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Information and entanglement measures applied to the analysis of complexity
in doubly excited states of helium
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Shannon entropy and Fisher information calculated from one-particle density distributions and von Neumann
and linear entropies (the latter two as measures of entanglement) computed from the reduced one-particle
density matrix are analyzed for the 1,3

S
e, 1,3

P
o, and 1,3

D
e Rydberg series of He doubly excited states below the

second ionization threshold. In contrast with the Shannon entropy, we find that both the Fisher information and
entanglement measures are able to discriminate low-energy resonances pertaining to different 2(K,T )An2

series
according to the Herrick-Sinanoğlu-Lin classification. Contrary to bound states, which show a clear and unique
asymptotic value for both Fisher information and entanglement measures in their Rydberg series 1sn� for n → ∞
(which implies a loss of spatial entanglement), the variety of behaviors and asymptotic values of entanglement
above the noninteracting limit value in the Rydberg series of doubly excited states 2(K,T )An2

indicates a signature
of the intrinsic complexity and remnant entanglement in these high-lying resonances even with infinite excitation
n2 → ∞, for which all known attempts of resonance classifications fail in helium.
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I. INTRODUCTION

The electronic density ρ(r) in atoms, molecules, and
solids is, in general, a distribution that can be observed
experimentally, containing spatial information projected from
the total quantum wave function. These density distributions
in atoms can be thought as probability distributions subject
to the scrutiny of the analytical methods in information
theory. For example, Shannon entropy, Fisher information,
disequilibrium, complexity measures analyzed in the Fisher-
Shannon plane, and divergence measures between different
densities (such as the Jensen-Shannon or Fisher divergences)
have been used to study the information behavior of some
atomic properties (see Refs. [1–5]). The Shannon entropy
measures the spread, extent, and compactness of the spatial
density in global way. Strictly speaking, it is not an observable
of the system since there is no Hermitian operator associated
with it in the Hilbert space, but it acts as a theoretic-information
measure of the spatial uncertainty in the localization of the
electrons in the system. In this work we will be concerned with
the two-electron helium atom. In this respect, for instance, the
Shannon entropy has already been studied in the two-electron
Hooke’s atom [6] and in confined simple atoms [1], as well
as the scaling properties of the Shannon entropy near the
ionization threshold for a two-electron atom [7]. The Fisher
information provides instead a local analysis of the density
distribution through its gradient content and it has been the
subject of several studies in one-particle quantum systems [8,9]
and two-electron artificial atoms [2], but to our knowledge,
there is no previous study on Fisher information as applied to
the helium atom.

Another tool to analyze states in quantum systems is
through entanglement measures, such as von Neumann and
linear entropies of entanglement [10–13]. Needless to say
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that entanglement is one of the most crucial properties of
multipartite systems in quantum theory that brings essential
inseparability and nonclassical correlations among their con-
stituents, and it is subject to a continuous debate on its nature
and potential applications. Previous studies have focused
their attention on analyzing entanglement entropies of bound
levels in artificial model atoms [14–22]. More recently, these
studies have been extended to realistic two-electron atoms
considered as bipartite entangled systems, although restricted
to the analysis of the ground state and low-lying singly excited
states [19,23–33].

The genuine manifestation of entanglement in a fermionic
system is connected to the consideration of the Slater-Schmidt
rank of the many-particle wave function as well as the value of
the von Neumann entropy of the one-particle reduced density
matrix [11,34,35]. Many electron atomic states expressed
as a multiconfigurational wave function contain expansions
in terms of many Slater determinants built with a set of
orthogonal orbitals. Generally, this implies Slater ranks greater
than 1 and, consequently, they are firm candidates to exhibit
entanglement among their electrons. The von Neumann and
linear entropies for any entangled state should be larger than
the respective statistical minimum entropy corresponding to
the simpler wave function with Slater rank unity (independent-
particle-model states or Hartree-Fock states). There are many
open questions on the proper choice of a measure to quantify
the amount of entanglement in general fermionic systems,
but it is widely accepted that for a two-electron system
described as a pure state, the entanglement defined in terms
of the von Neumann entropy of the reduced density matrix is
definitely a good quantifier for entanglement (see, for example,
Refs. [11,25,34,35]). On theoretical grounds, the greater the
value of the von Neumann entropy, the larger the entanglement
and the ensuing correlation among particles, although practical
examples with excited states show the opposite, which requires
new interpretations [19,30]. The use of the linear entropy is
also firmly established [11,36]. Both linear and von Neumann
entropies were calculated and compared for the Hooke’s atom,
for different confining harmonic potentials, to find that the
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linear entropy (properly scaled) and the von Neumann entropy
coincide qualitatively [25]. In Refs. [24,37] the behavior of the
von Neumann entropy at the critical threshold point where a
bound state in He becomes unbound by varying a parameter
was studied. However, their study was restricted to the lowest
singlet and triplet states with L = 0 and using a spherical
helium model, where 1/r12 is replaced by 1/r>. Entanglement
in emerging resonances of two-electron quantum dots using
a model of two electrons confined in a spherical well of
varying radius has also been recently reported [16]. Leav-
ing apart two-electron model systems, specific studies for
entanglement in realistic He atoms have also been carried
out [19,29,30,32,33,38]. In these latter works entanglement
measures have been analyzed only for some bound states of
He. In Refs. [19,29] and Ref. [33] the authors compute He atom
using Kinoshita-type and Hylleras-type explicitly correlated
wave functions, respectively. In Refs. [30] and [32] the
authors use the configuration interaction (CI) method, using
orthogonal Slater-type functions and hydrogen-like orbitals in
terms of the B-splines basis, respectively, to build uncorrelated
two-electron configurations. The latter CI methods are similar
to our method of solution.

The purpose in this work is to explore doubly excited states
(DES) of helium atom as compared to singly excited states
from the perspective of the topological information present in
their spatial one-particle density as well as from their entangle-
ment content measured with von Neumann and linear entropies
(using the reduced one-particle density matrix). According to
the Fano theory DES are no longer bound states since the
electron correlation mixes the bound configurations of these
states with the unbound electron configurations corresponding
to the continuum of the same energy [39,40]. This means that
these superexcited states lying in the continuum above one
or more ionization thresholds contain both bound-like and
scattering-like properties in their structure. The bound-like
part of these resonances implies a strong localization of
their density in regions close to the nucleus and this inner
structure exhibits the main distinguishable features that helped
to classify them taxonomically in terms of new (K,T ) quantum
labels [41–43]. Similarly we use this bound-like part of
the resonances to calculate and analyze theoretic-information
quantities. It is worth noting that for atoms with low nuclear
charge, strong electron correlation is the basic characteristics
within the Rydberg series of DES (the Coulomb repulsion term
1/r12 is responsible for their autoionization decay process
into the continuum), in contrast to singly excited states.
DES in helium have been the object of numerous resonance
classification schemes (see [44] for a critical review) and they
are good candidates to assess information, entanglement, and
complexity measures as the benchmark of fermionic bipartite
atomic systems.

DES in atoms and molecules represent a paradigmatic case
for the understanding of the role of electron correlation. The
ground state and single excitations are widely represented
using the independent-particle model (IPM), in which the
LS-coupled two-electron state with parity π is represented by
the labels |(n1�1,n2�2);2S+1 Lπ 〉, since in their configuration
mixing there is usually a leading IPM configuration. However,
DES show a strong configuration interaction with the admix-
ture of many IPM configurations and, as a general rule, without

leading ones. This property led to new ways of classifying
DES [40]. By combining the angular momenta �1 and �2 for
a fixed pair (n1,n2) Herrick and Sinanoğlu [41,45] introduced
group theory based new angular quantum numbers (K,T ) in
such a way that the new basis vectors, |n1 (K,T )n2 ;2S+1 Lπ 〉,
called doubly excited symmetry basis (DESB) states were
almost able to diagonalize the Hamiltonian, in a clear attempt
of recovering again leading configurations, now in terms of
the DESB. Nevertheless, since DESB are constructed for a
given couple (n1,n2) with n2 � n1[n1 indicating the inner
electron and n2 the outer electron], these basis states only
describe restricted intrashell (n1 = n2) or intershell (n1 fixed
and n2 > n1) electron correlations. A CI method improves
the description of each DES by combining many additional
intra- and intershell excited configurations [with higher (n1,n2)
pairs]. These new quantum numbers (K,T ) remained in
the subsequent classification by Lin [42,46] (by analyzing
isomorphic correlations with hyperspherical coordinates), now
representing angular labels for asymptotic dipole states, plus a
new quantum number A, additionally introduced to account
for radial correlation, to end up with a descriptor label
|n1 (K,T )An2

;2S+1 Lπ 〉.
To avoid lengthening the paper and unnecessary discussions

on benchmark values, we only give Shannon entropies in
tabulated form and the Fisher information and von Neumann
entropies are given in graphical form. Although linear en-
tropies have also been computed systematically, their results
run parallel to the von Neumann entropies, which does not
bring new insights into our analysis. The paper is organized as
follows: In Sec. II we describe our theoretical approach, with
(i) the procedure to compute the reduced spatial density ρ(r) as
well as the one-particle reduced density matrix ρ̂ from CI wave
functions, from which all theoretic-information entities can be
calculated, and (ii) a short description of our implementation
of the Feshbach approach to obtain the resonance wave
functions as well as a description of DESB states. Section III is
dedicated to the separate presentation and discussion of results
for Shannon entropies, Fisher information, and entanglement
measures. We end up with some conclusions and perspectives
in Sec. IV. Atomic units (a.u.) are used throughout unless
otherwise stated.

II. THEORY

A. Methodology

The electronic structure of the He atom is solved at the level
of the configuration interaction (CI) method, to obtain accurate
wave functions of the form [in our notation xi = (ri ,σi), ri =
(ri,�i), and �i = (θi,φi)]

2S+1	π
L,M (x1,x2)

=
∑

n1�1,n2�2

Cn1�1,n2�2A{φn1�1 (r1)φn2�2 (r2)

×Y(�1,�2)L,M (�1,�2)2S+1χ (σ1,σ2)}, (1)

where A is the antisymmetrizer operator, Y(�1,�2)L,M (�1,�2)
corresponds to the bipolar spherical harmonic of angular
coupling, π corresponds to the state parity, and 2S+1χ (σ1,σ2)
is the two-electron spin eigenfunction for total spin S. The
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variational expansion coefficients Cn1�1,n2�2 are obtained by
numerically solving the eigenvalue problem associated with
the two-electron Hamiltonian

H = h1 + h2 + 1

r12
. (2)

In the expansion (1) the one-particle wave functions φn�(r) =
Pn�(r)/r · Y�m(�) are chosen as eigenfunctions of the
hydrogen-like Hamiltonian hi = −∇2

i /2 − Z/ri from Eq. (2).
As in previous works [47], the reduced radial wave function
Pn�(r) is expanded in terms of M B-splines basis functions
Bk

i (r). Once the CI wave function is obtained for a given state,
the two-electron distribution function ρ(u1,u2) corresponds to
the expectation value of the operator Ĝ(u1,u2), i.e., ρ(u1,u2) =
〈2S+1	π

LM |Ĝ(u1,u2)|2S+1	π
LM〉, which has the following form

in the position representation for an atom or ion with N

electrons [48]:

Ĝ(u1,u2) =
N∑

i<j

1

2
[δ(ri − u1)δ(rj − u2)

+ δ(ri − u2)δ(rj − u1)]. (3)

After integrating over the irrelevant three Euler angles that
determine the orientation of the triangle electron-nucleus-
electron in space, the reduced operator reads

