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Abstract. This work presents a tool for the additivity test. The additive model is widely
used for parametric and semiparametric modeling of economic data. The additivity hy-
pothesis is of interest because it is easy to interpret and produces reasonably fast conver-
gence rates for non-parametric estimators. Another advantage of additive models is that
they allow attacking the problem of the curse of dimensionality that arises in non- para-
metric estimation. Hypothesis testing is based in the well-known bootstrap residual
process. In nonparametric testing literature, the dominant idea is that bandwidth utilized
to produce bootstrap sample should be bigger that bandwidth for estimating model under
null hypothesis. However, there is no hint so far about how to choose such bandwidth in
practice. We will discuss a first step to find some rule of thumb to choose bandwidth
in that context. Our suggestions are accompanied by simulation studies.
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Resumen. Este artículo presenta un contraste de aditividad. El modelo aditivo es usado
para modelar estructuras paramétricas y semiparamétricas. La hipótesis de aditividad es
interesante porque es fácil de interpretar y produce unas tasas de convergencia
razonablemente rápidas de estimadores noparamétricos. Una ventaja adicional de las
estructuras aditivas es que permite atacar directamente el problema de la maldición de la
dimensionalidad que surge en estimación noparamétrica. El procedimiento que proponemos
para el contraste de hipótesis esta basado en un proceso de remuestreo (bootstrap) de los
residuales del modelo aditivo. La idea dominante en la selección de la banda usada para
generar las muestras bootstrap, es que esta debe ser más grande que la banda utilizada
para la estimación del modelo aditivo. No obstante, hasta el momento la literatura existente
no suministra ayuda alguna. Nosotros discutimos, como un primer paso, un tipo de regla
para elegir tal banda en este contexto.
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1. Motivation

Smoothing techniques such as density estimation have an important role in the
current development of theoretical econometrics. The usual practice when construct-
ing regression models is to specify a parametric family. The most usual of these families
is the linear model. But there is no reason to limit ourselves to this kind of model: since
it belongs to a continuum of possible functional forms, there is a probability close to
zero that we will choose correctly. A way to avoid the misspecification is to assume a
non-functional form. Data can give us all the information we need to investigate func-
tional forms, using, e.g. the kernel estimator for the regression function. This approach
is known as a nonparametric estimation. A popular semiparametric model that has been
investigated in recent years is the additive one. The estimation procedure for this kind
of structure uses nonparametric techniques. The additive structure is present in many
models of economic behavior, including the usual parametric estimation. Then given a
data set, one could be interested in knowing what kind of structure follows the data.

Härdle and Marron (1991) propose a technique to construct confidence intervals by
a bootstrap method. We take advantage from this procedure to construct the additivity
test. Their approach consists in resampling the estimated residuals, ˆ ˆ ( )i i g iY m Xε = − ,
and then using these data to construct an estimator, whose distribution will approxi-
mate the distribution of the original estimator. Such a procedure allows for selection of
two smoothing parameters, g and h, where g is the selected smoothing parameter for the
bootstrap estimation and h is the bandwidth for the model under the null hypothesis.
The band g must be oversmoothed. To test the hypothesis, Dette, Von Lieres and
Sperlich (2003) used the bootstrap to construct statistics, and evaluated its perfor-
mance. In fact, for our simulation studies, we are going to use the same tests statistic.

Deaton and Muellbauer (1980) provide many microeconomic examples in which a
separable structure is convenient for analysis and important for interpretability. It has
reasonably fast convergence rates for nonparametric estimators. Another advantage of
the additive model is that it allows us to attack the problem of the curse of dimensionality
that arises in nonparametric estimation. Let : dm →  be a smooth function and
suppose that we want to estimate:

[ | ] ( )E Y X x m x= = (1)
where ( ) ( ),m x c m xα α α∈Λ= + ∑  c is a constant, mα  are d functions each one defined

on  for all {1,..., }dα ∈Λ = , and Λ  is a set of indexes. Note that in this model we
need to estimate functions of one dimension. Therefore, it is possible to speak of
dimensionality reduction through additive modeling. Stone (1985) shows that the opti-
mal rate for estimating the nonparametric function regression (1) is /(2 )dn− +  where  is
an index of smoothness of m and n is the sample size.
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The performance of several statistical tests under the null and the alternative hy-
potheses are also studied. The alternative model is the well-known Nadaraya-Watson
kernel regression function estimator. The null model is the aforementioned additive
model. The method’s procedure is to estimate a multidimensional functional of m first
and then use the internal marginal integration to get the marginal effect. Under the
additive structure this procedure yields mα , ,α ∈Λ  plus a constant (see Linton and
Nielsen, 1995). The asymptotic power of a test of H0 is often investigated by deriving
the asymptotic probability that the test rejects H0 against an alternative model.

The objective of this work is to propose a rule of thumb to choose oversmoothed
bandwidth in bootstrap estimation. To test such rule, we estimate the null model with an
optimal bandwidth and after that we construct the statistics to test additivity, and to
estimate the additive model we use a technique known as marginal integration estima-
tion. Additional motivations for this work are: first, due to the advantages additive
models offer to empirical researcher there is an increased interest in testing the additive
structure. Second, at present there is not much theoretical work about testing and
hardly empirical studies on internal marginal integrated estimator (IMIE). Sperlich,
Tjostheim and Yang (2002) introduce a bootstrap based additivity test applying the
marginal integration. In Dette, Von Lieres and Sperlich (2003) various statistical tests to
check additive separability are introduced; they concentrate on the differences that
result from the use of a different smoother in marginal integrations.

