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We discuss the physical conditions required for the creation of collective ferromagnetism in nonmagnetic
oxides by intrinsic point defects such as vacancies. We use HfO2 as a case study because of recent pertinent
calculations and observations. It was previously noted theoretically that charge-neutral Hf vacancies in HfO2

have partially occupied electronic levels within the band gap, and thus the vacancies carry a nonvanishing local
magnetic moment. Such density functional supercell calculations have further shown that two such vacancies
interact ferromagnetically if they are separated by up to third-neighbor distance. This suggested to the authors
that Hf vacancies could explain the observed collective ferromagnetism in thin HfO2 films. Here we use our
previously developed more complete methodology �Phys. Rev. Lett. 96, 107203 �2006�� to inquire if such
vacancies can lead to collective ferromagnetism. Applying this methodology to HfO2, we find the following: �i�
Hf vacancies appear in a few possible charge states but not all of these have a local magnetic moment. �ii� We
calculate the energy required to form such vacancies in HfO2 as a function of the chemical potential and Fermi
energy, and from this we compute, as a function of growth temperature and oxygen pressure, the equilibrium
concentration of those vacancies that have a nonvanishing local magnetic moment. We find that under the most
favorable equilibrium growth conditions the concentration of Hf vacancies with magnetic moment at room
temperature does not exceed 6.4�1015 cm−3 �fractional composition of xeq=2.2�10−7%�. �iii� Independently,
we calculate the minimum Hf vacancy concentration needed to achieve wall-to-wall percolation in the HfO2

lattice, given the range of the magnetic VHf-VHf interaction �five neighbors� obtained from our supercell
calculations. It turns out that the minimum percolation concentration xperc=13.5% needed for collective ferro-
magnetism is eight orders of magnitude higher than the equilibrium vacancy concentration xeq in HfO2 under
the most favorable growth conditions. We conclude that equilibrium growth cannot lead to ferromagnetism and
that ferromagnetism can be established only if one beats the equilibrium Hf vacancy concentration during
growth by as much as eight orders of magnitude. This paper presents also an Appendix that gives the Monte
Carlo–calculated percolation thresholds of various lattices as a function of the percolation radius of the
interaction.
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I. INTRODUCTION

Recently, the possibility of inducing ferromagnetism in
nonmagnetic insulators1–8 and in C60-based systems9–11 by
creating intrinsic point defects, rather than by the more tra-
ditional approach of substitution by magnetic ions, has been
discussed. Indeed, it appears that such observations of mag-
netism are invariably occurring in oxide samples having
strong structural deviations from crystalline perfection, in-
cluding heavily epitaxially textured samples and large-
surface-area nanostructure grain boundaries, all associated
with significant deviation from stoichiometry12,13. Here, we
critically examine the conditions that may lead to such
defect-induced ferromagnetism, following the general proce-
dure we developed6 for CaO. Our approach is to first find the
conditions leading to defect-induced magnetism under equi-
librium. This will quantitatively establish the disparity be-
tween the defect concentration needed to establish equilib-
rium magnetism and what one would need to achieve
experimentally with deliberate deviations from equilibrium.
We outline four steps needed to determine if defect-induced
magnetism is possible.

First, one must identify a defect that has, in isolation, a
nonvanishing magnetic moment. The simplest case is where
a structural defect is stable with partially occupied electron

levels. Indeed, in general,14,15 point defects in insulators can
create localized levels in the band gap capable of having
different electron occupancies and thus different charge
states and magnetic moments. For example, a charge-neutral
cation vacancy in divalent monoxides �e.g., MgO, CaO�,
Vcation-II

0 , creates a two-hole center, whereas the singly nega-
tive vacancy Vcation-II

− has one hole in the e1 gap level and a
doubly negative vacancy Vcation-II

2− has a fully occupied e1
level �no holes�.6 Likewise, the cation vacancy in four-valent
oxides �e.g., HfO2� creates a four-hole center for the charge-
neutral center Vcation-IV

0 and a fully occupied level for the
quadruply negative Vcation-IV

4− center. Such partially occupied
orbitals �“open shell”� may give rise to local magnetic mo-
ments. For example, �=2�B for Vcation-II

0 , �=1�B for
Vcation-II

− , and �=4�B for Vcation-IV
0 . However, other charge

states may have zero moment—e.g., the maximally occupied
Vcation-II

2− or Vcation-IV
4− . For the two-hole Vcation-II

0 , if the ground
state is a singlet �spin S=0�, the total moment will vanish.
Experimentally the S=1 triplet configuration has been ob-
served for isolated cation vacancies in CaO and MgO, but
the energy ordering between the spin-singlet �S=0� and spin-
triplet �S=1� states has been debated.16,17