Ĝ(u1,u2,θ ) =
N∑

i<j

1

2
[δ(ri − u1)δ(rj − u2)

+ δ(ri − u2)δ(rj − u1)]δ(cosθij − cosθ ), (4)

and the corresponding two-electron density becomes
ρ(u1,u2,θ ) = 〈2S+1	π

LM |Ĝ(u1,u2,θ )|2S+1	π
LM〉. For instance,

using standard tensor algebra, the matrix element of the
reduced density operator between two non-antisymmetrized
two-electron configurations 〈Ĝ(r1,r2,θ )〉ab,cd = 〈(na�a)1

(nb�b)2LS|Ĝ(u1,u2,θ )|(nc�c)1(nd�d )2LS〉 has the form

(Ĝ(r1,r2,θ ))ab,cd

= R(ab,cd)
∑

k

1

4
(−1)L−k(2k + 1)

× [(2la + 1)(2lb + 1)(2lc + 1)(2ld + 1)]
1
2

×
(

la lc k

0 0 0

) (
lb ld k

0 0 0

){
la k lc
ld L lb

}
Pk(cosθ ),

(5)

where Pk(cos θ ) is a Legendre polynomial and, at variance
with the 1/r12 operator, the radial integral R(ab,cd) does
not depend on the k index and its value is straightforwardly
obtained after radial integration

R(ab,cd) = Pna�a
(u1)Pnb�b

(u2)Pnc�c
(u1)Pnd�d

(u2)

+Pna�a
(u2)Pnb�b

(u1)Pnc�c
(u2)Pnd�d

(u1). (6)

Our final expression for the reduced spatial density is com-
pletely equivalent to that quoted in Ref. [43], which was
obtained by other means. Finally, the radial two-electron

density distribution is calculated by trivial angular integration

ρ(u1,u2) =
∫ +1

−1
d(cos θ )ρ(u1,u2,θ ), (7)

and the one-electron radial density by additionally integrating
over one radial coordinate, for instance u2,

ρ(u) =
∫ ∞

0
u2

2du2

∫ +1

−1
d(cos θ )ρ(u1 = u,u2,θ ). (8)

Henceforth, for the sake of clarity, we replace the notation
u → r for the electron coordinates in the density expressions.

The Shannon entropy for discrete distributions is de-
fined in information theory as S = −∑

i pi ln pi with∑
i pi = 1. For continuous distributions the definition is S =

− ∫
drf (r) ln f (r), with

∫
drf (r) = 1. In the usual definition,

the integral of the one-electron density yields the number of
electrons in the atom, but according to information theory
we instead choose to normalize the radial density to unity,
i.e.,

∫
drρ(r) = 1. Similarly, the two-electron radial density

is also renormalized to unity. With these two distributions we
can compute the Shannon entropy for the two-electron radial
distribution S2 = − ∫

dr1
∫

dr2ρ(r1,r2) ln ρ(r1,r2), or for the
one-electron distribution S1 = − ∫

drρ(r) ln ρ(r).1 We found
(see also results on the Hooke’s atom [6]) that both entropies S1

and S2 show a similar qualitative trend for 1,3Le (L = 0,1,2)
bound states in He, so that (for easier calculation) we only
report S1-like Shannon entropies for both bound states and
DES. In this case it reduces to evaluating the expression

S[ρ] = −4π

∫ ∞

0
r2ρ(r) ln ρ(r), (9)

by using numerical quadrature integration. The Fisher infor-
mation is defined by the two equivalent expressions

I [ρ] =
∫

dr|∇ ln ρ(r)|2ρ(r) =
∫

dr
|∇ρ(r)|2

ρ(r)
. (10)

It is worth noting that the Fisher information is related to the
von Weisäcker inhomogeneity kinetic-energy correction term
�

2|∇ρ|2/8mρ (not in a.u.) in density functional theory [49]
and also to Bohm’s quantum potential [50,51].

Entanglement in two-electron systems is related to the
Schmidt-Slater decomposition of a pure state |	〉 [52], in terms
of an orthonormal basis of one-particle states {|φi〉} in the
form

|	〉 =
∑

i

√
λi

2
[|φ2i(1)〉|φ2i+1(2)〉 − |φ2i+1(1)〉|φ2i(2)〉],

(11)

where the set of Schmidt-Slater coefficients {λi} satisfies
0 � λi � 1 and

∑
i λi = 1. The number of nonzero Schmidt-

Slater coefficients defines the Slater rank of the state. If the
Slater rank equals unity (only one Slater determinant) the

1One-electron radial density can be straightforwardly obtained
using the operator Ĝ = ∑N

i=1 δ(r − ri), then used in the Shannon
entropy S1. In this work we began by studying both Shannon entropies
S1 and S2, using the two-electron radial density.
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state is not entangled. It is known that these Schmidt-Slater
coefficients are related to the eigenvalues of the one-particle
reduced density matrix [53], and from this, measures of the
amount of entanglement E in the pure state |〉 have been
proposed [11,19,21,29] in the general form for N fermions
as

EL = N

[
SL(ρ̂) −

(
N − 1

N

)]
, (12)

in terms of the standard linear entropy SL(ρ̂) = 1 − Tr[ρ̂2],
and where the term (N − 1)/N eliminates the contribution to
the linear entropy only due to antisymmetrization, or

EV N = SV N [ρ̂] − log2 N, (13)

using the standard von Neumann entropy SV N [ρ̂] =
−Tr[ρ̂ log2 ρ̂] and the term log2 N similarly cancels the
nonessential entanglement content due to the antisymmetriza-
tion. For two electrons (N = 2) these expressions reduce
to EL = 1 − 2Tr[ρ̂2] and EV N = SV N [ρ̂] − 1. Now, due to
the separability of the spatial and spin parts in the two-
electron total wave function (1), the reduced density matrix
can be expressed as a product of reduced density matrices
(ρ̂ = ρ̂spatial ⊗ ρ̂spin), which transforms the entanglement mea-
sures (12) and (13) into

EL = 1 − 2Tr[(ρ̂spatial)2]Tr[(ρ̂spin)2] (14)

and

EV N = SV N [ρ̂spin] + SV N [ρ̂spatial] − 1. (15)

In this work we only select those spin singlet and triplet states
of the entangled Bell-wise form 1,3χ (1,2) = 1√

2
[α(1)β(2) ∓

β(1)α(2)], which satisfy Tr[(ρ̂spin)2] = 1/2 and SV N [ρ̂spin] =
1, and from which one readily finds that EL ≡ SL[ρ̂spatial]
and EV N ≡ SV N [ρ̂spatial]; i.e., entanglement measures EL and
EV N (including spin and cancellations due to simple antisym-
metrization) coincide with the standard spatial linear entropy
SL(ρ̂spatial) and the standard spatial von Neumann entropy
SV N (ρ̂spatial), respectively, with this choice of spin wave
function. Accordingly, we use in the following the standard von
Neumann and linear entropies applied to the spatial part of the
wave function as direct entanglement measures, which allows
us to compare our numerical results with previous works on
the He atom [19,29,30,32,33].

The standard spatial von Neumann entropy is defined
through the expression (from now, ρ̂spatial → ρ̂)

SV N [ρ̂] =−Tr[ρ̂(r1,r′
1) log2 ρ̂(r1,r′

1)]

=−
∫

dr[ρ̂(r,r) log2 ρ̂(r,r)], (16)

where ρ̂(r1,r′
1) is the reduced density matrix of the subsys-

tem electron 1 [not to be confused with the two-electron
density distribution ρ(r1,r2) introduced above], obtained
after tracing the full two-electron density matrix in the co-
ordinate representation [i.e., ρ̂(r1r2; r′

1r′
2) = 〈r1r2|ρ̂|r′

1r′
2〉 =

〈r1r2|	CI 〉〈	CI |r′
1r′

2〉 obtained from the two-electron pure
state |	CI 〉 whose coordinate representation is in the form

of Eq. (1)] over the coordinates of one subsystem (electron 2,
for instance) to yield a reduced density matrix of a (usually)
mixed state for electron 1 with the expression

ρ̂(r1,r′
1) = Tr2ρ̂(r1,r2; r′

1,r
′
2)

=
∫

dr2	CI (r1,r2)	∗
CI (r′

1,r2). (17)

The linear entropy is an approximation to the von Neumann
entropy, obtained by expanding the logarithm in Eq. (16) in
power series of the density matrix and keeping only the leading
terms (along with the property Tr[ρ̂] = 1) to give

SL[ρ̂] = 1 − Tr[ρ̂2(r1,r′
1)] = 1 −

∫
drρ̂2(r,r), (18)

where ρ̂2(r1,r′
1) = ∫

dr2ρ̂(r1,r2)ρ̂(r2,r′
1) and Tr[ρ̂2] is called

purity.
From the previous expressions for SL and SV N it might

seem that the computation of these quantities require up to 12-
dimensional integrals, which have been previously calculated
using Monte Carlo numerical integration methods [19,29]
using explicitly correlated Kinoshita-type basis functions,
although they can be performed analytically when using
explicitly correlated Hylleraas basis sets, as shown in [33].
Indeed we have experience in using Hylleraas-type basis sets
in CI methods [54] but we have chosen an uncorrelated
CI method that incorporates antisymmetrized products of
orthogonal orbitals, which makes not only the application of
the Feshbach projection method and the subsequent analysis
in terms of DESB much more simple, but also the calcu-
lation of SL and SV N entropies. Using the CI expansion of
Eq. (1) in terms of orthogonal orbitals, the representation
of the two-electron density operator ρ̂(r1r2; r′

1r′
2) becomes

ρ̂n1�1,n2�2;n′
1�

′
1,n

′
2�

′
2
= Cn1�1,n2�2 · C∗

n′
1�

′
1,n

′
2�

′
2

and the one-electron
reduced density matrix elements are straightforwardly ob-
tained by taking the trace over the electron 2, in the form
ρ̂n1�1;n′

1�
′
1
= ∑

n� Cn1�1,n�C
∗
n′

1�
′
1,n�

[55]. By carrying the matrix
ρ̂n1�1;n′

1�
′
1

to its diagonal form, the entropies can be calculated
in the following two equivalent ways:

SL = 1 −
∑

n�,n′�′
ρ̂n�;n′�′ · ρ̂n′�′;n� = 1 −

M∑
i=1

λ2
i (19)

for the linear entropy, and with

SV N =−
M∑
i=1

λi log2 λi (20)

for the von Neumann entropy, where {λi}Mi=1 is the set of M

eigenvalues of the one-electron reduced density matrix with
the property

∑M
i=1 λi = 1. The value M corresponds to the

size of the one-electron Hilbert space, i.e., the total number
of orbitals φn�(r) used to build our CI wave functions in
Eq. (1).