The work is organized as follows. In section 2, we present the models to be estimated
under both null and alternative hypotheses and the statistical tests to verify the hypothesis.
In section 3 the procedure of estimation is described in detail. In the section 4, we provide
some results based on simulations. In section 5 we present the conclusion and topics for
further research. In the appendix 1 we show the results related to the simulations.

2. Models to Be Estimated

2.1. The Internalized Nadaraya-Watson Estimator

Let { } 1
, 1

( )
n d

i i i
X Y +

=
∈  be a finite sequence of random vectors and : dm →  an

unknown Borel measurable function. Our goal is to estimate ( ) ( | )m x E Y X x= = . Denot-
ing ( )i i iY m Xε = −  we get the regression model ( )i i iY m X ε= + . Note that by construction

[ | ] 0i iE Xε = . The regression function m(.) takes the form: ( , )
( )( ) yf x y

f xm x dx= ∫ , if ( ) 0f x >
and the marginal density of ( , )f x y  becomes: ( ) ( , )f x f x y dy= ∫ . The form of the (inter-
nalized) kernel regression estimator, developed by Nadaraya (1964) and Watson (1964), is:

1 1

( )1 1ˆˆ ( )  where ( ) ( )ˆ ( )

n n
h i i

h h h i
i ih i

K x X Ym x f x K x X
n nf X= =

−= = −∑ ∑ (2)
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where ( )h iK x X−  denotes ( ) 1ix X
h hK −  and : dK →  is the a priori chosen d-

dimensional (Lipschitz) continuous called kernel, whose compact support satisfies

( ) , ( ) 1K x dx K x dx< ∞ =∫ ∫ (3)

The kernel function used to estimate both null and alternative models is the Quartic
kernel given by 2 215

16( ) (1 )K = −x x  for 1<x . In this work all procedures are stated in
terms of this kernel. The results are very similar if we use other kernels. The smoothing
parameter hn>0 for all n is an a priori chosen sequence of numbers called bandwidth
parameter that satisfies

lim 0, lim d
n nn n

h nh
→∞ →∞

= = ∞ (4)

Provided that sup ( )x f x < ∞ , then the estimator ˆ ( )f x  is pointwise weakly consis-
tent in every continuity point of ( )f x . It results from the property of bounded conver-
gence of ˆ ( )hEf x , ˆˆ ( ) ( )hEm x f x , ˆvar( ( ))d

n hnh f x  and ˆˆvar( ( ) ( )).d
n hnh m x f x  Then by (3) and

(4) and provided that sup ( ) ( )x hm x f x < ∞  and 2sup ( ) ( )y hx f xσ < ∞  we have that
ˆ ( ) ( )m x m x→  in probability. If in addition 4( )jE Y < ∞ , 4sup ( ) ( )y hx f xσ < ∞  and

2 3
1n nn h− −∞

= < ∞∑  then ˆ ( ) ( )m x m x→  a.s.
The asymptotic distribution theory is established for the kernel regression approach,

for details Bierens (1994). Suppose that 2 ( ) ( )u x f xσ  are continuously and uniformly
bounded, and 2 ( ) ( )m x f x  are continuously and uniformly bounded too; additionally,
suppose that ( ) 0xK x dx =∫ , ( )Txx K x dx = Ψ < ∞∫  and ( ) 0hf x > . If 2 2lim d

n n nh nh µ→∞ =
with 0 µ≤ < ∞  then:

2
22 ( )( )ˆ[ ( ) ( )] , ( )

( ) ( )
d u
n

h h

xb xnh m x m x N K z dz
f x f x

σµ
 

− →  
 

∫
in distribution, where { } { }1 1

( ) ( ) ( )2 2( ) ( )m x f x f xb x tr H f x tr H= Ψ − , H is the Hessian of
the functions mf  and f , respectively (Y was defined before). To selecth bandwidth,
we define the usual mean integrated square error (MISE)

{ }2ˆˆ[ ( ) ( ) ( ) ( )]hE m x f x m x f x dx−∫ (5)

which yields the optimal bandwidth of the form 2 2lim 0d
n n nh nh µ→∞ = > . Thus, the

band hn, which gives the maximum rate of convergence in distribution is 
1

4
0 ,d

nh h n +−=
where h0 is a constant. If we set 1

4d
nh cn +−= , then we have that:

( ) { }22
4 ( )( )2 2

( ) ( )ˆ ( ) ( ) , ( )d xb x d
f x f xn m x m x N c c K z dzεσ+ −− → ∫ . Note that the asymptotic rate of

convergence in distribution, 2
4dn + , has a functional form and is similar to the optimal

bandwidth hn but they are very different quantities. Also note that 
2

4dn +  is negatively
related to the number of regressors. This feature is typical of nonparametric regression
and is known as curse of dimensionality. Additive models are a good way to address
this problem. More importantly, the optimal bandwidth for estimating is different from
the bandwidth for generation the bootstrap samples.
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2.2. Additive Models and Marginal Integration

