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Abstract

body mass index (BMI).

Background: The composition of the gut microbiota has recently been associated with health and disease, particularly
with obesity. Some studies suggested a higher proportion of Firmicutes and a lower proportion of Bacteroidetes in
obese compared to lean people; others found discordant patterns. Most studies, however, focused on Americans or
Europeans, giving a limited picture of the gut microbiome. To determine the generality of previous observations and
expand our knowledge of the human gut microbiota, it is important to replicate studies in overlooked populations.
Thus, we describe here, for the first time, the gut microbiota of Colombian adults via the pyrosequencing of the 16S
ribosomal DNA (rDNA), comparing it with results obtained in Americans, Europeans, Japanese and South Koreans, and
testing the generality of previous observations concerning changes in Firmicutes and Bacteroidetes with increasing

Results: We found that the composition of the gut microbiota of Colombians was significantly different from

that of Americans, Europeans and Asians. The geographic origin of the population explained more variance in
the composition of this bacterial community than BMI or gender. Concerning changes in Firmicutes and
Bacteroidetes with obesity, in Colombians we found a tendency in Firmicutes to diminish with increasing BMI,
whereas no change was observed in Bacteroidetes. A similar result was found in Americans. A more detailed
inspection of the Colombian dataset revealed that five fiber-degrading bacteria, including Akkermansia, Dialister,
Oscillospira, Ruminococcaceae and Clostridiales, became less abundant in obese subjects.

Conclusion: We contributed data from unstudied Colombians that showed that the geographic origin of the studied
population had a greater impact on the composition of the gut microbiota than BMI or gender. Any strategy aiming to

America, Colombia

modulate or control obesity via manipulation of this bacterial community should consider this effect.
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Background

Our body hosts a vast and mostly unexplored microbial
world known as the human microbiota [1]. The microbiota
is likely our most intimate connection with the environ-
ment. Recent investigations have highlighted the integral
role these microorganisms play in human physiology,
health and disease [2]. In the gastrointestinal tract, the gut
microbiota is mostly composed of anaerobic bacteria of
the Firmicutes and Bacteroidetes phyla [1,3,4]. These mi-
croorganisms are beneficial to the host since they confer
resistance to pathogens [5], stimulate the proliferation of
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the gut epithelium [6], synthesize essential vitamins
and regulate fat storage [7]. However, dysbiosis is associ-
ated with clinical conditions, such as obesity [8], diabetes
[9,10] and cancer [11].

Regarding obesity, it has been shown that dietary changes
alter the gut microbiota in a way that causes its metabolic
activity to favor energy acquisition from ingested food,
contribute with nutrient absorption and facilitate being
stocked in adipose tissue [12,13] through a diversity of
mechanisms [12,14]. It has been demonstrated that an in-
crease caloric intake, either produced by a high-fat diet
[15] or by overfeeding in genetically obese mice [16], se-
lects an obesogenic microbiota. Studies in animal models
have shown that shifts in the gut microbiota following
weight gain occur in a way that causes obese animals
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to have proportionally less Bacteroidetes and more
Firmicutes than lean animals [16-19]. In humans, how-
ever, evidence is less clear. Ley et al. [20] studied 12
obese individuals following different low-calorie diets
and found that weight reduction increased the proportion
of Bacteroidetes and reduced that of Firmicutes, eventu-
ally reaching the composition of lean subjects. In contrast,
other authors have described modifications in the com-
position of the gut microbiota with weight gain in differ-
ent directions [21-25].

One aspect that must be noted in the human stud-
ies is that most of them have focused on Americans or
Europeans [1,26-29], giving a limited picture of the human
gut microbiome. It has been established that the compos-
ition of the gut microbiota dramatically varies among
individuals [1,3,30] and populations [31,32] according to
the geographic [31-34] and ethnic origin [27,31,32,35], diet
[15,36-39], host genetics [25,40,41], age [31,42,43] and
several other factors [44-53]. An open question is how
these factors interact with BMI and explain discordant re-
sults about the composition of the gut microbiota in lean
and obese subjects.

To expand our knowledge of the human microbiome
and determine the generality of previous observations
concerning shifts in the composition of the gut micro-
biota following weight gain, we describe, for the first
time, the gut microbiota of a group of Colombian adults
using high throughput DNA sequencing and compare it
with data previously obtained in other populations (USA,
Europe, Japan and South Korea). Note that Colombians
differ from Europeans, Americans and Asians in genetic
terms, since they constitute an admixed population in-
volving Native American, European and African ancestry
in variable proportions [54-56] and have likely been
exposed to different environmental conditions, including
dietary habits and lifestyle [57,58]. We first asked whether
the composition of the gut microbiota differs with the
geographic origin of the host population. Next, we ex-
plored how BMI affects the taxonomic composition of
the gut microbiota and determined whether shifts in the
composition of this bacterial community following weight
gain operated at broad phylogenetic scales (e.g., at the
phylum level) or if they were produced by a reduced num-
ber of bacterial phylotypes that, eventually, might become
targets to modulate or control obesity.