B. Resonances: Feshbach approach

The atomic resonances in He are DES with energies lying
above the first ionization threshold and below the complete
break-up double ionization threshold. They are true eigenstates
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in the continuum spectra of the Hamiltonian in Eq. (2)
showing a strong electron localization close to the nucleus.
Since they are immersed in the electronic continuum, a direct
diagonalization of the Hamiltonian cannot uncover the energy
location of these resonances. Different methods have been
proposed to characterize these resonance states, such as the
stabilization method [56], the complex coordinate scaling [57],
the Feshbach method [58], or scattering methods [59], among
others, previously used by us in other contexts [54,60,61]. The
Feshbach method is a projection operator formalism which
separates the total resonance wave function 	 (eigenfunction
of H) into two orthogonal half spaces: its bound-like part Q	

and its scattering-like part P	, such that 	 = Q	 + P	.
For a fuller recent description of the Feshbach formalism
and its application by us to two- and three-electron atoms
see Refs. [47,61,62]. Here we only give a simple outline.
The projected wave functions satisfy the asymptotic boundary
conditions limri→∞ P	 = 	 and limri→∞ Q	 = 0, where
the latter expression indicates the confined nature of the
localized part of the resonance. Since any useful taxonomy to
classify different resonances depends mainly on the localized
bound-like part and not on the scattering-like part, which is
basically common to all of them, it suffices to analyze the
projected wave function in theQ half space. In our approach to
the Feshbach method the Q	 wave function is an eigenstate of
the projected Hamiltonian QHQ, i.e., (QHQ − E)Q	 = 0,
where for the two-electron case Q = Q1Q2 and P = 1 − Q,
with Qi = 1 − Pi (i = 1,2). Then the full projector P =
P1 + P2 − P1P2 accounts for the antisymmetry. The explicit
form of the one-particle Pi projector depends on which
Rydberg series of resonances we are interested in. In this
work we restrict our study to DES located above the first
ionization threshold He+(1s) and below the second ionization
threshold He+(2s,2p), then embedded in a continuum of the
form He(1sε�), with ε being the excess energy of the scattering
electron above the first ionization threshold. In this particular
case the one-particle projector is simply Pi = |φ1s(i)〉〈φ1s(i)|
and with it the corresponding Q projector has the effect of
removing all those configurations in the CI wave function (1)
containing the 1s orbital, then avoiding the variational col-
lapse to the ground state He(∼1s2), to singly excited states
He(∼1sn�) and the single ionization continuum He(∼1sε�).
As a result, the lowest variational energies of the QHQ
eigenvalue problem correspond to a square-integrable (L2)
discrete set of DES or resonances, devoid of any scattering-like
participation.

C. The DESB states

The doubly excited symmetry basis (DESB) states [41,45]
are characterized by the two quantum labels K and T , and they
are obtained by a linear superposition of hydrogen-like IPM
configurations as follows:

|n1 (K,T )n2 ;2S+1 Lπ 〉 =
∑
�1�2

|n1�1n2�2;2S+1 Lπ 〉DKT Lπ
n1�1n2�2

,

(21)

where |n1�1n2�2;2S+1 Lπ 〉 corresponds to an antisymmetrized
configuration as used in Eq. (1), and D is proportional to a

Wigner 9-j factor, as follows:

DKT Lπ
n1�1n2�2

= M(T ,π ) × (−1)�2 [(n2 + K + T )(n2 + K − T )

× (2�1 + 1)(2�2 + 1)]1/2

×
⎧⎨
⎩

(n1 − 1)/2 (n2 − 1)/2 (n2 − 1 + K + T )/2
(n1 − 1)/2 (n2 − 1)/2 (n2 − 1 + K − T )/2

�1 �2 L

⎫⎬
⎭,

(22)

where M(T ,π ) is a normalization factor [M = 1 if T = 0,
M = √

2 if T > 0, and M = 0 unless (−1)�1+�2 = π ]. DESB
states are eigenfunctions of the operator B̂2 = n2(Â1 − Â2)2,
where Âi is the Runge-Lenz operator for electron i. The
amazing result is that the operator B̂2 almost commutes with
the two-electron interaction 1/r12 in Eq. (2) and thus DESB
states are almost the Hamiltonian eigenstates. Ultimately, this
means that if resonant DES are more properly described
with DESB states, the resonance Rydberg series given by
|n1 (K,T )n2 ;2S+1 Lπ 〉 (for a fixed n1, then increasing n2 > n1 up
to ∞) contain indeed several Rydberg series in terms of IPM
hydrogen-like configurations. For example, the two 2(K,T )n2

series in 1,3
S

e states are obtained from combinations of the two
hydrogen-like Rydberg series 2sn2s and 2pn2p as follows:

|2(±1,0)n2 ; 1,3
S

e〉 =
[
n2 ± 1

2n2

]1/2

|2sn2s〉

±
[
n2 ∓ 1

2n2

]1/2

|2pn2p〉. (23)

Similarly, in the 1,3
P

o symmetry the 2(±1,0)n2 DESB states
are combinations of three hydrogen-like Rydberg series with
fixed n1 = 2 and with n2 � 2, in the form

|2(±1,0)n2 ; 1,3
P

o〉 =
[

(n2 ∓ 1)(n2 ± 2)

2n2
2

]1/2

|2sn2p〉

∓
[

(n2 ± 1)(n2 ± 2)

6n2
2

]1/2

|2pn2s〉

±
[

(n2 ∓ 1)(n2 ∓ 2)

3n2
2

]1/2

|2pn2d〉. (24)

Herrick and Sinanoğlu found that if the complete set of DESB
states is used as a basis to expand the total wave function,
each DES coming from the Hamiltonian diagonalization is
dominated by DESB states with the same values of the labels
K and T . Therefore, on these grounds, it is expected that
theoretic-information properties of highly lying 1,3

P
o DES

will not show clear limiting values corresponding to single
residual ionic states [He+(2s) or He+(2p)], but to an intricate
mixture.

When neglecting the 1/r12 interaction, the energy of a two-
electron hydrogen-like atomic system is En1,n2 = −Z2

2 ( 1
n2

1
+

1
n2

2
) and then simple IPM configurations (n1�1,n2�2) (with

n1 = 2 and n2 � 2) built from hydrogen-like orbitals are exact
eigenstates of the Feshbach QHQ projected Hamiltonian.
In this case, for example, intrashell IPM configurations
{2s2s,2p2p} entering in Eq. (23) with n2 = 2 or intershell
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IPM configurations {2s3p,2p3s,2p3d} in Eq. (24) with n2 =
3 form energy degenerated manifolds. With 1/r12 included, the
energy degeneration of both intrashell (n1 = n2) and intershell
(n1 < n2) hydrogenic IPM configurations entering in the right-
hand side of Eq. (21) is exact only at Z = ∞, which justifies
their linear combination within each degenerated manifold to
build DESB states; this degeneracy is lifted for any finite Z.
Approximate DESB states may be obtained numerically at
any Z value as the eigenstates resulting from diagonalizing
the 1/r12 interaction in the set of intra- or intershell IPM
configurations compatible with the total 2S+1Lπ symmetry.
The expansion coefficients of the latter eigenstates are closer
to those of the DESB as Z → ∞, and also in this limit they
come closer to those from ab initio full CI calculations, because
intershell interactions tend to vanish for Z → ∞ due to the
increasing energy separation among atomic shells. From this
perspective, DES in He may be thought of as a particularly
realistic example of the effect of energy degeneracy in the non-
interacting limit, lifted by the electron repulsion term 1/r12, an
interaction that already produces a mixing of the degenerate
states if we build the zeroth-order wave function according to
degenerate perturbation theory [21], then inducing a nonzero
entanglement even in the noninteracting limit. Consequently,
DES in He, in contrast to singly excited states, may always
show a given degree of entanglement from low to very high
excitation as an intrinsic property of these resonant states,
independent of the entanglement measure used.

III. RESULTS

We first compute the energies and wave functions of bound
states of helium using our CI method based on a B-splines
basis expansion. To keep the number of configurations closer
to the full CI with a reasonably small number of orbitals we
use 40 B-splines per angular momentum � distributed in an
exponential grid (well suited to represent localized states, at
variance with our previous work where a linearly distributed
grid was used [47], intended to also represent the two-electron
continuum states) within a box of size L = 200 a.u. 1Se states
are computed using 820 nsn′s configurations (n,n′ = 1–40),
820 npn′p configurations (n,n′ = 2–41), 820 ndn′d (n,n′ =
3–42), 820 nf n′f (n,n′ = 4–43), 820 ngn′g (n,n′ = 5–44),
and 820 nhn′h (n,n′ = 6–45), which represents a full CI with
4920 configurations. The 1P o states are calculated with 6400
configurations (including sp, pd, df , and fg). Similarly, the
1De symmetry is computed with 7529 configurations (sd, pp,
pf , dd, dg, ff , and gg). The triplet states are computed using
4680 configurations for 3Se, 6400 for 3P o, and 5306 for 3De.
Table I summarizes the energies obtained for the lowest series
of bound states in these six spectroscopic symmetries.

We have also performed CI calculations for the DES by
diagonalizing the projected Hamiltonian QHQ, with the same
configuration basis set used for bound states, but now, in
practice, projecting out the 1s orbital. We are able to obtain,
lying below the second ionization threshold He+(n1 = 2), 23
DES of symmetry 1Se, 32 states for 1P o, and 30 states for 1De,
using 4880, 6360, and 7489 configurations, respectively. On
the other hand, we get 21 DES of symmetry 3Se, 32 DES for
3P o, and 29 DES for 3De, by using 4641, 6360, and 5266
configurations, respectively. Nevertheless, only the lowest

TABLE I. Energies (in a.u.) and Shannon entropies S of the
lowest bound states 1sn� 1,3Lπ (with � = L) of helium, below
the first ionization threshold He+(n = 1) (E = −2.0 a.u.) for the
spectroscopic symmetries 1,3

S
e, 1,3

P
o, and 1,3

D
e obtained in this

work.

1Se 1P o 1De

state E (a.u.) S E (a.u.) S E (a.u.) S

1s1� −2.903605 2.705
1s2� −2.145967 5.492 −2.123823 5.515
1s3� −2.061270 6.769 −2.055140 6.817 −2.055620 6.635
1s4� −2.033586 7.645 −2.031067 7.695 −2.031280 7.596
1s5� −2.021176 8.310 −2.019905 8.359 −2.020016 8.295
1s6� −2.014563 8.856 −2.013833 8.903 −2.013898 8.853
1s7� −2.010626 9.330 −2.010169 9.371 −2.010210 9.329
1s8� −2.008093 9.663 −2.007788 9.688 −2.007816 9.656
1s9� −2.006360 9.681 −2.006141 9.675 −2.006164 9.667
1s10� −2.004961 9.626 −2.004754 9.689 −2.004801 9.549

3Se 3P o 3De

state E (a.u.) S E (a.u.) S E (a.u.) S

1s2� −2.175229 5.236 −2.133162 5.356
1s3� −2.068689 6.605 −2.058080 6.722 −2.055635 6.634
1s4� −2.036512 7.523 −2.032324 7.628 −2.031288 7.596
1s5� −2.022619 8.217 −2.020551 8.307 −2.020021 8.294
1s6� −2.015377 8.775 −2.014208 8.859 −2.013901 8.852
1s7� −2.011130 9.254 −2.010405 9.335 −2.010212 9.329
1s8� −2.008427 9.601 −2.007947 9.664 −2.007818 9.655
1s9� −2.006596 9.675 −2.006256 9.672 −2.006165 9.667
1s10� −2.005183 9.502 −2.004870 9.613 −2.004801 9.548

ones (6–7 in each symmetry) are converged in energy within
5–6 figures. The comparison of our calculated DES energies,
reported in Table II, with the very precise values calculated by
Chen [63], using the saddle-point complex rotation method,
is very reasonable. The deviations from the values given in
Ref. [63] are mostly due to the fact that the energy correction
due to the surrounding continuum states (the energy shift) is
not included in our results.