Additive models can be presented as follows. Let { } 1
, 1

( )
n d

i i i
X Y +

=
∈  be a finite se-

quence of random vectors, {1,..., }dΛ = , : dm → , :mα →  ,α∀ ∈Λ  are un-
known Borel measurable functions. Then:

[ | ] ( )E Y X F m Xα α
α

α
∈Λ

 = ∈Λ 
 
∑ (6)

is called Generalized Additive Models (GAM) which was considered by Winsberg
and Winsberg and Ramsay (1980). In this work we are concerned with a less general
structure. Let 2E Y  < ∞   be and let m be the regression function, so that ( ) ( | )m x E Y X= .
If m is additive we can write it as follows:

[ ]| ( ) ( )E Y X m x c m Xα α
α∈Λ

= = +∑ (7)

Even if m is not genuinely additive; an additive approximation to m may be sufficiently
accurate for a given application as well as being readily interpretable. If m is additive, of
course, then m m∗ =  and m mα α

∗ =  for α ∈Λ  with { }( ) ( ) ( ) 0,XE m X m x f x dx
α α α α α= =∫

,α∀ ∈Λ  and { } { }( )E Y E m X cα α− −= =  for identification. Stone (1985) explains that the
optimal rate to estimate such regression curves m is the one-dimensional rate of
convergence with /(2 1)n− +  and does not increase with dimension. The marginal inte-
gration estimator is defined noting that (see Hardle, Müller, Sperlich and Werwatz,
2004):

{ ( , )} ( , ) ( ) ( )XE m x X m x x f x dx c m x
α α α α α α α α α α− − − − − −= = +∫ (8)

Example 1 Consider the following data generation process, let 3∈X  we define:

( )2
1 2 31 2 3cosY X X X π ε= + + + + (9)

where [ 1, 1]X Uα ∼ −  { }1, 2, 3 ,α∀ ∈Λ =  are independent, [ | ] 0E Xε = =x  a.s
and possibly heteroscedastic. We have:

[ ] ( )2
1 2 3( ) | 1 2 3cosm X E Y X X X X= = = + + +x

 Consequently, taking the marginal expectation, then:

{ } ( )( )

{ } ( )

{ } ( ) ( )

1

2

3

1 1 2 2
1 11 1

1 1

2 21 1

1 1

3 31 1

1( ) 1 2 3cos 1
4

1( ) (1 2 3cos ) 1 2
4
1( ) (1 2 3cos ) 1 3cos
4

X

X

X

E m X X u v dudv X

E m X u X v dudv X

E m X u v X dudv X

π

π

π π

−

−

−

− −

− −

− −

= + + + = +

= + + + = +

= + + + = +

∫ ∫

∫ ∫

∫ ∫
we get the component functions 2

1 1 1( ) 1m X X= + , 2 2 2( ) 2 1m X X= −  and
( )3 3 3( ) 3cos 1m X X π= −  and 2c =  . Then we can see that we always get the marginal

effects of the explanatories variable X plus a constant 2c = .
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The corresponding internalized version of marginal integration estimator, and de-
noted as m1, is given by:

1
|

1

1 ˆˆ ( ) ( ) ( | )
n

I
h i i

i

m x K X x f X X Y
nα α α α α α α α

−
− −

=

= −∑ (10)

Where 1
|f̂α α
−
−  is an estimate of the inverse of the conditional density | ( | )f X Xα α α α− − .

Under null hypothesis of additivity m̂α  and ˆ Imα  are consistent estimates of mα  with
α ∈Λ . For the sake of simplicity, we assume that the constant ( )1/ 2

n pc c O n−= + , for
instance 1

1ˆ n
i inc Y== ∑ . In the internalized version ĥf  appears internally to the summation,

in opposition to the external method where estimated density appears to be external to
the summation (see Jones, Davies and Park, 1994).

2.3. Testing Additivity

In this section we are going to investigate several tests statistics in order to testing
the additivity hypothesis under the null and alternative hypotheses of non-additivity, but
we will focus on statistics based on residuals coming from an internal marginal integration
(IMIE). Let a rΞ ∪Ξ  be the potential random sample outcomes, where rΞ  is the rejection
region, and                   , where     is the empty set. Let      be a family of additive models:

(11)
Then the hypothesis is represented as follows:

Note that if rx∈Ξ ⇒  we will reject Ho and if rx∉Ξ ⇒  we will not reject Ho. The
regression estimator based on the IMIE is defined by:

( )0ˆ ˆ ˆ( ) ( ) 1I Im x m x d cα α
α∈Λ

= + −∑ (12)

where ˆ Imα  is given by the expression (10), and the residuals for this regression
function are defined by:

0ˆ ˆ ( )I
i i ie Y m X= − (13)

The estimated alternative model is the multidimensional Nadaraya-Watson esti-
mator, given by (2), with bandwidth k. For instance one from the three statistical tests
considered here, which is based on the estimators under null alternative hypothesis,
is given by:

2
0ˆ ˆ( ( ) ( )) ( ) ,I

kT m x m x w x dx= −∫ (14)
, 2

0
ˆ ˆ ˆ( ( ) ( )) ( ) ,g h

kT m x m x w x dx∗ ∗ ∗= −∫ (15)

