresponding eigenfunctions are
even or odd functions of z − z0. Now let us suppose that the
slab distribution in the Kerr-metamaterial heterostructure has
an inversion center at z = z0. As a consequence, μ = μ(z) in
Eq. (4) is an even function of z with respect to z0. In addition,
the stepwise electric permittivity may be rewritten as

ε(z) = ε0(z) + α�(z)|E(z)|2, (16)

where

ε0(z) =
{
ε0
A if z ∈ A,

εB if z ∈ B,
(17)

and

�(z) =
{

1 if z ∈ A,

0 if z ∈ B,
(18)

are also even functions of z − z0. Bearing the above results
in mind one may straightforwardly show that, provided there
exists an inversion center at the point z0 in the heterostructure,
then both the electric-field amplitude E and Îz0E satisfy the
same Eq. (4). Therefore, the absolute value of the electric-field
amplitude will be an even function of z − z0 if the condition
|Ei | = |ιEt | is fulfilled or, in other words, if T = 1. Strictly
speaking, a Fibonacci heterostructure has not an inversion
center. However, as explained, for m � 4 the heterostructure
�m resulting from suppressing the two last elements of Sm has
an inversion center at the middle of the heterostructure (see
Fig. 1). As the Fibonacci order m increases, the heterostructure
�m becomes a good representation of Sm and, therefore,
the solutions of Eq. (4) increasingly look like symmetrical
functions of z with respect to the inversion center of �m. This
behavior may be clearly observed in both Figs. 5 and 6, and is
similar to those observed in periodic heterostructures [9,10]. In
this sense, the localization properties of zero-order gap solitons
are not essentially affected by quasiperiodicity as compared
with the periodic case, a fact with may be understood from
the weak dependence of the zero-order gap profile on the
Fibonacci order (see Fig. 2).

Let us proceed to investigate nonlinear switching and
soliton formation inside the TE longitudinal magnetic PP
gap [5] for the case of Fibonacci heterostructures [13]. To
this end we display in Fig. 7 the photonic band structure
of periodic heterostructures with unit cells satisfying the
Fibonacci building rule. Results were obtained for frequency
values around the PP gap for oblique incidence with θ = π/24
in the TE configuration, in the linear regime, and in the absence
of absorption. We set εA = ε0

A = 2 and μA = 1 in layers A, and
a = b = 10 mm. Solid, dashed, and dotted lines correspond
to S6, S4, and S2 Fibonacci heterostructures in the unit cell,
respectively. The physical origin of the PP gap stems from
the fact that, in a TE configuration and for oblique incidence,
there is a magnetic-field component in the stacking direction
which couples the photon mode to the bulklike longitudinal

-1 0 1
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-1 0 1
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kd/π

FIG. 7. (Color online) Photonic band structure for oblique inci-
dence (θ = π/24) and TE configuration in the linear regime [α = 0
in Eq. (1)] of periodic heterostructures with unit cells satisfying the
Fibonacci building rule. Results were obtained for frequency values
around the PP gap, with parameters εA = ε0

A = 2 and μA = 1 in
layers A, γ = 0 in Eqs. (2) and (3) for slabs B, and a = b = 10 mm.
Solid, dashed, and dotted lines correspond to S6, S4, and S2 Fibonacci
heterostructures in the unit cell, respectively. (b) displays a zoom of
the numerical results depicted in (a) around the PP gap, in order to
capture the fine details of the band structure.
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FIG. 8. Transmission coefficient for the TE configuration with
incidence angle θ = π/24, as a function of the wave frequency,
for α = 0 in Eq. (1) and γ = 0 in Eqs. (2) and (3). The calculated
result corresponds to the Fibonacci heterostructure S12, with a = b =
10 mm. The vertical dashed line is located at ν = 5.0490 GHz in the
vicinity of the lower edge of the TE longitudinal magnetic PP gap.
At this frequency value one has T = 0.01.

ν
p
m magnetic plasmon mode (μB = 0 at ν

p
m = 5.0807 GHz).