To assess our radial two-electron density distributions
ρ(r1,r2), quoted in Eq. (7), we plot in Fig. 1 these radial
distributions for the lowest three members of each n1 (K,T )n2

series in the symmetry 1P o, 2(0,1)+n2
, with n2 = 2,3,4; 2(1,0)−n2

,
with n2 = 3,4,5; and 2(−1,0)n2 with n2 = 3,4,5. The energy
ordering of DES is given by the prefix N in the notation N 1P o,
ranging from N = 1 to 10 (the corresponding energies are
included in Table II). Clearly the second series with A = −1
displays a node for r1 = r2, absent in the first series with
A = +1 and not evident with A = 0. Also the number of
radial nodes along any of the two radial coordinates increases
with the excitation within each series. In fact, the lowest
member in each series has no radial nodes in the r1 or r2

direction below or above the bisection line given by r1 = r2, a
property typical of ground states. Density plot analyses have
been carried out in the past, like in Ref. [43] for ρ(r1,r2,θ ),
by making cuts at a given radial distance (r2 = α), but to our
knowledge only a reference with radial density plots ρ(r1,r2)
for DES in He is available [64]. In the latter work the authors
calculated a multipolar series expansion of the full density
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TABLE II. Energy positions (in a.u.) (without energy shift
correction) and Shannon entropies S of the lowest resonant doubly
excited states of helium located below the second ionization threshold
He+(n1 = 2) for the total symmetries 1,3

S
e, 1,3

P
o, and 1,3

D
e.

Resonances are labeled according to the classification proposed by
Lin [46] using n1 (K,T )An2

; 2S+1Lπ . The superscript notation +,− in
S and D symmetries must be understood as A = +1 for the singlets
and A = −1 for triplet states.

1Se 3Se

Energy (a.u.) S Energy (a.u.) S

2(1,0)+,−
2 −0.778775 6.380

2(1,0)+,−
3 −0.590099 8.136 −0.602601 7.974

2(1,0)+,−
4 −0.544939 9.133 −0.548848 9.043

2(1,0)+,−
5 −0.526707 9.874 −0.528417 9.821

2(1,0)+,−
6 −0.517650 10.46 −0.518548 10.44

2(−1,0)+,−
2 −0.622559 6.874

2(−1,0)+,−
3 −0.548216 8.786 −0.559765 8.418

2(−1,0)+,−
4 −0.527781 9.728 −0.532512 9.437

2(−1,0)+,−
5 −0.518140 10.41 −0.520552 10.16

2(−1,0)+,−
6 −0.512785 10.95 −0.514182 10.73

1P o 3P o

Energy (a.u.) S Energy (a.u.) S

2(0,1)+n2 2(1,0)+n2

n2 = 2 −0.692754 6.546 −0.761484 6.349
n2 = 3 −0.564010 8.400 −0.584929 8.146
n2 = 4 −0.534332 9.372 −0.542932 9.166
n2 = 5 −0.521488 10.08 −0.525756 9.924
n2 = 6 −0.514724 10.64 −0.517131 10.52

2(1,0)−n2 2(0,1)+n2

n2 = 3 −0.597095 7.970 −0.579030 8.077
n2 = 4 −0.546486 8.910 −0.539558 9.152
n2 = 5 −0.527293 9.729 −0.523946 9.912
n2 = 6 −0.517935 10.35 −0.516079 10.50
n2 = 7 −0.512678 10.86 −0.511547 10.99

2(−1,0)0
n2 2(−1,0)+n2

n2 = 3 −0.547091 8.917 −0.548854 8.5385089
n2 = 4 −0.527614 9.771 −0.528643 9.4961463
n2 = 5 −0.518116 10.42 −0.518712 10.199407
n2 = 6 −0.512790 10.95 −0.513157 10.761879

1De 3De

Energy (a.u.) S Energy (a.u.) S

2(1,0)+,−
2 −0.702699 6.380

2(1,0)+,−
3 −0.569369 8.272 −0.583795 7.999

2(1,0)+,−
4 −0.536785 9.286 −0.541681 9.098

2(1,0)+,−
5 −0.522771 10.03 −0.525019 9.879

2(1,0)+,−
6 −0.515470 10.61 −0.516688 10.49

2(0,1)0
3 −0.556414 8.447 −0.560662 8.248

2(0,1)0
4 −0.531505 9.447 −0.533448 9.320

2(0,1)0
5 −0.520114 10.17 −0.521123 10.08

2(0,1)0
6 −0.513950 10.74 −0.514536 10.66

2(−1,0)0
4 −0.529173 9.309 −0.529288 9.303

2(−1,0)0
5 −0.518937 10.08 −0.518998 10.07

2(−1,0)0
6 −0.513273 10.66 −0.513309 10.65

ρ(r1,r2) = ∑
��′m ρ�m�′m(r1,r2)Y�m(�1)Y∗

�′m(�2), in such a
form that the lowest radial coefficient ρ0000(r1,r2) describes
the angle-averaged relative radial probability, which is propor-
tional to our calculated density ρ(r1,r2). The comparison of the
density contour plots in Fig. 3 of Ref. [64] for the lowest 1P o

resonances in He with ours in Fig. 1 is excellent.2 One-particle
radial densities ρ(r) are then obtained by integrating these
distributions ρ(r1,r2) over one of the electron coordinates. A
very good agreement of our one-particle radial densities for
bound states in He with those available in Ref. [65] validates
our computational approach for the densities.

A. Shannon entropy

The Shannon entropy is known exactly for a few quantum
systems, with available analytical expressions for the one-
particle density. For instance, the Shannon entropy for the
ground state of the hydrogen atom is simply S = 3 + ln π =
4.14473 [66]. We have reproduced this value for the ground
state of hydrogen and also obtained numerical values for other
Rydberg states, using our computed hydrogen-like orbitals
entering in the CI method. The Shannon entropy augments
with the increasing delocalization in the electron distribution.
Accordingly the Shannon entropy exhibits a minimum for the
compactly localized density of ground states and maximal for
uniform distributions like those corresponding to the structure-
less plane-wave-like continuum. Since the upper limit in the
radial integral of the Shannon entropy is infinity and the spatial
radial extension of the states in the Rydberg series increases
with excitation energy, the first ionization threshold of any
atomic system might represent an asymptote for the Shannon
entropy of bound states. Consequently, the Shannon entropy
values for the singly excited states (singlets and triplets) of
helium atom quoted in Table I can be easily understood.
The Shannon entropy increases monotonically with single
excitation, from the lowest value, corresponding to the lowest
eigenstate of each symmetry (with the most compact density)
to infinity when the energy approaches the first ionization
threshold He+(1s). Our computation has limitations due to
the number of configurations and the length of the box used to
define our basis set of B splines. The number of bound Rydberg
states obtained in the diagonalization strongly depends on
these two parameters. Our box length (L = 200 a.u.) cannot
accommodate the full extension of the radial distribution of
highly excited Rydberg states 1sn� for � > 9 and thus we
only report a limited number of bound singly excited states.
Because of this limitation, our Shannon entropies in Table I
seem to converge to a fixed value around ∼9.7. Actually, better
calculations would show that Shannon entropy must increase
indefinitely with further excitation to eventually diverge at the
ionization threshold E(He+[n = 1]) = −2.0 a.u.

From the energies and Shannon entropies for He bound
states in Table I we are tempted to use this entity to
predict the energy ordering. In fact, this prediction is very

2Note that in Ref. [64] the energy ordering for the Feshbach
resonances 7 1P o(1,0) and 8 1P o(−1,0) must be exchanged. Other
more recent and our present calculations are much more accurate
than those performed at that time.
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FIG. 1. (Color online) Two-electron radial density ρ(r1,r2)r2
1 r2

2

for the lowest nine 1P o Feshbach resonance states in He, located below
the second ionization threshold. Resonances are labeled according
to the classification proposed by Lin [46] using N 1P o

n1 (K,T )An2
.

Each column contains the three lowest resonances corresponding to
a different (K,T )A series. The energy ordering indicated with the
label N follows a zigzag pattern in the graphical array, according
to the energies quoted in Table II. Inside each series, the increasing
excitation energy is accompanied by an increasing number of radial
nodes along r1 (or r2) for a given value of r2 (r1). Clearly the series
with A = −1 shows a node in the bisection line r1 = r2.

reasonable in terms of the general relation between energy and
wave function compactness; the energy and entropy ordering
coincide, except for the arrangement of states [1sns, 1Se;
1snp, 3P o; and 1snd, 1De] for low excitations n = 2–5. For ex-
ample, the pair [S(1s2s, 1Se) = 5.492, S(1s2p, 3P o) = 5.356],
or the triplet [S(1s3s, 1Se) = 6.769, S(1s3p, 3P o) = 6.722,
S(1s3d, 1De) = 6.635] have opposite ordering for energies
and entropies. Our results also show that an entropic first
Hund’s rule is satisfied, such that S(1s2s, 3Se) = 5.236 is
below S(1s2s, 1Se) = 5.492, S(1s2p, 3P o) = 5.356 is less
than S(1s2p, 1P o) = 5.515, S(1s3s, 3Se) = 6.605 lies be-
low S(1s3s, 1Se) = 6.769, or S(1s3d, 3De) = 6.634 is below
S(1s3d, 1De) = 6.635 (see Table I).

A similar analysis can be carried out with DES, whose
Shannon entropies are included in Table II. The absence of
the penetrating 1s orbital in their density structure makes the
lowest Shannon entropy in DES be higher than the lowest
one in the respective bound state of the same symmetry,
S[2(1,0)+2 , 1Se] = 6.380 versus S[1s2, 1Se] = 2.705. In the
case of resonances, the entropic ordering also follows that
of the energy within each (K,T ) series at least for the lowest
6–7 resonances in each series. For DES it is not obvious to
guess whether the first Hund’s rule is satisfied or not, due to
the strong mixing of hydrogen-like configurations within each
(K,T ) series. If one assumes for the 1,3

S
e DES a zeroth-order

wave function (23), the energy difference between singlet
and triplet comes from the different symmetrization in the
participating |2sn2s〉 and |2pn2p〉 configurations, i.e., in the
different values of the two-electron integrals for singlets and
triplets. For example, by using Eq. (23) with n2 = 3, a simple
calculation gives −0.5656 a.u. for the singlet 2(1,0)+3 and
−0.5921 a.u. for the triplet 2(1,0)−3 . It also happens for higher
members in the series with n2 > 3. The same exercise carried
out for the (−1,0) series yields −0.4581 a.u. for the singlet
2(−1,0)+3 and −0.5193 a.u. for the triplet 2(−1,0)+3 and an
analogous singlet-triplet ordering for higher n2. In this way,
the Hund’s rule is satisfied (at least for the lowest calculated
members) within the series [2(±1,0)+,−

n2
, 1,3

S
e].

This behavior is indeed quite general in DES, with the
exception of the series 2(1,0)n2 in the 1,3

P
o symmetries.

In fact, by using now the DESB expression (24) for n2 =
3 we find an opposite singlet-triplet energy ordering for
the states 2(1,0)3. We obtain −0.5824 a.u. for the singlet
[2(1,0)3,

1P o] and −0.5535 a.u. for the triplet [2(1,0)3,
3P o],

but −0.4708 a.u. for the singlet [2(−1,0)3,
1P o] and −0.5075

a.u. for the triplet [2(−1,0)3,
3P o], an energy ordering that

agrees with the full CI results quoted in Table II. This is
due to the combined effect of (i) the different values of the
two-electron integrals for singlets and triplets and (ii) the
presence of three mixing coefficients in Eq. (24), which change
signs for the (1,0) and (0,1) series in such a way that the
components of the energy corresponding to the crossed terms
make the difference. In conclusion, although the individual
IPM configurations in Eq. (24) always satisfy the Hund’s
rule, the combination does not. It is worth noting that using
CI calculations we obtain the same entropic ordering even
in this exceptional case 1P o. For instance, S[2(1,0)−3 , 1P o] =
7.970 less than S[2(1,0)+3 , 3P o] = 8.146, with corresponding
energies −0.597095 a.u. and −0.584929 a.u., and similarly
for higher members with n2 > 3.