Methods

We analyzed five datasets (n=126): original data con-
tributed by us from a group of 30 Colombian volunteers
and four publicly available datasets from the USA, Europe,
Japan and South Korea (Additional file 1: Table S1). The
latter datasets were chosen because they represent com-
prehensive data from populations with distinct geographic
origins, were directly comparable with the Colombian
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dataset in terms of the target population (apparently
healthy adults; apparently healthy refers to the fact that
no clinical examination preceded the selection process
and information on health status was fully based on the
self-declaration of the volunteers), used similar methods
to characterize the gut microbiota (compelling diversity
analyses using next-generation sequencing) and sequenced
overlapping regions of the 16S gene (V2). We first de-
scribe how the new data from Colombians were obtained
and then how we retrieved other data.

Colombian dataset

We performed a cross-sectional study with apparently
healthy adults of both genders from the general population
living in Medellin, Colombia South America. Volunteers
fulfilled the following inclusion criteria: BMI >18.5 kg/m?,
were non smokers, had not been diagnosed with gastro-
intestinal disease, had not consumed antibiotics or antipar-
asitics in the last four months, had not consumed laxatives
in the last two months, were not enrolled in any weight-
reduction program, were not consuming weight-loss sup-
plements, consumed less than 10 (women) or 15 (men)
drinks of alcohol per week, and did not exercise for more
than 10 hours per week. We enrolled 30 volunteers
(16 men and 14 women) who fulfilled these criteria. Note
that this sample size did not target any statistical power,
since there are no previous data on Colombians and the
results of studies performed on other populations are
highly variable and, in many cases, contradictory [20-25].
Even among studies showing the same pattern, the magni-
tude of differences between lean and obese individuals
is very different. Therefore, the choice of one study or an-
other to calculate a sample size would have been totally
arbitrary. Since this study constitutes a first attempt to
evaluate the statistical variability of the gut microbiota
among Colombians, it should be considered a pilot study.
Nonetheless, its sample size is comparable to that of previ-
ous influential studies [20,59-62].

Ethical approval

The present study was conducted according to the guide-
lines laid down in the Declaration of Helsinki. In addition,
it was considered to have minimal risk according to
the Colombian Ministry of Health (Article 11, Resolution
008430 of October 1993). All the volunteers were thor-
oughly informed about the study and procedures by a
member of the team. Participants were assured of anonym-
ity and confidentiality. Written informed consent was ob-
tained from all the volunteers before beginning the study.
The Institutional Ethics Committee of the University of La
Sabana (Certificate 29 dated May 25, 2012) reviewed the
protocol and the consent forms and approved all the pro-
cedures described here.
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Anthropometric evaluation

Weight, height and waist circumference were measured
with international techniques after training and standard-
izing evaluators [63]. Weight was measured with a Tanita
digital scale (Arlington Heights, IL; 150 kg capacity, 100 g
sensibility), height with Seca mechanical measuring rods
(Chino, CA; 0-200 cm range, 1 mm graduation) and waist
circumference with Mabis tape measures (Waukegan, IL;
0-150 c¢m range, 1 mm graduation). Each measure was
evaluated twice and the average of the two measures was
reported. We then calculated BMI (weight in kg/height
in m?) of participants to classify and select them according
to three categories: lean (18.5 kg/m”<BMI < 25.0 kg/m?),
overweight (25.0 kg/m®<BMI <30.0 kg/m? or obese
(BMI > 30.0 kg/m?).

Stool sample preparation

Each participant collected a fecal sample in a hermetic,
sterile recipient provided by the research team. Samples
were immediately refrigerated in household freezers and
brought to the laboratory within 12 hours, where a ho-
mogenized fraction was lyophilized in a Labconco
775200 Freeze Dry System (Kansas City, MO) at -50°C
and 25 x 10~% pbar during 48 hours, or until complete
desiccation.

DNA extraction, sequencing and taxonomic identification
of bacteria

One gram of each lyophilized sample was diluted in a
sterile saline solution for DNA extraction. DNA extrac-
tion was performed using the QIAamp DNA Stool Mini
Kit (Qiagen; Hilden, Germany) according to the manu-
facturer’s instructions, using 200 pl of diluted samples.
DNA was eluted from the column with 50 pl of water and
diluted according to a final concentration of 20 ng/pl
DNA was quantified using a Nanodrop spectrophotometer
(Nyxor Biotech; Paris, France) and sent to the Research &
Testing Laboratory (Lubbock, TX) for sequencing.