Many authors have demonstrated via calculations the ex-
istence of such nonzero local magnetic moments for isolated
open-shell defects. For example, calculations by Elfimov
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et al.1 for Vcation-II
0 in CaO and by Das Permmaraju and

Sanvito3 for Vcation-IV
0 in HfO2 considered only neutral defects

and predicted a nonzero magnetic moment. Another mecha-
nism for creating defects with nonzero moment was pro-
posed by Coey et al.4 who suggested a scenario where, e.g.,
anion vacancies are polarized by interactions with the mag-
netic moments of transitions metals and form a spin-
polarized impurity-band-mediated ferromagnetic interaction.
This scenario requires that the oxygen vacancy levels be suf-
ficiently close to the host-conduction band in order to hybrid-
ize with the otherwise nonmagnetic conduction band �made
of empty Hf 5d states in HfO2�, rendering the latter
magnetic.5 Recent theoretical studies have shown that this is
clearly not the case in18,19 TiO2 or6 CaO where the oxygen
vacancy level is far below the host conduction band; we will
see here that it is not the case in HfO2 either.

The observation that annealing in O2 atmosphere reduces
or even eliminates the ferromagnetism5,12 leads to specula-
tions that direct ferromagnetic coupling between oxygen va-
cancies could be responsible for ferromagnetism. The charge
states of VO that has magnetic moment are 1+ and 1−. Due to
the deep and localized nature of the VO

+ level, such vacancies
are not magnetically coupled.3 We find that the interaction of
two VO

− vacancies is antiferromagnetic and conclude that
oxygen vacancies in bulk HfO2 are not responsible for fer-
romagnetism.

Second, once an isolated defect leading to a magnetic mo-
ment is identified, one must establish that the defect charge
state that has such a nonzero magnetic moment is the stable
center given the actual Fermi energy EF�T�. Indeed, the for-
mation of charged defects would violate the charge-neutrality
condition, so other charge-compensating defects or �charge-
carrying� carriers are needed to conserve charge neutrality.
For example, anion vacancies �donors� can compensate cat-
ion vacancies �acceptors�. Various such charged defects as
well as thermal excitations of electrons and holes establish
an equilibrium Fermi energy EF�T�. It is not obvious whether
at EF�T� there will be a viable concentration of that charge
state that leads to a nonvanishing magnetic moment. Previ-
ous authors have usually arbitrarily assumed a given charge
state of the defects and proceeded to calculate its magnetic
properties without examining if this is the stable charge state
at EF. Here, we take into account compensations and pos-
sible nonmagnetic charge states by first calculating for the
magnetic defect �here, VHf� and for possible compensating
defects �here, VO� the defect formation enthalpies
��HD,q�EF ,���� of the respective defect D in charge state q,
as a function of the Fermi energy EF and chemical potentials
�� representing the growth condition �e.g., O-rich–Hf-poor�.
Next, we calculate, via compensation conditions the equilib-
rium Fermi energy EF�Tgrowth ,�� at a given growth tempera-
ture Tgrowth and the corresponding equilibrium concentrations
c�Tgrowth ,��� of all defects. Finally, we calculate for these
obtained concentrations the Fermi level at room temperature
and the distribution of the magnetic and nonmagnetic charge
states of the magnetic candidate defect. Only if this proce-
dure predicts significant concentrations of the defect having
nonzero magnetic moment can one proceed to expect defect-
induced magnetism.

Third, having found how many stable moment-carrying
defects exist, one must establish the range of magnetic
defect-defect interaction d for the moment-carrying stable
charge state. Indeed, a highly localized �deep-gap� defect or-
bital could lead to only a very-short-range defect-defect in-
teraction that would fail to percolate through the sample,
leading to a vanishing Curie temperature. To establish the
range of magnetic interaction one needs to perform a mag-
netic calculation establishing an underlying interaction
mechanism. Das Permmaraju and Sanvito3 have examined
the magnetic interaction of two Vcation-IV

0 in HfO2 up to three-
neighbor distance. Bouzerar and Ziman7 have used the
Hubbard-model Hamiltonian with an additional term to ac-
count for the perturbative potential due to randomly distrib-
uted cation vacancies inducing magnetic moments on neigh-
boring oxygen sites. The existence of ferromagnetism
depends strongly on the choice of the model parameters. In
CaO, Elfimov et al.1 have predicted the existence of nonzero
local magnetic moments for Vcation-II

0 , but have not calculated
the range of magnetic interactions between two such vacan-
cies; Osorio-Guillén et al.6 have calculated that these vacan-
cies interact ferromagnetically if they are separated by up to
four-neighbor distance. Andriotis et al.9–11 have found that
for a C60 dimer the spin triplet is the ground state when two
C vacancies are introduced per C60 molecule, but the authors
did not calculate the range of magnetic interactions.