Unfortunately, the Shannon entropy values hardly distin-
guish the evolution of the different DES 2(K,T )n2 series
(within the same spectroscopic symmetry 2S+1Lπ ) along the
increasing excitation in n2. The S values for high-lying DES
of any symmetry, spin, and (K,T ) series overlap at extent
within the same line, which eventually follows the direction
of an asymptote located at the second ionization threshold
He+(n1 = 2) with energy E = −0.5 a.u.

B. Fisher information

The Fisher information for singly excited states is shown
in the left panels of Figs. 2 (singlets) and 3 (triplets).
The behavior is notoriously different for each spectroscopic
symmetry. In 1,3

S
e states the Fisher information decreases

monotonically with the n2 excitation. In contrast, the 1,3
P

o

states increase monotonically their Fisher information with
the excitation. Finally, in 1,3

D
e states it increases to reach a

maximum, then decreases with higher excitation. Contrary
to Shannon entropies, which should diverge at the first
ionization threshold, the Fisher information reaches a constant
value for all spectroscopic symmetries (I [ρ] = 8 at energy
E = −2.0 a.u.). This asymptotic value can be explained as
follows. The spatial part of the wave function for highly
excited states in the Rydberg series can be approximately
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FIG. 2. (Color online) Fisher information I [ρ(r)] for the ground
state and the lowest members in the Rydberg series of singly excited
1Se states, singly excited 1P o states, and singly excited 1De states in
helium (left panel); and for the lowest members of the Rydberg series
of doubly excited states organized according to series with different
(K,T ) labels: 3Se with two (K,T ) series, 3P o with three series,
and 3De with three series (right panel). Solid lines connect points
corresponding to states pertaining to the same Rydberg (K,T ) series.
Vertical dashed lines indicate the energy position for the thresholds
He+ (n1 = 1) (left panel) and He+ (n1 = 2) (right panel).

represented as a (anti)symmetrized product of a single IPM
configuration where one of the electrons remains in the 1s

orbital, i.e., 	(r1,r2) = 1√
2
[φ1s(r1)φn�(r2) ± φn�(r1)φ1s(r2)],

whose reduced one-electron density is ρ(r) = 1
2 [|φ1s(r)|2 +

|φn�(r)|2]. With this density, the integrand of the Fisher
information is

|∇ρ|2
ρ

= 1

2

|∇(|φ1s |2)|2
[|φ1s |2 + |φn�|2]

+ 1

2

|∇(|φn�|2)|2
[|φ1s |2 + |φn�|2]

+ |∇(|φ1s |2)||∇(|φn�|2)|
[|φ1s |2 + |φn�|2]

, (25)
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FIG. 3. (Color online) Same as Fig. 2 but for the spin triplets, for
bound (left) and doubly excited states (right).

which can be approximated to give I [ρ] ∼ 1
2I [1s]+ 1

2I [n�]
plus a crossed term. Fortunately, the Fisher information
for hydrogen-like densities is known exactly [67] to be
I [n�] = 2Z2

n3 {n − 2
2�+1 [�(� + 1)]}. When n → ∞ both I [n�]

and the crossed term vanish, and the term containing the
density of the residual target state He+(1s) remains, whose
Fisher information value is 16. All singly excited states
of any symmetry share the same target density at the first
ionization threshold and therefore the same limit for the Fisher
information.

Taking into account the exact values of the Fisher infor-
mation for hydrogen-like atoms, the different tendencies of
the Fisher information for the singly excited states can be
also roughly explained. The 1Se ground state of He has the
leading configuration 1s2 but also 1s2s may be considered.
Similarly, the lowest 1P o state has a leading configuration
1s2p along with 1s3p. Using the IPM wave functions for
the configurations 1s2 and 1s2s, their Fisher information is
above 8, but for IPM configurations 1s2p and 1s3p their
Fisher information is below 8, which is a combined effect
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of (i) ns orbitals having higher Fisher information value
than np orbitals and (ii) the higher value of the denominator
[|φ1s |2 + |φn�|2] in Eq. (25) for np than for ns orbitals.
Also, the Fisher information function I [n�] for hydrogen-like
orbitals shows a maximum at nmax = 3�(�+1)

2�+1 before tending to
zero for n → ∞. For instance, the d orbitals have a maximum
in the Fisher information value for n = 4. Similarly, this
behavior also manifests in the singly excited states 1snd of
symmetry 1,3

D
e; the Fisher information reaches maximum

values for the states 1s4d and 1s5d. Slight deviations occur due
to the CI mixing of excited configurations containing p,d,f,g,
and h orbitals.

One might expect to use similar tools and reasoning to
analyze the behavior of the Fisher information in DES of He,
shown in the right panels of Figs. 2 and 3. These states also
build a Rydberg series converging to the upper threshold limit
He+(n1 = 2), which in principle could intuitively impose two
asymptotic values for the Fisher information, I ∼ 1

2I (2s) = 2
and I ∼ 1

2I (2p) = 1/3, in case that configurations for high-
lying DES could also be written as IPM antisymmetrized
configurations 2sns and 2pnp for 1,3

S
e (two Rydberg series),

2snp, 2pns, and 2pnd for 1,3
P

o (three series), and 2snd,
2pnp, and 2pnf for 1,3

D
e (three series). From our CI results

plotted in Figs. 2 and 3, none of the Fisher information values
for the calculated series of DES tend to 2 or 1/3 asymptotically.
Thus the Fisher information represents a good indicator to
confirm that DES are not well represented by simple IPM
wave functions, at variance with single excitations.

Let us now assume that Rydberg series of DES are better
represented by DESB states, according to Eq. (21), i.e.,
combinations of the Rydberg series of hydrogen-like IPM
configurations. For instance, the two Rydberg series (±1,0) of
DESB states in 1,3

S
e states are given by the Eq. (23) and it is

a simple exercise to calculate the Fisher information from this
linear combination, although unfortunately one cannot arrive
at a simple formula isolating each orbital contribution I (2s)
and I (2p) to the Fisher information. If one makes the crude
approximation ρ(2s) = ρ(2p) and takes the limit n2 → ∞
in the coefficients, one arrives at the approximate value
I ∼ 1

4 (I [2s] + I [2p]) = 7/6, thus indicating that the gross
asymptotic limit is around unity. Without any approximation
in using the density from Eq. (23) in Eq. (10), and varying
n2 (from 3 up to 60), we obtain a descending series with
final value I [2(+1,0)60] = 0.7704 and an ascending series
with final value I [2(−1,0)60] = 0.7560, values that seem to
confirm our CI results for 3Se DES in Fig. 3. However, this
prediction fails for the 1Se DES, a symmetry for which the two
series cross to each other to finally reach different asymptotic
limits (see Fig. 2). Similar analysis can be performed using
Eq. (24) for the two (±1,0) series and also, separately, for the
(0,1) series. We obtain for the three (K,T )A series in 3P o the
following (n2 = 3 → n2 = 60) correlations: I [2(+1,0)3] =
0.8678 → I [2(+1,0)60] = 0.7714 (decreasing with n2),
and I [2(−1,0)3] = 0.5859 → I [2(−1,0)60] = 0.7532 (in-
creasing), and I [2(0,1)3] = 0.7211 → I [2(0,1)60] = 0.6648
(constant), which roughly follows the behavior of the
ab initio results shown in Fig. 3. Again the pre-
dictions completely fail when applied to the singlets
1P o. Another DESB formula for symmetry 1,3

D
e com-

bines |2snd〉, |2pnp〉, and |2pnf 〉 configurations. By us-

ing it for low (n2 = 3) and high excitations (n2 = 60)
we obtain the Fisher information correlation values for
1,3

D
e: I [2(+1,0)3] = 0.6305 → I [2(+1,0)60] = 0.7707 (in-

creasing), I [2(−1,0)3] = 0.6907 → I [2(−1,0)60] = 0.7536
(increasing), and also I [2(0,1)3] = 0.8804 → I [2(0,1)60] =
0.6619 (decreasing). In 1,3

D
e our ab initio results in Figs. 2

and 3 have similar trends for singlets and triplets, but the above
DESB predictions, in spite of giving roughly the tendencies,
fail to give the highly excited asymptotic limits.

Surprisingly, in contrast to Shannon entropies, our ab
initio calculations clearly indicate that the Fisher information
is able to separate the trends of the different (K,T ) series
and to distinguish the different asymptotic values for each
series at the second ionization threshold. These asymptotic
values (not reducible to hydrogen-like contributions) are a
signature of the intrinsic complexity of highly excited DES
in helium, which exhibits such a strong configuration mixing
that even a description in terms of intra- or intershell DESB
states is not enough to fully explain the asymptotic values
at threshold. In principle, it is a very remarkable result
that the Fisher information of the single-electron density
distribution be able to discriminate DES in terms of their
local topological information provided by the gradient content,
which brings us the conjecture that each (K,T ) series of
DES must be supported by a different family of quantum

potentials Q[ρ] = − �
2

2m

∇2√ρ√
ρ

a la Bohm in terms of the density,
which can be extracted from the Fisher information since
I [ρ] = 8m

�2

∫
drρQ[ρ] [51].

C. Entanglement measures: von Neumann and linear entropies

The von Neumann entropies of entanglement for the singlet
and triplet bound, singly and doubly excited states in He are
shown in Figs. 4 and 5. For the sake of comparison, we include
in Table III our numerical results of linear and von Neumann
entropies for the lowest 1,3

S
e states along with some existing

data in previous works [29,30,38]. Linear entropies have also
been calculated systematically, but we do not report the results
(only those given in Table III).

In previous works [19,29,32,38] the von Neumann and
linear entropies calculated only for bound states of symmetry

TABLE III. Linear and von Neumann entropies for the lowest
bound 1,3

S
e states of helium compared to previous works [29,30,38].

Ref. [29] Ref. [30] This work

SL SL SV N SL SV N

|1s1s;1Se〉 0.015914 0.01606 0.0785 0.0159306 0.078238
|1s2s;1Se〉 0.48866 0.48871 0.991099 0.4887369 0.991153
|1s3s;1Se〉 0.49857 0.49724 0.998513 0.4972512 0.998533
|1s4s;1Se〉 0.49892 0.49892 0.999577 0.4989254 0.999588
|1s5s;1Se〉 0.4993 0.499565 0.999838 0.4994713 0.999852

Ref. [38] Ref. [30] This work

|1s2s;3Se〉 0.50038 0.500378 1.00494 0.5003759 1.004926
|1s3s;3Se〉 0.50019 0.5000736 1.00114 0.5000732 1.001136
|1s4s;3Se〉 0.49993 0.5000267 1.000453 0.5000265 1.000450
|1s5s;3Se〉 0.50012 0.5000125 1.000091 0.5000125 1.000227
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FIG. 4. (Color online) Von Neumann entropy SV N for the ground
state and the lowest members in the Rydberg series of singly excited
1Se states, singly excited 1P o states, and singly excited 1De states in
helium (left panel); and for the lowest members of the Rydberg series
of doubly excited states organized according to series with different
(K,T ) labels: 3Se with two series, 3P o with three series, and 3De with
three series (right panel). Solid lines connect points corresponding to
states pertaining to the same Rydberg (K,T ) series. Vertical dashed
lines indicate the energy position for the thresholds He+ (n1 = 1)
(left panel) and He+ (n1 = 2) (right panel).