DNA sequencing of the 16S rDNA was performed
with the bacterial tag-encoded FLX amplicon pyrose-
quencing (bTEFAP) using 28F 5'TTTGATCNTGGCT
CAG and 519r 5'GTNTTACNGCGGCKGCTG primers
to survey the V1, V2 and V3 variable regions. Initial gen-
eration of the sequencing library utilized a one-step PCR
with a total of 30 cycles, a mixture of Hot Start and Hot
Star high fidelity Taq polymerases, and amplicons origin-
ating and extending from the 28F primer for bacterial
diversity. The bTEFAP utilized the Roche 454 FLX in-
strument with titanium reagents and titanium proce-
dures. The average sequencing depth was 10 K reads per
assay.

Following DNA sequencing, all failed sequence reads
(i.e., those not passing any of the filters considered in
the Roche 454 signal processing pipeline, (available at
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http://454.com/downloads/my454/documentation/gs-
junior/software-manual/454_Sequencing_Software_Manual_
v2.5p1_PartB.pdf); briefly, the signal processing performs
a series of normalization, correction and quality filtering
steps and outputs the remaining [high quality] signals
into flowgrams for each read), low quality sequence ends
(Q<15), barcodes and primers were removed, and se-
quence collections depleted of any non-bacterial rDNA
sequence and chimeras using B2C2 [64]. To determine
the identity of bacteria in the remaining reads, DNA se-
quences were filtered (minimum sequence length =
150 bp; maximum sequence length = 1000 bp; number of
ambiguous bases < 6; mean quality score >25; no mis-
matches were allowed in primers), assigned to samples
based on their nucleotide barcode, assembled into clusters
of operational taxonomic units (OTUs) based on their se-
quence similarity using uclust [65] and PyNAST [66], and
queried against the Greengenes database [67], 12_10
release, using the RDP classifier [68] implemented in
QIIME 1.5.0-dev [69]. Sequence identity >80%, >95%
and >97% delimited taxonomy at the phylum, genus and
species levels, respectively. Although determining exactly
how OTUs should be defined is an active area of research
[70,71], we adhered to these commonly used values for the
sake of comparability with previous studies [31,62,72,73].
Phylogenetic trees and OTU tables were constructed
for each dataset with QIIME. The analysis pipeline is
provided as Additional file 1: Figure S1. Raw sequences
were deposited at the European Nucleotide Archive
[EMBL: ERP003466]. Assembled sequences are available
as Additional file 2.

American, European and Asian datasets

We retrieved and analyzed 16S rDNA sequences from
some previous studies: USA [41], Europe [27], South Korea
[62] and Japan [72]. Although in all these studies the BMI
of volunteers was recorded, in the USA and European
datasets only lean, overweight and obese volunteers were
recruited; the Japanese and Korean datasets focused almost
exclusively on lean individuals.

For the USA dataset, where the gut microbiota of obese
and lean female twins and their mothers was characterized
[41], we downloaded final 454-generated V2 16S rDNA
sequences (available at http://gordonlab.wustl.edu/Supp
Data.html) and extracted reads from 54 twins (the first
coded twin of each twin pair). We refrained from analyzing
the two twins or the twin-mother couple because related-
ness is a source of within-population community similarity
(see Figure 1A in reference [41]) that might exacerbate
statistical differences among populations. In addition, by
restricting analyses to unrelated individuals we made all
datasets directly comparable. Also, for the sake of compar-
ability, we only analyzed the first fecal sample (out of two)
of each subject.
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Figure 1 Taxonomic profiles of the gut microbiota of Colombians and Americans. (A) Relative abundance of phylum-level OTUs. (B) Relative
abundance of the most frequent genus-level OTUs (frequency >0.5%), colored by their respective phylum (see Figure A). Unclassified phylotypes
are marked with asterisk. Upper bars = Colombians; lower bars = Americans.
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The European dataset consisted of the subset of 13
healthy volunteers (three women and 10 men) among
Spanish, French and Danish inhabitants whose micro-
biomes were published by the MetaHIT Consortium [27].
For the sake of comparability with the other studies,
Italians were not analyzed because they were elders. Raw
sequences were downloaded from the NCBI Trace Archive
(see Additional file 1: Table S1 for accession numbers)
and complete 16S gene fragments extracted using
BLASTN searches against the Greengenes 12_10 database
(e-value <107%; bit-score >50; %identity >50; alignment
length >100).