Da  r   

D  m  R : mx 

mx ,x fxdx 11

H0 : m  D
H1 : m  D
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where w(x) denotes a weight function. This one serves to trim the boundaries or
regions of sparse data. The statistic T is the unknown test value, because mh(x) is
unknown; T̂  is the original estimated test, and T̂ ∗  is B bootstrap test; ˆ km  is the general
model estimator; 0ˆ hm  is the null model; ˆ km∗  and ,

0ˆ g hm∗  are general and null models,
respectively, based in bootstrap residual. The subscripts g, h tell us that ,

0ˆ g hm∗  was
generated with g and estimated with the optimal bandwidth h. Of course, this selection
was made using the rule that we are proposing as a criterion and will be justified in next
section. According to that, we have that ˆ optg h>  is satisfied. For instance, the sample
version of statistical data Tn and T̂ ∗  is given by the formula:

2

1 0,
1

1ˆ ˆ ˆ( ) ( )
n

I I
n i h i

i

T m X m X
n

∗ ∗ ∗

=

 = − ∑ (16)

Another two tests statistics considered are:

2 0,
1

1ˆ ˆ ˆ ˆ( ) ( )
n

I I
n i i h i

i

T e m X m X
n

∗ ∗

=

 = − ∑ (17)

( ) ( )2 2
3

1

1 ˆ ˆ
n

n i i
i

T e u
n =

 = − ∑ (18)

where 0ˆ ˆ ( )I
i i ie Y m X= −  are the residuals under H0. The estimated 2̂nT  was intro-

duced by Gozalo and Linton (2001). The statistic 3n̂T  is essentially the difference of
the estimators for the integrated variance function in the additive and general models
–it was firstly proposed by Dette, von Lieres and Sperlich (2003) to test parametric
structures of the regression function. In this estimate, the random variable
ˆ ˆ ( )I

i i k iu Y m X= −  denotes the corresponding residuals of the alternative model. Con-
cerning the asymptotic distribution of (16)-(18) Dette, von Lieres and Sperlich (2003)
have shown that under null hypothesis of additivity, i.e.          , as n →∞ , then

2 2( { }) (0, )
d

jn jn jng T E T N v− →  for 1, 2, 3j = . Moreover, if                 they also show that
2 22 ( { }) (0, )jn j jn jn T M E T N s− − → , where 2

jv  and 2
js  are the asymptotic variances and

2
jM  is a nonnegative measure of discrepancy.

3. The Resampling Problem

Let 0ˆ ˆ ˆ ( )Im c m xα α α∈Λ= + ∑  be the estimation under null hypothesis. And denote by

ˆ I
gm  the additive model estimator with bandwidth g. The approach is to be resampled

from the estimated residual:
ˆ ˆ ( ), 1,...,I

i i g iY m X i nε = − = (19)
They are the differences between the observations and the regression function esti-

mated under a null hypothesis, whose distributions will approximate the distribution of

m  D
m  D
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the original estimator. Here we use the idea of wild bootstrap (see Wu, 1986), i.e we used
the so-called golden cut construction. This method is called wild bootstrap because in
some sense, as suggested by Härdle and Marron (1991), the resampling distribution of iε

∗

can be thought of as attempting to reconstruct the distribution of each residual through
the use of one single observation. After resampling, new observations are defined by

ˆ ( )I
i g i iY m X ε∗ ∗= + (20)

Let Ω  be the sample space and { }: ,a bε ∗ Ω →  each bootstrap residual. Note that

each ε ∗  is taken from the two points distribution, denoted for { , },a b iG  such that:

{ }
{ }

( )

( ) 1

P a

P b

ε ω γ

ε ω γ

∗

∗

= =

= = − (21)

for some , ,a b∈  and [0, 1]γ ∈ . Determine now a, b and γ  subject to the restric-
tions:

( ) ( )
{ , }, { , }, { , },

2 32 3ˆ ˆ{ } 0, { } ( ) and {( ) }
a b i a b i a b iG i G i i G i iE E Eε ε ε ε ε∗ ∗ ∗= = = (22)

For a two-point distribution { , },a b iG , set { , }, (1 )a b i a bG γδ γ δ= + −  where aδ  and bδ

denote points measure at { , }a b . Some algebraic rule reveals that parameters a, b, and

γ  are given by: ˆ (1 5) / 2ia ε= − , ˆ (1 5) / 2ib ε= +  and (5 5) /10γ = + , and this one
satisfies the restrictions. Bandwidth for constructing the bootstrap sample, denoted by
g, is different from the optimal bandwidth h, where

{ }2ˆˆmin [ ( ) ( ) ( ) ( )]
n

hh H
h E m x f x m x f x dx

∈
= −∫ (23)

where Hn is a set of possible bandwidths. The sample version of (23) is given by:
21

1 ,ˆ{ ( )} .n
i h i in Y m X= −−∑  This procedure to estimate h is known as cross-validation and

gives us some idea about how to choose g, which has to be larger than the optimal
bandwidth. Then, the kernel smoother mh is applied to the bootstrapped data
{ } 1

, 1
( )

n d
i i i

X Y ∗ +

=
∈  using optimal bandwidth h. This estimation is denoted by ˆ hm∗ . A

number of replications of ˆ hm∗  can be used as a basis to construct the statistics, as the
distribution of ˆ{ ( ) ( )}hm x m x−  is approximated by the distributions of ˆ ˆ{ ( ) ( )}h gm x m x∗ −
which we can simulate. The symbol |Y X  to denote the conditional distribution of
{ } 11 |{ }n n

i i iiY X ==
 and the symbol * , the bootstrap distribution { } { } 11

| ( , )
n n

i i i ii
Y X Y∗

==
.