1Se led to the counterintuitive conclusion that entanglement
increases monotonically with the excitation along the Rydberg
series in agreement with general trends in model systems with
non-Coulomb interactions [29]. This idea was subsequently
amended after the calculation of the spin triplets 3Se in
He [30,38]. In fact, from our systematic results for 1,3

S
e,

1,3
P

o, and 1,3
D

e we conclude that the bound 1Se states are
the only exception to the opposite rule: the von Neumann and
linear entropies always decrease monotonically with higher
excitation, i.e., with the decreasing electron correlation and
spatial separation between electrons in singly excited states.

The exceptional behavior of the entanglement entropies
for 1Se bound states is related to the largest λ1 eigenvalue
from the set of eigenvalues {λi}Mi=1 of the one-particle density
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FIG. 5. (Color online) Same as Fig. 4 but for the spin triplets, for
bound (left) and doubly excited states (right).

matrix and to the form of the leading configurations in
the CI expansion. The latter (equivalent or nonequivalent
electron configurations) has an effect due to the form of the
entanglement measure EV N in Eq. (15) (see a brief discussion
in Ref. [30]). For instance, our calculated ground state has
λ1 = 0.9919, and its CI coefficient C1s1s = 0.96187 indicates
a participation of 93% from the (1s1s, 1Se) configuration. The
first eigenvalue λ1 provides most of the von Neumann and
linear entropy values, which are close to zero because the
spatial wave function almost admits a representation in terms
of a simple Hartree product of equivalent electrons that yields
EV N = SV N [ρ̂spatial] = 0. Since the dominant configuration for
the ground state is that containing two equivalent electrons, its
entanglement entropy approaches a zero value.

In contrast, for the first excited state |1s2s,1Se〉 the
largest three λ’s are λ1 = 0.5759, λ2 = 0.4225, and λ3 =
0.000252, and the dominant configuration coefficients are
C1s2s = −0.75532 and C1s3s = 0.63465. The first two values
of λ already give SV N = 0.9830 and SL = 0.4888. Similar
analysis can be performed for the rest of singly excited states,
both singlets and triplets, for which none of the dominant
configurations corresponds to two equivalent electrons. Now,
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since both symmetric and antisymmetric two-electron spatial
configurations 1√

2
[φ1s(1)φn�(2) ± φn�(1)φ1s(2)] (as well as

two-electron spin configurations 1√
2
[α(1)β(2) ± β(1)α(2)])

yield SV N = 1, it is understood that as n → ∞ along the
Rydberg series EV N reaches the asymptotic limit of unity for
a noninteracting state, whose spatial von Neumann entropy
value cancels due to antisymmetrization but the spin contribu-
tion remains according to Eq. (15). From the inspection of the
left panels in Figs. 4 and 5, it is clear that all Rydberg series
of singly excited states tend asymptotically to spin-entangled
states as n → ∞, to limiting values SV N = 1 (and SL = 0.5 for
linear entropies), associated with the first ionization threshold
He+(1s). Also, in bound states of He, the exact asymptotic
ratio SV N/SL = 2 for n → ∞ shows slight deviations at lower
energies (except for the ground state) due to the neglected
high-order contributions when expanding log2 ρ̂ in the von
Neumann entropy to obtain the linear entropy.

The most interesting results obtained in this section corre-
spond to the entanglement measures obtained for DES in He.
Here we only comment on the von Neumann entropy results,
since linear entropy values are qualitatively similar and they
are almost parallel to the von Neumann entropy curves. In
fact, only those lowest lying DES that are closer to a sin-
gle configuration representation (for instance, [2(1,0)+2 , 1Se],
[2(0,1)+2 , 1P o], or [2(1,0)+2 , 3P o] with SV N ∼ 1) have a ratio
SV N/SL ∼ 2, but for higher excitations with increasing n2 in
DES the ratio SV N/SL is around 2.7.

Our results show three main characteristics:
(1) von Neumann entropies of DES may increase or

decrease monotonically with the excitation according to their
classification to a given (K,T ) series, but eventually they may
also exhibit maxima before reaching their asymptotic value at
the second ionization threshold;

(2) von Neumann entropies of DES tend to a plethora of
different asymptotic limits at the second ionization threshold
which depend upon the (K,T ) labels and the total symmetry
2S+1Lπ ;

(3) all asymptotic values of von Neumann entropies at the
second ionization threshold He+(n1 = 2) are larger than unity
(the constant spin contribution to entanglement), which can
be interpreted as a remnant entanglement accompanying high
excitation in DES.

As mentioned above, some series such as (±1,0) 1,3
S

e and
(0,1) 1P o show a maximum before decreasing to their limiting
value. The same (K,T ) series may show a completely different
behavior in singlets and triplets. For instance, (±1,0) and (0,1)
series behave differently in 1P o and 3P o, or in 1De and 3De,
when, in principle, no such singlet-triplet distinction is inferred
from Eq. (21) [see also Eq. (24)].

The lowest DES [2(1,0)+2 , 1Se] has a low entropy value
below unity, SV N = 0.882, for reasons similar to those
explained for the ground state 1s2 1Se. For this DES there
are two dominant eigenvalues of the reduced density matrix
λ1 = 0.71729 and λ2 = 0.28041 with the rest close to zero,
and the dominant CI coefficients are C2s2s = 0.83114 and
C2p2p = 0.49602, which indicates that this DES is mostly
described as a combination of two configurations with
equivalent electrons, instead of one. By just extracting the
latter expansion coefficients from the CI wave function,
the unnormalized reduced density matrix is already diagonal in

the basis of orbitals {2s,2p} with eigenvalues C2
2s2s = 0.6908

and C2
2p2p = 0.2460, close to the ab initio ones and an

approximate entropy value SV N = 0.866, also below unity.
This is in accord with the expansion coefficients (3/4)1/2 and
(1/4)1/2 for (1,0) DESB states in Eq. (23) when n2 = 2, which
produce eigenvalues λ1 = 0.75 and λ2 = 0.25 and an entropy
value SV N = 0.811.

The second lowest DES [2(−1,0)+2 , 1Se] has SV N = 1.346,
with ab initio dominant eigenvalues λ1 = 0.62116 and λ2 =
0.30782 and expansion coefficients C2s2s = 0.42989 and
C2p2p = −0.70541. Again, by only using these coefficients
to construct a 2 × 2 reduced density matrix, the diagonal
elements are 0.1848 and 0.4976, from which one obtains
SV N = 0.951, larger than for the lowest 1Se DES but below
the ab initio result. Here, Eq. (23) provides the same density
matrix for (±1,0) and thus the same entropy value, SV N =
0.811. Separately, we can diagonalize the 2 × 2 Hamiltonian
in the DESB manifold {2s2,2p2}, producing two energy
eigenvalues −0.7540 and −0.5116 with expansion coefficients
C2s2s = 0.87972 and C2p2p = 0.47548 for the lowest DES
and C2s2s = 0.47548 and C2p2p = −0.87972 for the second
lowest one. These values are close to (but not the same as) the
coefficients of DESB states (3/4)1/2 and (1/4)1/2 in Eq. (23).
The corresponding von Neumann entropy obtained from the
two eigenstates of this 2 × 2 Hamiltonian is the same for both
states, SV N = 0.770, below the value SV N = 0.811 obtained
from the DESB mixture. In conclusion, in contrast to the
lowest DES, the second lowest DES [2(−1,0)+2 , 1Se] requires
more than two configurations to describe its correlations
and entanglement. This tendency to mix more configurations
increases with higher excitation in DES.

1,3
S

e DES have a common asymptotic entropy SV N ∼ 2.
This limit seems to be explained from the DESB states in
Eq. (23). The associated 4 × 4 reduced density matrix has two
degenerated eigenvalues {2 × n2+1

4n2
, 2 × n2−1

4n2
} and from them

S
(±1,0)
V N [n2] = − log2

(n2 + 1)
n2+1
2n2 (n2 − 1)

n2−1
2n2

4n2
, (26)

an expression that fails to compare with ab initio results for
low values of n2, but its limit for n2 → ∞ is exactly 2.

In order to unveil the trends of the von Neumann entropy
in our full CI calculations, we keep on analyzing results in
1P o DES by reducing the configurational space to only those
intra- and intershell configurations that enter in the DESB
states in Eq. (24). The lowest DES with label [2(0,1)+2 , 1P o] is
special, because in the corresponding DESB expression only
the 2s2p configuration participates. Since this DES is thus
described at lowest order by a single antisymmetrized IPM
configuration, its von Neumann entropy value must be closer
to unity. The same happens to occur with the lowest DES in
3P o, [2(1,0)+2 , 3P o] (see Fig. 5), and the lowest DES in 1De,
[2(1,0)+2 , 1De] (Fig. 4). From n2 = 2 to n2 = 3 there is a sudden
jump to a higher entropy value because for n2 � 3, the three
intershell configurations in the DESB manifold participate.
For example, in the 1,3

P
o symmetry for the (±1,0) series,

DESB states are built up with the configurational manifold
{2sn2p,2pn2s,2pn2d} from n2 = 3 to n2 → ∞. We can
proceed by building up the 5 × 5 reduced density matrix with
two approaches: first, using the DESB expansion coefficients;
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FIG. 6. (Color online) Von Neumann entropy SV N for the lowest
members in the Rydberg series of 3P o DES; blue squares for the (1,0)
series, red circles for the (0,1) series, and green diamonds for (−1,0).
Solid line: full CI ab initio results; dashed line: 3 × 3 Hamiltonian
results from Eq. (27) and Z → ∞; dotted line: results from the DESB
combinations using Eqs. (28) and (29). The von Neumann entropy
values from the three different approaches are set up with the same ab
initio DES energies for the sake of comparison. The vertical dashed
line indicates the energy position for the threshold He+(n1 = 2).

second, using the coefficients from the 3 × 3 Hamiltonian
eigenstates. The Hamiltonian matrix for a helium-like atom
with nuclear charge Z has the form

H =−Z2

2

[
1

22
+ 1

n2
2

]⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

+Z

⎛
⎝〈2sn2p|2sn2p〉 〈2sn2p|2pn2s〉 〈2sn2p|2pn2d〉

〈2pn2s|2sn2p〉 〈2pn2s|2pn2s〉 〈2pn2s|2pn2d〉
〈2pn2d|2sn2p〉 〈2pn2d|2pn2s〉 〈2pn2d|2pn2d〉

⎞
⎠,

(27)

and the only required input values are the two-electron
integrals computed for Z = 1, for a given excitation n2 and a
given spin symmetry.