The Korean dataset consisted of 14 lean and four over-
weight individuals (six women and 12 men) in which the
V1, V2 and V3 16S rDNA regions were sequenced
[62]. Originally denoised and filtered 454-generated se-
quences were kindly provided by Dr. Young-Do Nam.
For comparability with the other studies, we analyzed
only the first stool sample (out of three) of individuals
A-F (i.e., AO-F0), and the only stool sample of individuals
I-T. For comparability with the other datasets, we did

not analyze individuals G and H since they were chil-
dren six and four years old, respectively.

Finally, the Japanese dataset consisted of 454-generated
V1 and V2 16S rDNA sequences of 10 lean and one over-
weight adults (six females and five males) that participated
in an intervention with probiotics [72], available at the
NCBI's SRA database (queried on October 21, 2013; see
Additional file 1: Table S1 for accession numbers). For
comparability with the other datasets, we only analyzed
sequences obtained before the probiotic intervention.

To compare datasets, we extracted the only common 16S
rDNA region to the five studies (i.e., the V2 region) using
the V-Xtractor 2.1 [74]. V2 sequences were assembled into
OTUs, aligned and queried against Greengenes 12_10
using the same procedures described above (Additional
file 1: Figure S1).

Statistical analysis

The gut microbiota of each individual in each dataset was
first summarized by taxonomic composition to obtain
a-diversity estimates. Rarefaction curves were constructed
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using Chao-1, the number of species-level OTUs and
phylogenetic distance using QIIME. We then assessed
the B-diversity of the gut microbiota using multivariate
UniFrac analyses. UniFrac measures differences between
microbial communities based on phylogenetic informa-
tion; its premise is that two microbial communities with a
shared evolutionary history share branches on a phylogen-
etic tree and that the fraction of branch length shared can
be quantified and interpreted as the degree of community
similarity. We restricted analyses to unweighted UniFrac
distances because heterogeneity in sequencing depth be-
tween studies. Unweighted distances consider only changes
in species composition (i.e., presence—absence) [75].
UniFrac distances were obtained with Fast UniFrac [76]
using rarefied data (depth = 100 sequences/sample). Com-
parisons among populations (Colombia, USA, Europe,
Japan and Korea), BMI categories (lean, overweight and
obese) and gender (male and female) utilized the analysis
of similarity (ANOSIM) and the adonis function for per-
mutational multivariate analysis of variance implemented
in QIIME.

Next, we tested hypotheses put forward in previous
studies concerning shifts in the taxonomic composition of
the gut microbiota between lean and obese subjects in
more detail. For this, we performed linear regressions on
the proportions (bacterial taxon/total bacteria) of phylum-
level OTUs using population, BMI, age and gender as
independent variables. In addition, since it has recently
been suggested that latitude would be the main under-
lying factor explaining between-population differences in
Firmicutes and Bacteroidetes [34], we correlated latitude
with the proportions of these two phyla using Pearson’s r.
When comparing populations, analyses were performed on
bacterial proportions because total bacterial counts were
significantly different among datasets (F,, 103 = 147.02, P<
0.0001).

Since the Colombian, USA and European datasets
contained lean, overweight and obese individuals, we an-
alyzed them separately to test the effect of BMI on the
composition of the gut microbiota in each population in-
dependently. In these cases, we analyzed the proportions
as well as the counts of phylum-level OTUs and con-
trolled for possible confounding factors (gender, age and
waist circumference in the Colombian dataset; ancestry
[European or African] and age in the USA dataset; coun-
try of origin [Spain, France or Denmark], gender and age
in the European dataset). In addition, we performed uni-
variate F-tests and correlation analysis (Pearson’s r) in
these three datasets to investigate the correlations between
genus-level OTUs and BMI. Where necessary, P-values
were adjusted for multiple comparisons [77].

In all analyses, bacterial counts were log-transformed
and proportions were arcsin-square-root transformed
to guarantee the normal distribution of residuals and
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homoscedasticity, tested using the Shapiro-Wilk and
Fligner-Killeen tests, respectively. Note that in genus-level
analyses, some individuals had no bacterium of a given
genus (i.e., a count of zero sequences for that OTU) and
logarithmic transformation was impossible. However, these
data were important because they represented extreme
values. Rather than removing them, in these analyses we
used the transformation log(1 + ;). General statistical ana-
lyses were performed with R 2.15.2 [78].