As is well known [13], in 1D photonic superlattices in which
Fibonacci sequences Sm play the role of elementary cells, the
number of PP subbands—corresponding to the coupling of
photons and plasmons—appearing for oblique incidence is
just the number of metamaterial layers contained in Sm. This
has an effect in the optical properties related to the PP gap
including, of course, the transmission-switching phenomenon
as well as the localization properties of PP gap solitons.

We display in Fig. 8 the linear TE transmission in
the absence of losses, for θ = π/24, in the vicinity
of the lower-frequency edge of the magnetic PP gap. Notice the
vertical dashed line in Fig. 8, which essentially indicates the
ν = 5.0490 GHz frequency in the vicinity of the lower edge
of the PP gap for which the transmission becomes negligibly
small (T = 0.01). By including effects of nonlinearity and
loss, one is able to study the transmission switching and
multistability phenomena [10]. The transmission switch to a
maximum value for various discrete values of the incident
power, for different values of the phenomenological loss and

absorption γ parameters of the metamaterial (layers B), is
illustrated in Fig. 9, for the S12 Fibonacci heterostructure, with
a = b = 10 mm. It is apparent in Fig. 9 that the defocusing
nonlinearity leads to several transmission maxima at specific
field-intensity values for ν = 5.0490 GHz in the vicinity of the
lower edge of the TE magnetic PP gap. As we have depicted
in Fig. 7, as the Fibonacci order of the heterostructure is
increased, there occurs a splitting of the PP modes in the
vicinity of the plasmon frequency. Such splitting is caused by
the absence of long-range spatial coherence of the PP modes
due to the quasiperiodicity [13]. The quasiperiodicity of the
heterostructure may therefore considerably affect the way in
which the transmission-switching phenomenon takes place in
this particular case and, in fact, originates the presence of
multiple maximum-transmission peaks with different heights,
as shown in Fig. 9.

Here, one may point out that linear theory asserts the
existence of PPs, and the very physical mechanism that
explains the PP gap, the region where photons couple with
plasmons. Therefore, the transmission switching at particular
power values may be interpreted as a consequence of the
resonant excitation of a soliton that lies inert in the lattice
ready for an incoming wave with the right power to excite it.
Alternatively, one may think of it as a nonlinear mode being
excited by the incident electric field so that the amplitude of
the reflected wave is zero and all the energy flows through the
finite superlattice.

In contrast with zero-order gap solitons, the understanding
of the localization properties of the PP gap solitons is
somewhat tricky. Figure 10 displays the calculated solutions
for TE longitudinal magnetic PP gap solitons for oblique
incidence (θ = π/24) in the Fibonacci heterostructure S12,
with a = b = 10 mm. Calculations were performed for the
first five local maxima of the transmission coefficient, as
labeled in Fig. 8, and taking into account loss and absorption
effects via the phenomenological damping parameters γ = 0,
γ = 10−5 GHz, and γ = 10−4 GHz. The results depicted in
Figs. 10(a), 10(c), and 10(e) may be interpreted in terms
of solutions corresponding to one-soliton, two-soliton, and
three-soliton solutions, respectively, and their corresponding
absolute values of the electric-field amplitudes essentially
behave as even functions of the coordinate z with respect to
the inversion center of the S12 heterostructure. However, the

FIG. 9. (Color online) Transmission coefficient of the TE modes with incidence angle θ = π/24 as a function of the defocusing nonlinearity
power in the Fibonacci heterostructure S12, with a = b = 10 mm. Results were obtained at ν = 5.0490 GHz in the vicinity of the lower edge
of the TE PP gap (cf. the vertical dashed line in Fig. 8), and for three different values of the phenomenological loss and absorption parameters
γ of layers B. In all panels, for each value of γ , dots are located at the local maxima of the transmission coefficient.
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FIG. 10. (Color online) TE plasmon-polariton gap solitons for
oblique incidence (θ = π/24) in the Fibonacci heterostructure S12,
with a = b = 10 mm. Solid, dashed, and dotted lines correspond
to phenomenological loss and absorption parameters γ = 0, γ =
10−5 GHz, and γ = 10−4 GHz, respectively. Results corresponding
to the different values of the damping constant γ were obtained for
the first five local maxima of the transmission coefficient as labeled
in Fig. 9.