Why bandwidth g, used in the construction of the bootstrap residual should be
over-smoothed? Consider the mean of ˆ{ ( ) ( )}hm x m x−  under the |Y X -distribution and

ˆ ˆ{ ( ) ( )}h gm x m x∗ −  under the * -distribution in the situation when the marginal density
( )f x  is constant in neighborhood of x. Asymptotic analysis as in Rosenblatt (1969)

shows that:

| 2 ( )ˆ( ( ) ( )) ( )
2

Y X
h

KE m x m x h m xµ ′′− ≈ (24)
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2 ( )ˆ ˆ ˆ( ( ) ( )) ( )
2h g g
KE m x m x h m xµ ′′∗ ∗ − ≈ (25)

(moreover we can see that 0g
h →  for n →∞ : this finding results from bootstrap

consistency) where ( )2( ) ( )K u K u duµ = ∫ . Hence for these two distributions to have the
same bias, we need ˆ{ ( ) ( )} 0.gm x m x′′ ′′− →  This requires choosing g going to zero at a
slower rate than the optimal bandwidth h for estimating m(x). (See Gasser and Müller,
1984 for details). Suppose that:

A1. m(x), ( )f x  and { }22 ( ) (( ( )) | )x E Y E Y X xσ = − =  are twice continuously differ-
entiable.

A2. The kernel function K is symmetric and nonnegative, ( )2K K u du= < ∞∫
and ( )2( )K u K u duµ = < ∞∫ .

A3. 2sup { | }x E X xε = < ∞ .
A4. ( ) 0if x >  for { ,..., }.i i n∈
A5. m(x), and ( )f x  are four times continuously differentiable.
A6. K is twice continuously differentiable.
Under A1-A2, a reasonable choice for h will fall in the set

( ) ( )1/ 4 1/ 4
0 1 0 1, ,0d d

nH h n h n h h− + − + = < < < ∞ 
For this choice of bandwidth, the kernel smoother ˆ ( )hm x  is asymptotically optimal.

For h0 small and h1 large, this assumption is not restrictive because it will be satisfied
with probability to 1 if h is chosen by cross-validation. The rate of convergence of g
must tend to zero at a slower rate than h. Hence it is assumed that g is chosen from the
set 1/(4 ) , ,d

nG n nδ δ− + + − =   0δ > . The following results characterize uniform conver-
gence in h and g, in the spirit of Härdle and Marron (1991).

Let            , )P  be a fixed probability space, whereF is a non-empty collection of subsets
of Ω ,                                         where    is the Borel field generated by x. Then , hαΦ  and

, ,h gα
∗Φ  should be random functions such that:

, , ,sup sup ( ) ( )
n n

h h g
h H g G

z zα α
∗

∈ ∈
Φ −Φ (26)

is a random variable defined for each n. Suppose that there is a null set N and

0 ( , )n n ω ε≥ , n∈ , both independent of h and g, where:

( ) ( ){ }|
, ,ˆ( ) Y X

h hz P nh m x m x zα α α α α Φ = − <  (27)

( ) ( ){ }, , , ,ˆ ˆ( )h g h gz P nh m x m x zα α α α α
∗ ∗ ∗ Φ = − <  (28)

for a fixed z. Notice that /Y XP  is the conditional distribution and P* is the bootstrap
distribution. On the other hand, it is important to keep in mind that the symbol αΦ  is to
denote the conditional distribution of Y given Xα ∈  and α αΦ = Φ∑  is to denote the
conditional distribution of Y given dX ∈ . In a similar way we get that * *

, ,h gαα
Φ = Φ∑

x : ,F  R,B,
,F

B
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From Theorem 1 of Härdle and Marron (1991) we have that under A1-A4, nz∀ ∈  and
∀ α ∈ Λ

, , ,sup sup ( ) ( ) 0
n n

h h g
h H g G

z zα α
∗

∈ ∈
Φ − Φ → (29)

This result tells us that under specified conditions , ( )h zαΦ  converge uniformly
in h and g to , , ( )h g zα

∗Φ  almost sure. The assumption on the speed of the bandwidth
h ensures that each of the previous probabilities has a non-trivial limit. In fact, the
result comes from showing that both ( ) ( ),ˆ hnh m x m xα α α α −   and

( ) ( ), ,ˆ ˆh gnh m x m xα α α α
∗ −   have the same limiting normal distribution.1 In other

words, the result tells us that samples of wild bootstrap regression estimates ,ˆ hmα
∗

centered around ,ˆ gmα  have nearly the same distribution as the regression function
,ˆ hmα  centered around mα . It is important to say that the marginal density f  is con-

stant in a neighborhood of x and with a fixed z.
The main role of the pilot smooth is to provide a correct adjustment for the bias, in

most of works the goal of bias estimation is used as a criterion. Recall that a bias in the
estimation of ( )m xα α  by ,ˆ ( )hm xα α  is given by ( ) |