With the first approach, building the reduced density matrix
from the DESB expansion coefficients for 1,3

P
o states, one

obtains four eigenvalues for the (±1,0) series, from which the
von Neumann entropy has the analytical expression

S
(±1,0)
V N [n2] =− log2

[
1

4n2
2

(
n2

2 ± n2 − 2
) n2

2±n2−2

2n2
2

× (
n2

2 ∓ n2 + 2
) n2

2∓n2+2

2n2
2

]
. (28)

This formula for the (+1,0) series produces a function of
n2 almost constant with an asymptotic limit 2 (see Fig. 6).
The series (−1,0) starts at S

(−1,0)
V N [n2 = 3] = 1.764, then it

increases monotonically to also reach the limit 2. Finally, the

von Neumann entropy for the (0,1) series has the expression

S
(0,1)
V N [n2] =− log2

[
1

n2
2

(
n2

2 − 2

2

)1−2/n2
2

]
, (29)

from which S
(0,1)
V N [n2 = 3] = 1.764 and rapidly decreases

to reach its asymptotic value equal to unity as shown in
Fig. 6. Also, in Fig. 6 we have included for comparison the
entropy values obtained from the reduced 3 × 3 Hamiltonian,
calculated for the 3P o symmetry and taking Z → ∞ in Eq. (27)
(the noninteracting limit for highly charged ions), because this
case produces the best comparison between DESB formulas
and the reduced Hamiltonian [44]. This comparison in 3P o

between the ab initio results and those extracted from these
DESB simplified models indicates that whereas the increasing
or decreasing trends of the different (K,T ) series is roughly
explained, the asymptotic limits for high excitation are not
always correctly reproduced. For worse, predictions from both
DESB states and the 3 × 3 model Hamiltonian dramatically
fail to explain the ab initio results for the singlets 1P o, and also
for 1,3

D
e DES [where (K,T ) series are sharply separated],

thus precluding a simple analysis on these complex DES.

IV. CONCLUSIONS AND PERSPECTIVES

In this work we have systematically analyzed bound and
doubly excited states in the spectroscopic symmetries 1,3Le,o

(L = 0,1,2) from the perspective of information-theoretic
measures based on the reduced one-particle spatial density
ρ(r) (Shannon entropies and Fisher information) as well as
on the reduced one-particle density matrix ρ̂ (entanglement
measures). Our results on Shannon entropies show that this
global measure operated over the one-particle density always
increases monotonically with excitation for both singly and
doubly excited states in He (as expected from the increasing
spatial spreading of the wave function with excitation) but it
is not able to discriminate double excited states as pertaining
to different (K,T )A series. However, we find that Shannon
entropies are sensitive enough to manifest a close relationship
between the energy ordering and the Shannon-entropy values
for states in He. In this respect, we find that a Shannon-entropic
first Hund’s rule is satisfied to some extent.

In relation to the gradient content given by the Fisher
information, we find for singly excited states that it behaves
differently according to the total angular symmetry L: it
decreases monotonically for 1,3

S
e singly excited states, it

increases monotonically for 1,3
P

o states, and it shows maxima
for 1,3

D
e states. Every singly excited state in He reaches the

high-excitation asymptotic limit I [ρ(r)] = 8 corresponding
to the parent ion state He+(1s). In contrast, for DES, we
find a variety of increasing and decreasing tendencies of the
Fisher information against the excitation for the different
(K,T ) series within the same total angular symmetry L,
without encompassing a general rule. Whereas those Rydberg
asymptotic values of Fisher information at the first ionization
threshold He+(1s) can be established for singly excited states
without ambiguity, to locate and explain the variety of limits
at the second ionization threshold He+(2s,2p) is much more
involved, even by using the approximate description in terms
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of DESB. In spite of this, it is quite a surprising and notable
result that the Fisher information is helpful to also classify
DES as pertaining to different (K,T )A series, thus revealing
itself as a tool to partially disclose the inherent complexity of
DES. This unexpected capability of the Fisher information to
discriminate DES in (K,T )A series as entanglement measures
also do may indicate a possible connection between these in
principle unrelated entities, yet unknown.

Contrary to some previously established ideas derived
from studies in model systems, we find that within bound
states in He below the first ionization threshold, the entropies
of entanglement decrease with the excitation as a regular
rule, which is intuitively expected in terms of the ensuing
decreasing electron correlation and the increasing spatial
separation among electrons. The symmetry 1Se is the only
exception due to the dominant equivalent electron character
in the wave function of the ground state and to the en-
tanglement definition that treats on equal footing equivalent
and nonequivalent spatial electron configurations sharing the
same spin wave function. Highly singly excited states reach
the asymptotic limit SV N = 1 (SL = 0.5), which corresponds
solely to the spin contribution to entanglement since the spatial
wave function, which reduces to a single antisymmetrized
IPM configuration (1s,n�) for n � 1, does not contribute to
entanglement according to the measure used. Similarly to the
Fisher information, the entanglement values of DES can be
better rationalized in terms of the different tendencies shown
by the members associated with a given (K,T )A series, which
nevertheless show a profusion of increasing and decreasing
trends against the excitation energy (which breaks down
our previous intuition gained in singly excited states on the
relation between entanglement, electron repulsion, and spatial
separation). Also, a limiting value of entanglement (especially
in S and P DES) is discriminated for each (K,T )A series at
the second ionization threshold He+(2s,2p), a value which
is hardly explained even with a detailed analysis in terms of
approximate DESB states.

These resonant states in He become a realistic paradigmatic
example of complexity in revealing their essential entangle-
ment, even in the noninteracting limit due to the intrinsic
degeneracy of intra- and intershell configurations entering in
the low-order approximate description through DESB states.
In other words, the 1/r12 electron correlation interaction mixes
IPM configurations in the DESB description of DES, even
when the nuclear charge Z → ∞, or simply by using 1/r12

as a perturbation in degenerate perturbation theory [13,21]. A
more accurate ab initio description of DES using the CI method
brings additional correlations by including many other intra-
and intershell configurations, resulting in a different remnant
entanglement (on top of the constant spin contribution) for
each (K,T ) series of DES for almost any high excitation up to
the second ionization threshold He+(n = 2), in contrast to the
clear-cut limits of entanglement in singly excited states of He.

Whereas radial correlations vary with the nuclear charge
Z, angular correlations (�1,�2) or (K,T ) are almost constant
along the isoelectronic series. Plots of DES energies against
1/Z show a plethora of avoided crossings for low values of
Z (especially around Z = 2 for He) which precludes simple
and successful classification schemes in strongly correlated
atoms [44]. Instead, in the Z → ∞ limit, DES wave functions
are known to behave closer to an intrashell DESB basis. This
means that in this work we have chosen indeed the most
involved case from the helium isoelectronic series, for which
our full ab initio results, although partially interpreted with the
aid of DESB states, cannot be reduced in terms of them.

It was established [46] that DES with identical (K,T )A

but different spectroscopic L, S, and π symmetries have iso-
morphic electron correlations since they have similar channel
potential curves in hyperspherical coordinates. According to
this, for example, the (1,0)+ state is present in the symmetries
1Se, 3P o, and 1De, and the (−1,0)− state appears in the 3Se,
1P o, and 3De symmetries, and the (−1,0)0 state is in the
1P o, 1De, and 3De symmetries. In principle, one may expect
similar values for the entities calculated in this work for these
isomorphic (K,T )A series, but these similarities are not present
in the Fisher information or in the entanglement measures
whatsoever.

Extensions of this work to alkaline-earth atoms is feasi-
ble [54], assuming they behave as systems with outer-shell
two-active electrons with a core interaction. The role of a
polarizable core is not only that of a simple screening, but it
also has an effect on the different combinations that generate
their particular DESB states. Only for two-electron atoms
the total wave function can be separated in its spatial and
its spin part, which allows for a separate calculation of the
spin contribution to the entanglement, being a constant value.
This separability cannot be extended to atoms with three or
more electrons, which means than the entanglement must
be considered as a whole spatial-spin entity. Three-electron
atomic systems have already been studied in our group with CI
methods, using hydrogen-like orbitals [60,68], Hylleraas-type
bases [69], and Slater-type orbitals [61], which open to us
the possibility to extend these theoretic-information studies
beyond the two-fermion case in atoms.
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[62] A. F. Ordóñez-Lasso, J. C. Cardona, and J. L. Sanz-Vicario,

Phys. Rev. A 88, 012702 (2013).
[63] M. K. Chen, Phys. Rev. A 56, 4537 (1997).
[64] M. Cortés, A. Macı́as, F. Martı́n, and A. Riera, J. Phys. B: At.,

Mol. Opt. Phys. 26, 3269 (1993).
[65] F. A. de Saavedra, I. Porras, E. Buendı́a, and F. J. Gálvez, J.

Phys. B: At., Mol. Opt. Phys. 28, 3123 (1995).
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Phys. 47, 052104 (2006).
[68] J. L. Sanz-Vicario, E. Lindroth, and N. Brandefelt, Phys. Rev.

A 66, 052713 (2002).
[69] J. C. Cardona, Ph.D. thesis, Universidad de Antioquia, Medellı́n,

Colombia, 2008.