Results

Some characteristics of the different datasets are shown
in Table 1. This table indicated that individuals with ex-
cess weight tended to be older than lean individuals; al-
though the tendency was not significant, except in the
Japanese dataset, it justified controlling for age in statis-
tical models. Table 1 also showed that, in the Colombian
dataset, waist circumference increased significantly at
higher BMI, indicating central obesity and justifying tak-
ing this variable into account in analyses.

Geographic variability of the gut microbiota
In the new dataset contributed here on Colombians, we
obtained 509,147 16S rDNA sequences from the stool
samples of the 30 volunteers. Of these, 466,010 sequences
passed QIIME quality filters and were subsequently ana-
lyzed. The minimum/average/maximum sequence counts
per individual were 10,229/15,534/21,825, respectively,
and the minimum/average/maximum sequence length
was 173/318/529 bp, respectively. These sequences clus-
tered into 16,810 different species-level OTUs (i.e., se-
quences differing >3%), of which 15,866 could be assigned
a phylum name and 5864 a genus name. Note that the
remaining sequences were correctly clustered by percent-
age of identity but were assigned a higher taxonomic rank.
The comparison between the numbers of observed
species-level OTUs and the Chao-1 estimator in the Co-
lombian dataset suggested that, at the depth of our se-
quencing, we sampled about half the bacterial diversity
hosted in the gut of these volunteers. Additional sampling
would be needed to capture the remaining diversity, made
of species present at very low abundance (<0.005% of an in-
dividual’s gut bacterial diversity). The tendency was rather
similar in the other datasets (Additional file 1: Figure S2).
This is a common limitation to most bacterial diver-
sity studies and indicates that rare components of the
gut microbiota are difficult to detect at the depth of
common sequencing. However, even if rare species
make an important contribution to the total gut di-
versity, dominant species (i.e., those contributing the
most to the ecosystem biomass) are expected to be
the main determinants of ecosystem processes [79]. It
is, therefore, reasonable to focus on dominant species
to investigate differences between populations and test
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Table 1 General characteristics of the different datasets
Dataset — Variable Lean Overweight Obese P
Colombia
Age (years) 33+11 39+9 43+12 0.10
Weight (kg) 62.2+80 735+72 90.1+80 <0.0001
Height (m) 1.655 = 0.085 1.647 £0.070 1.663 = 0.056 0.88
BMI (kg/mz) 226+1.7 271+13 326+23 <0.0001
WC (cm) 785+ 64 919174 107.8£82 <0.0001
Europe
Age (years) 56+9 56+9 59+6 0.78
BMI (kg/mz) 225+12 284+08 328+ 1.7 <0.0001
Japan
Age (years) 21£1 33 NA <0.0001
BMI (kg/m?) 203+038 280 NA <0.0001
South Korea
Age (years) 43+16 58+13 NA 0.09
BMI (kg/m?) 225+12 285+06 NA <0.0001
USA
Age (years) 262 26+3 26+3 0.73
BMI (kg/m?) 213+10 283106 417+78 <0.0001

Data presented as average + standard deviation; P-values from ANOVA testing differences among lean, overweight and obese subjects. WC = waist circumference;

NA = not available.

previous observations concerning shifts in the gut micro-
biota following weight gain.

We found that the gut microbiota of Colombians was
mostly composed of Firmicutes (average + SD: 79 + 13%)
and Bacteroidetes (17 + 12%), followed by other phyla
present in minor frequencies (Figure 1A). However, vari-
ation among volunteers in the proportion of these phyla
was notorious, with some individuals having up to
97% of their gut microbiota composed of Firmicutes
and less than 2% of Bacteroidetes, and others having 40%
of Firmicutes and 53% of Bacteroidetes (Additional file 1:
Figure S3). The remaining datasets had lower proportions
of Firmicutes and higher proportions of Bacteroidetes
(Table 2), but dispersion of data among individuals was
equally notorious than in the Colombian dataset (results

not shown). In the Japanese, there was a higher proportion
of Actinobacteria than in the other datasets (Table 2).

The UniFrac analysis indicated that the gut microbiota
of Colombians was significantly different from that of
Americans, Europeans and Asians (adonis: R* = 0.22, P =
0.001; ANOSIM: R=0.78, P=0.001). Indeed, the geo-
graphic origin of the population was the most relevant
grouping factor in the analysis of the gut microbiota
of Colombians, Americans, Europeans, Japanese and
Koreans, above BMI (adonis: R* = 0.04, P = 0.001; ANOSIM:
R=0.11, P=0.002) or gender (adonis: R*=0.05, P=0.001;
ANOSIM: R=0.26, P=0.001) (Figure 2). On the other
hand, our results did not support the hypothesis that
Firmicutes increases and Bacteroidetes decreases with
latitude [34]. In contrast, in the five datasets analyzed