, ,ˆ ˆ( ) { ( ) ( )}Y X
h hb m x E m x m xα α α α α α

∗= − .
The bootstrap bias of the estimator constructed from the resampled data is:

( ), , , ,
ˆ ˆ ˆ ˆ( ) { [ ( )] ( )}h g h gb m x E m x m xα α α α α α

∗ ∗= −

As usual, to find g it is necessary to minimize the mean square error. Again, from
Härdle and Marron (1991) we have that under assumption A1-A6, along almost all
sample sequences,

2 4 1 5 4
, , , 1

ˆ{( ( ) ( )) |{ } } { }n
h h g i iE b x b x X h An g Bgα α α α α

− −
=− ∼ +

in the sense that the ratio tends in probability to 1, where A and B are constants with
respect to n, h and g. A consequence of such a result is that differentiating the previ-
ously expected value with respect to g, the rate of convergence for d = 1 of g should be
close to 1/9n− .

This makes precise the previous remark that indicated that g should be oversmoothed.
Moreover, in general terms, the optimal rate for estimating the functions m and mα  and
their derivatives for the additive models depends on the dimension d, the smoothness
index of m, denoted by , the order of its derivatives, v, and the order of local polyno-
mials used in the estimation, p. Sperlich and Severance Lossin (1999), showed that for
d = 1, 2=  , v = 0 and, p = 1, the corresponding bandwidth is close to 

1
9n− .

Under these assumptions, a reasonable choice of h will be optimal. This result gives
us some indication on why g should be selected bigger than h. However, even theoreti-

1 The reason for the uniform convergence in the previous result is important because this
ensures that results still hold when h or g are replaced by random-driven data bandwidths.
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cally band selection for the bootstrap is made as literature suggests; the question, not
less important, is how, in the practice, we can do it. Since it is true that rate 1/9n−  is the
optimal one, the selection of g involves a constant that multiplies the rate 1/9.n−  Our
goal is to provide a method to select a bandwidth, which is reasonable and can be easily
applied. When we say reasonable, we mean that the bandwidth chosen gives us a good
approximation to the original distribution of the bootstrap distribution functions.

Let h be the argument that minimizes the averages of cross-validation. For d = 1 we
define the oversmoothing bandwidth 1

9ĝ hn−= . The following result tells us that if for
some Xα  the expression (26) holds, then for entire vector ( )1,...,

T
dX X X=  the uni-

form convergence is satisfied. Thus we have:
Proposition 2 Given A1-A6, if  (29) holds, then nz∀ ∈  along almost all sample

sequences we have

,sup sup ( ) ( ) 0
n n

h h g
h H g G

z z∗

∈ ∈
Φ − Φ → (30)

where

( ) ( ){ }| ˆ( ) Y X d
h hz P nh m x m x zΦ = − <  

( ) ( ){ }, ˆ ˆ( ) d
h g h gz P nh m x m x z∗ ∗ ∗ Φ = − < 

Proof. See appendix 2.

4. Simulation Results

The bootstrap procedure allows us to obtain critical values using ˆ
jnT  for j = 1,2,3.

This works as follows: i) generate independent 1{ }n
i iε ∗

= , where distribution of iε ∗  is given
by a two-point distribution; ii) construct the bootstrap data { }, 1

( )
n

i i i
X Y ∗

=
 and with this

data compute the bootstrap statistics ˆ
jnT ∗ ; iii) repeat the process B times to obtain

,{ }jn b bT β
∗

∈  with {1,..., }Bβ = , and use these B values to construct the empirical boot-
strap distribution; iv) we use this empirical distribution to compute the empirical p-
values. We reject H0 if ˆ ˆ

jn jnT T∗ > . The bootstrap p-value2  is computed as:

, ,
ˆ ˆ{ : , }jn b jn b

B

T T b
p

B

β∗ > ∈
=

x
(31)

where .  denotes the cardinality of the set , ,
ˆ ˆ ˆ{ : }.jn b jn b jnT T T∗ ∗ >  In our simulations we

take d = 3 and consider performance differences between tests 1̂nT  and 3̂nT . Since IMIE
allows oversmoothing in the nuisance directions, we set b qh= , with q ∈ . We choose

2 Theoretically we define the p-value as: ( )0min sup ( );r

m
p P x m

α
α α

∈

 = ∈Ξ ∈ = 
 F

F
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q as in Dette, von Lieres and Sperlich (2003), and it means that q = 6 for d = 3. The cross-
validation yields for the Nadaraya-Watson an optimal bandwidth k = 0.9, for IMIE an
optimal bandwidth h = 0.7 and for nuisance directions 6b h= . Bandwidth selection for
bootstrap estimation is carried out as the suggested criterion 1.

We report percentaje of the rejections for the 1%, 5%, 10% and 15% levels for all
tests, without trimming (tr0) at the approximate 95% quantile (tr5) and 90% quantile
(tr10) under null hypothesis of additivity. We report simulations for n = 100, B = 500 and
results refer to 1000 simulations runs with a randomly drawn design for each run.
Consider the following model with an interaction term 2 3lX X , where {0, 2}l ∈  is an
index that tells us if the model is null (l = 0) or alternative (l = 2), i.e.