052301-15

http://dx.doi.org/10.1103/PhysRevA.69.054302
http://dx.doi.org/10.1103/PhysRevA.69.054302
http://dx.doi.org/10.1103/PhysRevA.69.054302
http://dx.doi.org/10.1103/PhysRevA.69.054302
http://dx.doi.org/10.1016/j.chemphys.2004.08.020
http://dx.doi.org/10.1016/j.chemphys.2004.08.020
http://dx.doi.org/10.1016/j.chemphys.2004.08.020
http://dx.doi.org/10.1016/j.chemphys.2004.08.020
http://dx.doi.org/10.1016/j.cplett.2005.08.032
http://dx.doi.org/10.1016/j.cplett.2005.08.032
http://dx.doi.org/10.1016/j.cplett.2005.08.032
http://dx.doi.org/10.1016/j.cplett.2005.08.032
http://dx.doi.org/10.1016/j.cam.2004.09.040
http://dx.doi.org/10.1016/j.cam.2004.09.040
http://dx.doi.org/10.1016/j.cam.2004.09.040
http://dx.doi.org/10.1016/j.cam.2004.09.040
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1209/0295-5075/86/20005
http://dx.doi.org/10.1209/0295-5075/86/20005
http://dx.doi.org/10.1209/0295-5075/86/20005
http://dx.doi.org/10.1209/0295-5075/86/20005
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1088/0953-4075/44/19/192001
http://dx.doi.org/10.1088/0953-4075/44/19/192001
http://dx.doi.org/10.1088/0953-4075/44/19/192001
http://dx.doi.org/10.1088/0953-4075/44/19/192001
http://dx.doi.org/10.1088/0953-4075/40/9/S12
http://dx.doi.org/10.1088/0953-4075/40/9/S12
http://dx.doi.org/10.1088/0953-4075/40/9/S12
http://dx.doi.org/10.1088/0953-4075/40/9/S12
http://dx.doi.org/10.1103/PhysRevA.79.052501
http://dx.doi.org/10.1103/PhysRevA.79.052501
http://dx.doi.org/10.1103/PhysRevA.79.052501
http://dx.doi.org/10.1103/PhysRevA.79.052501
http://dx.doi.org/10.1103/PhysRevA.79.032509
http://dx.doi.org/10.1103/PhysRevA.79.032509
http://dx.doi.org/10.1103/PhysRevA.79.032509
http://dx.doi.org/10.1103/PhysRevA.79.032509
http://dx.doi.org/10.1103/PhysRevA.81.042518
http://dx.doi.org/10.1103/PhysRevA.81.042518
http://dx.doi.org/10.1103/PhysRevA.81.042518
http://dx.doi.org/10.1103/PhysRevA.81.042518
http://dx.doi.org/10.1140/epjd/e2009-00270-x
http://dx.doi.org/10.1140/epjd/e2009-00270-x
http://dx.doi.org/10.1140/epjd/e2009-00270-x
http://dx.doi.org/10.1140/epjd/e2009-00270-x
http://dx.doi.org/10.1088/1751-8113/43/27/275301
http://dx.doi.org/10.1088/1751-8113/43/27/275301
http://dx.doi.org/10.1088/1751-8113/43/27/275301
http://dx.doi.org/10.1088/1751-8113/43/27/275301
http://dx.doi.org/10.1140/epjd/e2011-20417-4
http://dx.doi.org/10.1140/epjd/e2011-20417-4
http://dx.doi.org/10.1140/epjd/e2011-20417-4
http://dx.doi.org/10.1140/epjd/e2011-20417-4
http://dx.doi.org/10.1088/1751-8113/45/11/115309
http://dx.doi.org/10.1088/1751-8113/45/11/115309
http://dx.doi.org/10.1088/1751-8113/45/11/115309
http://dx.doi.org/10.1088/1751-8113/45/11/115309
http://dx.doi.org/10.1016/j.physleta.2013.06.045
http://dx.doi.org/10.1016/j.physleta.2013.06.045
http://dx.doi.org/10.1016/j.physleta.2013.06.045
http://dx.doi.org/10.1016/j.physleta.2013.06.045
http://dx.doi.org/10.1080/09500340600955674
http://dx.doi.org/10.1080/09500340600955674
http://dx.doi.org/10.1080/09500340600955674
http://dx.doi.org/10.1080/09500340600955674
http://dx.doi.org/10.1103/PhysRevA.75.042331
http://dx.doi.org/10.1103/PhysRevA.75.042331
http://dx.doi.org/10.1103/PhysRevA.75.042331
http://dx.doi.org/10.1103/PhysRevA.75.042331
http://dx.doi.org/10.1103/PhysRevB.77.205122
http://dx.doi.org/10.1103/PhysRevB.77.205122
http://dx.doi.org/10.1103/PhysRevB.77.205122
http://dx.doi.org/10.1103/PhysRevB.77.205122
http://dx.doi.org/10.1016/j.physleta.2008.07.080
http://dx.doi.org/10.1016/j.physleta.2008.07.080
http://dx.doi.org/10.1016/j.physleta.2008.07.080
http://dx.doi.org/10.1016/j.physleta.2008.07.080
http://dx.doi.org/10.1016/j.physleta.2009.07.012
http://dx.doi.org/10.1016/j.physleta.2009.07.012
http://dx.doi.org/10.1016/j.physleta.2009.07.012
http://dx.doi.org/10.1016/j.physleta.2009.07.012
http://dx.doi.org/10.1088/1742-6596/254/1/012010
http://dx.doi.org/10.1088/1742-6596/254/1/012010
http://dx.doi.org/10.1088/1742-6596/254/1/012010
http://dx.doi.org/10.1088/1742-6596/254/1/012010
http://dx.doi.org/10.1088/0953-4075/45/1/015504
http://dx.doi.org/10.1088/0953-4075/45/1/015504
http://dx.doi.org/10.1088/0953-4075/45/1/015504
http://dx.doi.org/10.1088/0953-4075/45/1/015504
http://dx.doi.org/10.1140/epjd/e2013-40080-y
http://dx.doi.org/10.1140/epjd/e2013-40080-y
http://dx.doi.org/10.1140/epjd/e2013-40080-y
http://dx.doi.org/10.1140/epjd/e2013-40080-y
http://dx.doi.org/10.3389/fchem.2013.00024
http://dx.doi.org/10.3389/fchem.2013.00024
http://dx.doi.org/10.3389/fchem.2013.00024
http://dx.doi.org/10.3389/fchem.2013.00024
http://dx.doi.org/10.1103/PhysRevA.87.022316
http://dx.doi.org/10.1103/PhysRevA.87.022316
http://dx.doi.org/10.1103/PhysRevA.87.022316
http://dx.doi.org/10.1103/PhysRevA.87.022316
http://dx.doi.org/10.1007/s00601-013-0729-7
http://dx.doi.org/10.1007/s00601-013-0729-7
http://dx.doi.org/10.1007/s00601-013-0729-7
http://dx.doi.org/10.1007/s00601-013-0729-7
http://dx.doi.org/10.1103/PhysRevA.70.012109
http://dx.doi.org/10.1103/PhysRevA.70.012109
http://dx.doi.org/10.1103/PhysRevA.70.012109
http://dx.doi.org/10.1103/PhysRevA.70.012109
http://dx.doi.org/10.1002/prop.200410173
http://dx.doi.org/10.1002/prop.200410173
http://dx.doi.org/10.1002/prop.200410173
http://dx.doi.org/10.1002/prop.200410173
http://dx.doi.org/10.1103/PhysRevA.75.032301
http://dx.doi.org/10.1103/PhysRevA.75.032301
http://dx.doi.org/10.1103/PhysRevA.75.032301
http://dx.doi.org/10.1103/PhysRevA.75.032301
http://dx.doi.org/10.1088/0953-4075/41/6/065502
http://dx.doi.org/10.1088/0953-4075/41/6/065502
http://dx.doi.org/10.1088/0953-4075/41/6/065502
http://dx.doi.org/10.1088/0953-4075/41/6/065502
http://dx.doi.org/10.1088/0953-4075/45/23/239501
http://dx.doi.org/10.1088/0953-4075/45/23/239501
http://dx.doi.org/10.1088/0953-4075/45/23/239501
http://dx.doi.org/10.1088/0953-4075/45/23/239501
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRevLett.10.518
http://dx.doi.org/10.1103/PhysRevLett.10.518
http://dx.doi.org/10.1103/PhysRevLett.10.518
http://dx.doi.org/10.1103/PhysRevLett.10.518
http://dx.doi.org/10.1103/PhysRevA.11.97
http://dx.doi.org/10.1103/PhysRevA.11.97
http://dx.doi.org/10.1103/PhysRevA.11.97
http://dx.doi.org/10.1103/PhysRevA.11.97
http://dx.doi.org/10.1103/PhysRevA.29.1019
http://dx.doi.org/10.1103/PhysRevA.29.1019
http://dx.doi.org/10.1103/PhysRevA.29.1019
http://dx.doi.org/10.1103/PhysRevA.29.1019
http://dx.doi.org/10.1103/PhysRevA.28.1974
http://dx.doi.org/10.1103/PhysRevA.28.1974
http://dx.doi.org/10.1103/PhysRevA.28.1974
http://dx.doi.org/10.1103/PhysRevA.28.1974
http://dx.doi.org/10.1103/PhysRevA.40.4298
http://dx.doi.org/10.1103/PhysRevA.40.4298
http://dx.doi.org/10.1103/PhysRevA.40.4298
http://dx.doi.org/10.1103/PhysRevA.40.4298
http://dx.doi.org/10.1103/PhysRevLett.51.1348
http://dx.doi.org/10.1103/PhysRevLett.51.1348
http://dx.doi.org/10.1103/PhysRevLett.51.1348
http://dx.doi.org/10.1103/PhysRevLett.51.1348
http://dx.doi.org/10.1088/0953-4075/46/5/055601
http://dx.doi.org/10.1088/0953-4075/46/5/055601
http://dx.doi.org/10.1088/0953-4075/46/5/055601
http://dx.doi.org/10.1088/0953-4075/46/5/055601
http://dx.doi.org/10.1103/PhysRevA.53.3986
http://dx.doi.org/10.1103/PhysRevA.53.3986
http://dx.doi.org/10.1103/PhysRevA.53.3986
http://dx.doi.org/10.1103/PhysRevA.53.3986
http://dx.doi.org/10.1007/BF01337700
http://dx.doi.org/10.1007/BF01337700
http://dx.doi.org/10.1007/BF01337700
http://dx.doi.org/10.1007/BF01337700
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1103/PhysRevA.58.1775
http://dx.doi.org/10.1103/PhysRevA.58.1775
http://dx.doi.org/10.1103/PhysRevA.58.1775
http://dx.doi.org/10.1103/PhysRevA.58.1775
http://dx.doi.org/10.1103/PhysRevA.64.022303
http://dx.doi.org/10.1103/PhysRevA.64.022303
http://dx.doi.org/10.1103/PhysRevA.64.022303
http://dx.doi.org/10.1103/PhysRevA.64.022303
http://dx.doi.org/10.1103/PhysRevA.75.062104
http://dx.doi.org/10.1103/PhysRevA.75.062104
http://dx.doi.org/10.1103/PhysRevA.75.062104
http://dx.doi.org/10.1103/PhysRevA.75.062104
http://dx.doi.org/10.1088/0953-4075/41/5/055003
http://dx.doi.org/10.1088/0953-4075/41/5/055003
http://dx.doi.org/10.1088/0953-4075/41/5/055003
http://dx.doi.org/10.1088/0953-4075/41/5/055003
http://dx.doi.org/10.1103/PhysRevA.1.1109
http://dx.doi.org/10.1103/PhysRevA.1.1109
http://dx.doi.org/10.1103/PhysRevA.1.1109
http://dx.doi.org/10.1103/PhysRevA.1.1109
http://dx.doi.org/10.1146/annurev.pc.33.100182.001255
http://dx.doi.org/10.1146/annurev.pc.33.100182.001255
http://dx.doi.org/10.1146/annurev.pc.33.100182.001255
http://dx.doi.org/10.1146/annurev.pc.33.100182.001255
http://dx.doi.org/10.1016/0003-4916(62)90221-X
http://dx.doi.org/10.1016/0003-4916(62)90221-X
http://dx.doi.org/10.1016/0003-4916(62)90221-X
http://dx.doi.org/10.1016/0003-4916(62)90221-X
http://dx.doi.org/10.1103/PhysRevA.78.053411
http://dx.doi.org/10.1103/PhysRevA.78.053411
http://dx.doi.org/10.1103/PhysRevA.78.053411
http://dx.doi.org/10.1103/PhysRevA.78.053411
http://dx.doi.org/10.1103/PhysRevA.82.022501
http://dx.doi.org/10.1103/PhysRevA.82.022501
http://dx.doi.org/10.1103/PhysRevA.82.022501
http://dx.doi.org/10.1103/PhysRevA.82.022501
http://dx.doi.org/10.1103/PhysRevA.88.012702
http://dx.doi.org/10.1103/PhysRevA.88.012702
http://dx.doi.org/10.1103/PhysRevA.88.012702
http://dx.doi.org/10.1103/PhysRevA.88.012702
http://dx.doi.org/10.1103/PhysRevA.56.4537
http://dx.doi.org/10.1103/PhysRevA.56.4537
http://dx.doi.org/10.1103/PhysRevA.56.4537
http://dx.doi.org/10.1103/PhysRevA.56.4537
http://dx.doi.org/10.1088/0953-4075/26/19/017
http://dx.doi.org/10.1088/0953-4075/26/19/017
http://dx.doi.org/10.1088/0953-4075/26/19/017
http://dx.doi.org/10.1088/0953-4075/26/19/017
http://dx.doi.org/10.1088/0953-4075/28/15/007
http://dx.doi.org/10.1088/0953-4075/28/15/007
http://dx.doi.org/10.1088/0953-4075/28/15/007
http://dx.doi.org/10.1088/0953-4075/28/15/007
http://dx.doi.org/10.1103/PhysRevA.50.3065
http://dx.doi.org/10.1103/PhysRevA.50.3065
http://dx.doi.org/10.1103/PhysRevA.50.3065
http://dx.doi.org/10.1103/PhysRevA.50.3065
http://dx.doi.org/10.1063/1.2190335
http://dx.doi.org/10.1063/1.2190335
http://dx.doi.org/10.1063/1.2190335
http://dx.doi.org/10.1063/1.2190335
http://dx.doi.org/10.1103/PhysRevA.66.052713
http://dx.doi.org/10.1103/PhysRevA.66.052713
http://dx.doi.org/10.1103/PhysRevA.66.052713
http://dx.doi.org/10.1103/PhysRevA.66.052713