Table 2 Taxonomic composition of the gut microbiota in the different datasets

Phylum Colombia Europe Japan South Korea USA P
Actinobacteria 0.001 +0.002 0.008 +0.023 0.182+0.238 0.000 + 0.000 0.000 +0.000 <0.0001
Bacteroidetes 0.166+0.119 0306+0.161 0.179+0.171 0.262+0.180 0287 +0.141 0.005
Firmicutes 0.787+£0.128 0589+0.173 0626 £0.211 0.689+0.213 0.696 = 0.144 0.012
Proteobacteria 0.020+0.033 0.013+0011 0.012+0013 0.015+0.012 0.010+0.010 0.10
Tenericutes 0.004 + 0.005 0.016+0.049 0.000 + 0.000 0.006 +0.008 0.001 +0.005 0.0007
Verrucomicrobia 0.012+0.042 0.012+0.026 0.000 £ 0.001 0.000 + 0.000 0.001 +0.002 <0.0001

Data presented as average + standard deviation; P-values from ANOVA testing differences among lean, overweight and obese subjects. WC = waist circumference;

NA = not available.
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here, we found that the relative abundance of Firmi-
cutes decreased with latitude (r=-0.27, P=0.002) and
that of Bacteroidetes increased with latitude (r=0.28,
P=0.001) (Additional file 1: Figure S4).

Composition of the gut microbiota following weight gain
We found that Firmicutes tended to be less abundant at
a higher BMI in the Colombian dataset when controlling
for gender, age and waist circumference (F;, »5=4.04,
P=0.05 r=-0.36). No change was observed for Bac-
teroidetes though (F;, ,5=0.10, P=0.75 r=-0.06)
(Figure 3A-B). A similar result was found in the USA
dataset (Firmicutes: F; 50=5.68, P=0.02, r=-0.30;
Bacteroidetes: Fj 50=0.58, P=0.45, r=-0.23). In the
European dataset there was no change in Firmicutes or
Bacteroidetes with BMI (Firmicutes: F; ,=0.93, P=0.37,
r = 0.25; Bacteroidetes: F; ;= 0.005, P = 0.95, r = —0.08).
We then looked in more detail to see which of the most
representative phylotypes, binned at 95% sequence iden-
tity (i.e., genus-level OTUs), changed their abundance
with an increasing BMIL In the Colombian dataset, 200
different genus-level OTUs were identified; 30 of them oc-
curred at frequencies greater than 0.5% and, together,
represented 91.4% of the total diversity of the gut bacteria
(23 Firmicutes, four Bacteroidetes, two Proteobacteria and
one Verrucomicrobia). In this dataset, an undetermined
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Lachnospiraceae, Faecalibacterium and Roseburia were
predominant among Firmicutes, whereas Bacteroides and
Prevotella were the most abundant Bacteroidetes (Figure 1B).
We detected that five out of the 30 most abundant genus-
level phylotypes present in this dataset suffered reductions
with an increasing BMI: four Firmicutes (Ruminococcaceae,
Clostridiales, Dialister and Oscillospira) and one Verruco-
microbia (Akkermansia) (Figure 3C-G). The other datasets
had lower species richness but similar numbers of the
most prevalent phylotypes than the Colombian dataset.
In the USA dataset, among the most prevalent genera
Bacteroides, Coprococcus, Oscillospira, Parabacteroides,
undetermined Clostridia, Clostridiales, Rikenellaceae and
Ruminococcaceae diminished with BMI whereas Cateni-
bacterium became more abundant at a higher BMI. In
Europeans, Bacteroides became less abundant and un-
determined Veillonellaceae, which was more abundant
at a higher BMI (Additional file 3: Table S2).

Discussion

Geographic variation of the gut microbiota

The gut microbiota is currently recognized as an organ
that interacts in a complex way with the human body.
These bacteria play a fundamental role both in maintaining
gut health and contributing to several pathologies [80-83].
Recent research has emphasized the relationship between