{ }

2
1 2 3 2 3

12 13

21 23

31 32

2 sin( ) ,  with (0, 1)
1

(0, ), 1 , 1, 2
1

Y X X X lX X N

X N γ γ

π ε ε
ρ ρ

ρ ρ γ
ρ ρ

= + + + + ∼

 
 ∼ Σ Σ = ∈ 
  

(32)

where 1γ =  means that there is no correlation between covariates, and 2γ =  means
that covariates are correlated. Firstly, we carry out a simulation with 1γ =  thus

12 21 13 31ρ ρ ρ ρ= = = 23 32 0ρ ρ= = = . Secondly, we consider the correlated design, where
2,γ = 12 21 0.2,ρ ρ= = 13 31ρ ρ= 0.4,=  and 23 32 0.6.ρ ρ= =
In order to assess the validity of the statistical tests introduced above we set an

analysis based on the p-value concept. p-value is defined as the smallest possible level
of significance at which the null hypothesis will be rejected for the computed statistical
test. Therefore, if we have a level of significance equal to α , we want the p-value to be
close to this value under H0 and to be equal to one under H1.

Tables 1 and 2 show the results of uncorrelated design (i.e. 1γ = ) under H0, with
optimal bandwidth h and band g for the bootstrap. We obtain that the IMIE procedure
yields too conservative tests, but holds the level for all tests when no trim is applied
and optg h= . However the nominal level is not accurate enough. When analyzing the
results for a correlated design (i.e, 2γ = ), we mimic the same results, but tests are still
more conservative than in the previous setting. See Tables 3 and 4. It is remarkable that
T1 performs better than T2 and T3 for all significance levels in both situations. Results
under H1 are given in tables 5 and 6 when 1γ = . Tables 7 and 8 present the results for

2.γ =  Under the alternative, we get reasonable power if there is no trim and optg h= . As
before, we can see that all tests work worse for correlated design. With both H0 and H1,
we obtain better results for all tests under consideration when we do not trim and we
rather choose optg h=

Note that with γ  =1, l equals 0 and 2 for any level of trimming and all significance
levels when the bandwidth for the bootstrap is oversmoothing, results are more conser-
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vative than when we use the optimal bandwidth. See tables 1, 2, 5 and 6. However, we
can get a reasonable power level. We hope results under H1 to be closer to 1 with the
oversmoothing band, but this is not the case. Results show that is more difficult to
reject H0 when bandwidth g is bigger than the optimal one. With γ = 2, l = 0 and optg h= ,
and trim at 5% and 10% it is remarkable that T1 has a good performance. For γ = 2, l = 2 and
for any level of trimming and all significance levels, results are bad and the power of test
are too low. Although the statistical procedure works better in the case of variables
uncorrelated and without trim, results obtained indicate that the statistical procedure
we have proposed works reasonably well.

5. Conclusion

In this work we obtain a bandwidth for testing a semiparametric model against a
nonparametric alternative. The bandwidth posed by the alternative model still deserves
some discussions. In this paper, we are not interested in local alternatives but in a fixed
one. Then, bandwidth selection for the alternative, k, does not affect the result about
estimation under the null hypothesis. Therefore, k can be any of them. In particular, we
take the band chosen as an argument that minimizes the cross-validation average.
Moreover, since for this paper purposes it is not necessary to make a consistent estima-
tion of any parameter, either with H0 being true or false, the problem refers only to the
selection of bootstrap bandwidth g.
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Appendix 1.
Table 1. Percentage of rejection. γ  = 1. l = 0      Table 2. Percentage of rejection. γ = 1. l = 0

o p tg h=  α  T1 T2 T3 optg h>  α  T1 T2 T3 
tr0 15% 0.17 0.16 0.15 tr0 15% 0.06 0.01 0.006 
 10% 0.09 0.075 0.06  10% 0.02 0.006 0.002 
 5% 0.02 0.016 0.01  5% 0.004 0.002 0.001 
 1% 0.001 0.0 0.0  1% 0.0 0.0 0.0 
tr5 15% 0.08 0.05 0.05 tr5 15% 0.03 0.001 0.0 
 10% 0.03 0.023 0.018  10% 0.01 0.0 0.0 
 5% 0.008 0.005 0.004  5% 0.001 0.0 0.0 
 1% 0.001 0.0 0.0  1% 0.0 0.0 0.0 
tr10% 15% 0.079 0.053 0.04 tr10 15% 0.04 0.0 0.0 
 10% 0.03 0.016 0.01  10% 0.02 0.0 0.0 
 5% 0.014 0.007 0.006  5% 0.002 0.0 0.0 
 1% 0.0 0.0 0.0  1% 0.0 0.0 0.0 

Table 3. Percentage of rejection. γ  = 2. l = 0      Table 4. Percentage of rejection. γ = 2. l = 0

optg h=  α  T1 T2 T3 optg h>  α  T1 T2 T3 
tr0 15% 0.06 0.05 0.04 tr0 15% 0.03 0.01 0.001 
 10% 0.02 0.02 0.02  10% 0.01 0.02 0.0 
 5% 0.008 0.006 0.003  5% 0.04 0.0 0.0 
 1% 0.001 0.0 0.0  1% 0.0 0.0 0.0 
tr5 15% 0.03 0.02 0.01 tr5 15% 0.01 0.001 0.0 
 10% 0.01 0.007 0.006  10% 0.06 0.0 0.0 
 5% 0.04 0.003 0.0  5% 0.003 0.0 0.0 
 1% 0.0 0.0 0.0  1% 0.0 0.0 0.0 
tr10% 15% 0.03 0.023 0.016 tr10 15% 0.019 0.01 0.001 
 10% 0.01 0.009 0.007  10% 0.01 0.01 0.001 
 5% 0.03 0.001 0.001  5% 0.002 0.01 0.0 
 1% 0.001 0.0 0.0  1% 0.0 0.0 0.0 