results shown in both Figs. 10(b) and 10(d) do not follow this
simple interpretation. The effects of the quasiperiodicity of the
heterostructure are quite appreciable in these cases. According
to the inflation law used to generate the Fibonacci sequences, it
is clear that S12 = S11|S10 = S10|S9|S10. One may note that the
heterostructure resulting from removing the two last elements
AB from S9|S10 has an inversion center at the middle of the
system. The two-soliton solution depicted in Fig. 10(b) may
be interpreted as the superposition of two single solitons, one
localized at the inversion center of the first S10 heterostructure
and the other one localized at the inversion center of
the concatenated heterostructure S9|S10. The absolute values
of the electric-field amplitudes of each of the single solitons
are even functions with respect to the corresponding inversion
centers. A similar situation may be observed in Fig. 10(d),
where the localization takes places around the inversion centers
of the heterostructures S11 and S10 composing the entire system

S12. In other words, the localization properties of PP gap
solitons in a Fibonacci heterostructure are essentially related
to the quasiperiodicity dependence of the PP gap properties.

In the present study we have considered a defocusing
nonlinearity as we have chosen a frequency region in the
vicinity of the lower edge of the non-Bragg gaps. This type
of switching behavior is found in this frequency region in the
case of a self-defocusing nonlinearity. To observe the same
switching phenomena with a focusing nonlinearity one should
choose a frequency in the vicinity of the upper edge [8]. In
both cases the same behavior is essentially found so that
the results obtained in the present work may be inferred
in the self-focusing case, except that the frequency chosen
should be at the upper gap edge. Actually, one may conjecture
that this selection of the gap edge according to the type of
nonlinearity is due to the dynamical shift in the location
of the band gap [17], which is known to be dependent
on the difference of the refractive index of the alternating
layers.

Finally, we stress that all results here discussed for TE
electromagnetic modes have, of course, a similar counterpart
for TM modes in the vicinity of the electric PP gap.

IV. CONCLUSIONS

Summing up, we have carried out an investigation of
the nonlinear properties of non-Bragg gaps in 1D Kerr-
metamaterial quasiperiodic Fibonacci heterostructures. Cal-
culations were performed by combining the transfer-matrix
formalism in the metamaterial layers together with a numerical
solution of the nonlinear differential equation corresponding
to the TE modes in the Kerr slabs.

By considering both nonlinearity and absorption effects
in the metamaterial slabs, we have studied the transmission
properties of both S10 and S12 Fibonacci heterostructures as a
function of the defocusing nonlinearity power in the vicinity
of the zero-order gap, for frequency values corresponding
to a negligible transmissivity in the linear regime and for
normal incidence. In all cases we demonstrated that the system
transmissivity switches from a state of no transparency, in
the linear regime, to high-transparency states in the nonlinear
regime, whereas multistability is exhibited only in the case of
the S12 generation sequence. The results reported here suggest
that the effects of the quasiperiodicity do not considerably
affect the spatial-localization properties of the zero-order gap
solitons in the heterostructure.

We have also performed a similar study for frequency values
in the vicinity of the magnetic PP gap for oblique incidence
with θ = π/24 in the TE configuration. The splitting of the
PP modes in the vicinity of the plasmon frequency affects
the way in which transmission switching occurs, and multiple
maximum-transmission peaks with different heights appear
when the transmission coefficient is plotted as a function
of the defocusing nonlinearity power. The magnetic PP gap
solitons exhibit, in some cases, a strong localization around
the inversion center of the entire system, whereas in other
cases they localize around the inversion centers corresponding
to Fibonacci sequences of lower order which are contained
in the heterostructure. The localization properties of the PP
gap solitons are a clear manifestation of the quasiperiodicity
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in the electromagnetic modes in Kerr-metamaterial Fibonacci
heterostructures.

Finally, we would like to point out that, in all cases studied
in the present work, the transparency-switching phenomenon
is still observable at low levels of loss and absorption in the
heterostructure. Of course, high levels of loss and absorption
[γ 2 	 βε and γ 2 	 βμ in Eqs. (2) and (3), respectively] may
cause full extinction of the soliton waves in the heterostructure
and a flattening of the soliton-induced transmission peaks

in the nonlinearity-power dependence of the transmission
coefficient.
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