Figure 3 Changes in the abundance of phylum-level and genus-level OTUs with BMI in the Colombian dataset. A-B: phylum-level OTUs;
C-G: genus-level OTUs. Background color: green = lean; yellow = overweight; red = obese. Pearson’s r from correlation analyses and P-value from
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bacterial composition and obesity [16,17,20,41,84]. How-
ever, there is no consensus about what the “typical” gut
microbiota of obese and lean subjects would be. One of
the reasons for this is that we have a limited understanding
of the extent to which this relationship is affected by fac-
tors such as the geographic origin of the surveyed popula-
tion. Most studies in humans have focused on Americans
or Europeans [1,20-22,24,41,59,61,85-87] and few have
done tests in populations with different geographic and
genetic origins [23,27,32,35]. Yet, it has been established
that genetic background and geography are some of the
most important determinants of the gut bacterial com-
position [25,31,33,34,40,41]. For instance, a study compar-
ing the gut microbiota of subjects from the Amazonas
of Venezuela, rural Malawi and USA metropolitan areas
found that the origin of the population primarily explains
the variation in the composition of this bacterial commu-
nity [31]. Likewise, another recent study, in which the
gut microbiota of Hazdas, Burkinabes, Malawians, Italians
and Americans was compared, found that geography
was clearly the most important grouping factor [32].
In agreement with this, we here show, using new data in
overlooked Colombians, that the origin of the population
explains more variability in the composition of the gut
microbiota than factors such as BMI or gender.

A recent study suggested a link between latitude and
the prevalence of Firmicutes and Bacteroidetes in a sort
of Bergman’s rule, where populations living in higher lati-
tudes tend to have a larger body mass and relatively more
Firmicutes and less Bacteroidetes than in populations at
lower latitudes [34]. In contrast with such a hypothesis,
our results on Colombians suggest that individuals from
this population have a higher proportion of Firmicutes
and a lower proportion of Bacteroidetes than expected ac-
cording to Colombia’s latitude.

An interesting result obtained with the UniFrac analysis
was that the taxonomic composition of the gut microbiota
of Colombians and Koreans, and Europeans and Japanese
were partially overlapping. Whereas it is hard to impute
such resemblance to host genetic similarities, it is tempt-
ing to assign it to shared environmental factors, such as
macronutrient intake. According to national health and
nutrition surveys, the energy intake of Colombians (aver-
age of males and females 19-50 years old = 1869 Kcal/
day) [57] is closer to that of Koreans (average of males
and females in 2007 = 1806 Kcal/day) [88] than to intakes
of Japanese (average of males and females 20-49 years
old = 1945 Kcal/day) [89], Americans (average of males
and females 20-49 years old =2278 Kcal/day) [90] or
Europeans (average of French, Spanish and Danish 19-64
years old = 2281 Kcal/day) [91]. Such lower energy intake
in Colombians and Koreans is due to an average diet
lower in total fat (Korea = 37.1 g/day, Colombia =49.0 g/
day, Japan=59.3 g/day, USA =829 g/day, Europe=
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95.3 g/day), lower protein content (Colombia = 59.0 g/day,
Korea = 66.4 g/day, Japan = 69.6 g/day, USA = 87.3 g/day,
Europe: = 98.9 g/day) and higher carbohydrate intake
(Europe = 229.8 g/day, Japan = 263.6 g/day, USA =279.5 g/
day, Colombia = 290.7 g/day, Korea = 301.7 g/day). Likewise,
fiber intake seems to be higher in Koreans (19.8 g/day) [92]
and Colombians (18.2 g/day) [57] than Americans (15.1 g/
day) or Japanese (15.0 g/day) [62]. Although this is mere
speculation and we do not pretend to claim causality with
such rough values, it would be interesting to tease apart
the effect of diet and geography on the composition of the
gut microbiota.

Composition of the gut microbiota in lean and obese
individuals

Several authors have given support to the observation
that Firmicutes increases and Bacteroidetes decreases in
obese compared to lean subjects [17,20]. In one of the
most influential studies to date analyzing the gut micro-
biota of 154 individuals (mothers + twins) with different
BMI by means of 454 pyrosequencing of the V2, V6,
complete 16S and whole metagenome, Turnbaugh et al.
[41] found less Bacteroidetes in obese subjects than in
those who were lean. However, they did not detect any dif-
ference among Firmicutes. The difference between the
original publication and our results in the USA dataset
(i.e., a fraction of the original data where Firmicutes di-
minished with BMI and Bacteroidetes did not change) is
likely that the two studies performed different analyses
(comparison between relative abundance of bacteria
between lean and obese in the former; correlation be-
tween bacterial counts and BMI in the latter) and that
Turnbaugh et al. [41] analyzed much more data than we
did, which gave them greater statistical power. Using a
smaller sample (49 individuals) and a different bacterial
identification technique (quantitative PCR), Armougom
et al. [85] found the same results of Turnbaugh et al. [41].
In contrast with these studies, other authors have de-
scribed shifts in the gut microbiota with BMI in the
opposite sense: a higher proportion of Bacteroidetes
[21,24] and a lower proportion of Firmicutes [22,24,25] in
individuals with excess weight compared to lean subjects.
Furthermore, other studies have detected increases in
both phyla [23] or, more commonly, no difference in their
abundance with increasing BMI [1,27,35,59,60,87]. Our re-
sults indicated that, similar to previous studies [1,3,62],
Firmicutes and Bacteroidetes were the dominant bacterial
phyla colonizing the gut of Colombians. These two phyla
constituted >95% of the phylotypes detected in this data-
set. Nonetheless, differences in their abundance between
individuals, which also occur in the other datasets an-
alyzed here, suggest that there are complex genotype-
by-environment interactions that contribute to maintain
the bacterial community structure in the face of immune,
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environmental and lifestyle/dietary exposures. The
uniqueness of each individual’s microbial community is a
universal feature of the human microbiome [1,3,41]. How-
ever, results in the Colombian dataset did not agree with
the observation of increased Firmicutes and reduced
Bacteroidetes in individuals with a higher BMI. We found
less Firmicutes in volunteers with a higher BMI, as observed
by others [22,24,25], and no shift in Bacteroidetes [22,59].