Table 5. Percentage of rejection. γ  = 1. l = 2      Table 6. Percentage of rejection. γ = 1. l = 2

optg h=  α  T1 T2 T3 optg h>  α  T1 T2 T3 
tr0 15% 0.98 0.98 0.98 tr0 15% 0.95 0.87 0.68 
 10% 0.95 0.96 0.94  10% 0.85 0.68 0.45 
 5% 0.80 0.76 0.66  5% 0.58 0.35 0.13 
 1% 0.30 0.18 0.07  1% 0.12 0.03 0.002 
tr5 15% 0.94 0.93 0.88 tr5 15% 0.86 0.70 0.40 
 10% 0.88 0.83 0.74  10% 0.75 0.50 0.23 
 5% 0.71 0.59 0.40  5% 0.53 0.27 0.06 
 1% 0.29 0.14 0.04  1% 0.16 0.03 0.001 
tr10% 15% 0.89 0.85 0.75 tr10 15% 0.83 0.62 0.32 
 10% 0.82 0.74 0.57  10% 0.72 0.47 0.18 
 5% 0.66 0.52 0.29  5% 0.57 0.25 0.05 
 1% 0.28 0.13 0.03  1% 0.20 0.03 0.003 
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Table 7. Percentage of rejection. γ  = 2. l = 2      Table 8. Percentage of rejection. γ = 2. l = 2

optg h=  α  T1 T2 T3 optg h>  α  T1 T2 T3 
tr0 15% 0.39 0.39 0.37 tr0 15% 0.33 0.23 0.16 
 10% 0.26 0.26 0.22  10% 0.20 0.14 0.07 
 5% 0.12 0.10 0.08  5% 0.09 0.04 0.01 
 1% 0.01 0.009 0.002  1% 0.005 0.001 0.0 
tr5 15% 0.40 0.38 0.32 tr5 15% 0.26 0.15 0.07 
 10% 0.30 0.26 0.19  10% 0.18 0.09 0.02 
 5% 0.17 0.12 0.07  5% 0.09 0.02 0.006 
 1% 0.03 0.01 0.004  1% 0.01 0.001 0.0 
tr10% 15% 0.40 0.36 0.30 tr10 15% 0.29 0.17 0.08 
 10% 0.30 0.25 0.17  10% 0.21 0.10 0.03 
 5% 0.18 0.12 0.07  5% 0.11 0.04 0.01 
 1% 0.03 0.01 0.002  1% 0.01 0.003 0.0 
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Appendix 2.

Proof. Theorem 1 of Härdle and Marron (1991) implies that along almost all samples,
nz∀ ∈ , and for some α ∈Λ , nt∀ ∈ :

( ), ,( ) 0h B Vz Zα φΦ − →

uniformly over ,nh H∈  where 2 ,T

T
z t B

t Vt
Z −=  and ,B Vφ  denotes the univariate standard

normal c.d.f with mean B and variance V and the same for the * distribution. Thus, we
have that:

, ,

, , ,

sup sup ( ) ( ) 0,

sup sup ( ) ( ) 0
n n

n n

h B V
h H g G

h g B V
h H g G

z Z

z Z

α

α

φ

φ
∈ ∈

∗

∈ ∈

Φ − →

Φ − →

It means that |Y X  and * distribution have the same asymptotic distribution. Then

for nz∀ ∈ , and { }1,..., dα ∈Λ =  with ,d < ∞  we can define

and

Therefore, ,( ) ( )h hz zα α∈ΛΦ ≤ Φ∑  and , , ,( ) ( ).h g h gz zα α
∗ ∗

∈ΛΦ ≤ Φ∑  Notice that:

, , , , , ,( ) ( ) ( ) ( ) ( ) ( )h h g h B V B V h gz z z Z Z zα αφ φ∗ ∗Φ −Φ ≤ Φ − + −Φ

consequently we have:

, , , ,

, ,

, , ,

sup sup ( ) ( ) sup sup ( ) ( )

sup sup ( ) ( )

sup sup ( ) ( )

n n n n

n n

n n

h h g h h g
h H g G h H g G

h B V
h H g G

B V h g
h H g G

z z z z

z Z

Z z

α α
α

α
α

α
α

φ

φ

∗ ∗

∈ ∈ ∈ ∈∈Λ

∈ ∈∈Λ

∗

∈ ∈∈Λ

Φ −Φ ≤ Φ −Φ

≤ Φ −

+ −Φ

∑

∑

∑

then it follows that:

,sup sup ( ) ( ) 0
n n

h h g
h H g G

z z∗

∈ ∈
Φ −Φ →

nhd m hx  mx   z   nhd m ,hx   mx   z

nhd m h
x   mx   z   nhd m ,h

 x   m ,gx   z
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