Contradictory results between studies on obesity and
phylum-level changes on the gut microbiota are com-
mon and have deserved explanations. Inspection of studies
revealed they are heterogeneous in several aspects. Whereas
some of them, including the new data contributed by us in
Colombians, assessed bacterial diversity using broad rDNA
surveys and high throughput sequencing [1,27,31,41,60,87],
others performed analyses based on taxon-specific oligo-
nucleotide probes [21,22,24,25,35,59,61,85,86]. The latter
techniques are limited by the specificity of the selected
probes, which is uncertain in the absence of large rDNA
surveys that assess the overall diversity within a sample
[8]. Another methodological issue that affects compar-
ability between studies is the use of different taxonomic
databases to classify 16S rDNA sequences. Our choice of
Greengenes was based on the fact that this is a curated,
quality-checked database with millions of sequences that
has been proved to improve the classification of 75% of
the sequences by one or more taxonomic ranks related to
the NCBI [93]. Sample size is another issue that can con-
tribute to disagreement among studies. While some of
them analyzed as few as nine or 12 individuals [20,60]
others sampled 100 subjects or more [24,31,35,41,87]. A
higher sample size reduces sampling stochasticity and in-
creases statistical power. Other factors, such as the dur-
ation of the fasting period at the moment of sampling
[8] or the storage conditions of stool samples prior to
DNA extraction [94], could also contribute to differences
among studies.

However, as suggested above, a more fundamental as-
pect that profoundly affects comparability among studies
is the geographic origin of the sampled population. Pop-
ulations differ in two domains: genetic (i.e., the genetic
background itself as well as the genetic variants involved
in susceptibility to metabolic disorders, inflammation and
host-bacteria symbiosis) and environmental (e.g., diet con-
tent, lifestyle). Studies in laboratories with animal
models usually lack genetic variation and control macro-
environmental variables, which might explain why results
in obese and lean animals are more consistent than in
humans [15-19,95-97]. Since in human studies such con-
trols are not possible, it is important to split apart the con-
tributions of geography and BMI (and other factors) to
changes in this bacterial community.

Although pioneering studies associated obesity with
phylum-level changes in the gut microbiota, studies finding
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correlations at lower taxonomic levels are becoming more
abundant. Ley et al. [17] did not find differences in any
particular subgroup of Firmicutes or Bacteroidetes with
obesity, which made them speculate that factors driving
shifts in the gut microbiota composition must operate on
highly conserved traits shared by a variety of bacteria
within these phyla [20]. However, more recent evidence
suggested that specific bacteria might play determinant
roles in the maintenance of normal weight [98], in the de-
velopment of obesity [99] or in disease [80,100-103]. In
this study, we found that a reduced set of genus-level phy-
lotypes was responsible for the reductions at the phylum
level with an increasing BMI. In Colombians, the phylo-
types that became less abundant in obese subjects were re-
lated to degradation of complex carbohydrates [25,27,104]
and had been found to correlate with normal weight
[25,60,86,98,105-107]. Results in this population suggest
that a lower BMI associates with the presence of primary-
fiber degraders and that these bacteria impact the energy
balance of the host. They might represent promising ave-
nues to modulate or control obesity in this population.

Conclusion

Studies examining the gut microbiota outside the USA
and Europe are beginning to be accumulated. They ex-
pand our knowledge of the human microbiome. This
study contributed to this aim by describing, for the first
time, the gut microbiota of unstudied Colombians. We
showed that the geographic origin of the studied popula-
tion was a more important factor driving the taxonomic
composition of the gut microbiota than BMI or gender.
Strategies to modulate or control obesity via intervention
of the gut microbiota should take this effect into account.
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