Fourth, given the defect-defect interaction range d deter-
mined above, one must establish the minimal percolation
concentration xperc�� ,d� of defects �D ,q� for the relevant lat-
tice type � �e.g., Baddelayite-type for HfO2, NaCl-type for
CaO�. In general, the shorter the interaction range d, the
larger the defect concentration required to establish wall-to-
wall percolation and hence collective magnetism. However,
calculations of the “percolation staircase” xperc��� vs d for
general lattice structures � are scarce, except for simple
monoatomic cases.20 Previous calculations1,3 of defect-
induced magnetism have generally not considered whether
the percolation condition is satisfied or not. The main ques-
tion is then: is the equilibrium concentration cD,q�T ,�� of a
magnetic-moment-carrying defect D at charge state q com-
parable to the percolation concentration xperc�� ,d� of the ap-
propriated lattice type � given its magnetic interaction range
d?

In this paper we find that �i� the charge states of Hf va-
cancies which lead to nonzero magnetic moments are q
=0,1− ,2− ,3−. �ii� The maximal equilibrium concentration
of all charge states of Hf vacancies at growth temperature of
Tgrowth=2500 K and p�O2�=100 atm �this partial pressure is
chosen to be close to O-rich growth conditions� is
1.3�1017 cm−3 �x=4.5�10−6% �, but the maximal concen-
tration of charge states with nonzero magnetic moments at
room temperature is only 6.4�1015 cm−3 �x=2.2�10−7% �.
�iii� The range of ferromagnetic vacancy-vacancy interac-
tions in HfO2 is d�5 nearest neighbors. �iv� The minimal
concentration needed to establish percolation for d=d5NN on
the HfO2 lattice is xperc=13.5%. Thus, the calculated equilib-
rium Hf vacancy concentration of charge states which lead to
nonzero magnetic moments falls short by eight orders of
magnitude from the minimal percolation density. Thus, to
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establish ferromagnetism in HfO2 requires an enhancing fac-
tor of the uncompensated VHf concentration relative to equi-
librium growth of the order of 108.

II. METHODS

A. Calculation of the magnetic configuration
of a single vacancy

All total energies, atomic forces, and magnetic moments
were calculated via first principles using the projector aug-
mented wave method and the generalized gradient approxi-
mation �GGA-PBE� as implemented in the VASP code.21 The
energy cutoff in the planes wave expansion was 520 eV. All
calculations for the neutral and charge vacancies were per-
formed using a fully relaxed GGA host supercell which con-
tains 96 atoms. Brillouin-zone integration was performed on
a 2�2�2 k-mesh with a Gaussian broadening for the
atomic relaxation and a �-centered 4�4�4 k-mesh using
the tetrahedron method for the calculation of the total ener-
gies, charge density, magnetic moments, and square of the
wave function in the chosen energy ranges.

B. Calculation of the formation enthalpies of vacancies and
the equilibrium concentration of point defects

We calculate the formation enthalpy22 �HD,q�EF ,�� of
defect D in charge state q �here, D=Hf or O vacancies� as a
function of the Fermi energy EF and the chemical potential �
of Hf and O:

�HD,q�EF,�� = �ED,q − EH� + n����
elem + ���� + q�Ev + �EF� ,

�1�

here, ED,q is the total energy of the supercell containing the
defect D in charge state q and EH is the energy of the pure
host supercell. The second term in Eq. �1� describes the
chemical reservoir of equilibrium, where n�= ±1 if an atom
is removed �+1� or added �−1�; the chemical potential ��

=��
elem+��� of the removed ion � �=Hf,O� is given with

respect to the elemental phase. For the elemental reference
��

elem, we choose the solid phase except for oxygen, where
we use the O2 molecule. The third term in Eq. �1� is the
energy of the electron reservoir—i.e., the Fermi energy EF
=Ev+�EF, which can range from the valence band maxi-
mum �VBM� �Ev�to the conduction band minimum �CBM�
�Ec� and is determined by the equilibrium concentration of
electrons and holes in the sample. Maintaining a system in
thermodynamic equilibrium with bulk HfO2 requires that
��Hf+2��O=�Hf�HfO2�, where �Hf�HfO2�=−10.75 eV/
f .u. is the calculated formation enthalpy of HfO2. This con-
dition leaves one free degree of freedom ��Hf or �O� for the
chemical potentials of the constituents. Thus, growth condi-
tions can be chosen between the limit of Hf-rich–O-poor
���Hf=0,��O=�Hf�HfO2� /2� and the limit Hf-poor–O-
rich ���Hf=�Hf�HfO2� ,��O=0� conditions. In order to
simulate realistic growth conditions, we include the enthalpy
and entropy contributions to the oxygen chemical potential
�Oin the O2 gas phase at temperature T and pressure P.
Using the tabulated23 values �enthalpy H0=8.7 kJ mol−1 and

entropy S0=205 J mol−1 K−1� for O2 at standard conditions,
we express ��O of Eq. �1� as

��O�T,P� =
1

2
��H0 + �H�T�� − T�S0 + �S�T��� +

1

2
kBT ln

P

P0
,

�2�

where �H�T�=CP�T−T0� and �S�T�=CP ln�T /T0�. Employ-
ing the ideal gas law for T�298 K, we use CP=3.5kB for the
constant-pressure heat capacity per diatomic molecule.

We correct the calculated formation enthalpies from finite
supercell and GGA errors according to the following
scheme.22. �i� Supercell error corrections: �a� Band filling
correction is applied for shallow donors and acceptors; the
use of finite-size supercells implies very high, degenerate
doping densities far beyond the insulator-metal transition.
The ensuing Moss-Burstein-like band filling effects raise ar-
tificially �H which needs to be corrected. �b� Potential
alignment correction; this applies to charged impurities
where violation of the charge-neutrality condition leads to
divergence of the Coulomb potential. Here, the total energy
calculated from the expression originally derived for
charged-neutral systems24 suffers from the same arbitrariness
as single-particle energies.22 This is corrected by an appro-
priate potential alignment procedure. �c� Image charge cor-
rection, performed for charged defects. Here, the effective
�i.e., screened� Madelung energy of the defect charge in the
jellium background is corrected to O�L5�, according to Ref.
25. �ii� GGA error corrections: �a� GGA band gap correc-
tion; the GGA band gap of HfO2 is 3.93 eV, a much smaller
value than the experimental gap �5.45 eV�. We correct this
discrepancy with the �temperature-dependent� experimental
gap by shifting the CBM energy. �b� Shallow donor and
acceptor correction, since the wave functions of shallow do-
nors or acceptors are perturbed host states rather than defect
localized states, the respective energies of the donor and ac-
ceptor states are expected to follow the corrections of the
CBM and VBM. For HfO2 the Hf vacancy is shallow but we
have not shifted the VBM, so �Ev=0. On the other hand, as
the oxygen vacancy is deep in nature, this correction is not
applied to this defect.

The equilibrium defect concentration is calculated from
the defect formation enthalpies and using the Boltzmann dis-
tribution

cD,q�EF,�,T� = N exp�− �HD,q�EF,��/	T� , �3�

where N is the concentration of atomic sites that are substi-
tuted by the vacancy. The chemical potential � corresponds
to the growth conditions described above, and T is the
growth temperature. Since the vacancy concentration de-
pends explicitly on EF and since EF depends on the concen-
tration of charged vacancies and free carriers �by means of
the requirement of overall charge neutrality�, then these vari-
ables �cD,q, EF, carrier concentration� are calculated self-
consistently. Here, the electron and hole concentrations are
calculated as a function of EF and T by numerical integration
of the Fermi-Dirac distribution using an effective-mass-like
approximation for the host bands.
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C. Calculation of the magnetic interaction range

To quantify the ferromagnetic interaction we calculated
the ferromagnetic stabilization energy �EFM�d�=EAFM�d�
−EFM�d� by placing two VHf

0 defects at separation d in the
supercell and calculate via GGA the difference between the
ferromagnetic �FM� and antiferromagnetic �AFM� total ener-
gies where all atomic positions are relaxed.

D. Calculation of the percolation staircase

The calculation of the percolation staircase is done �as
described in the Appendix� considering vacancies that ran-
domly occupy the sites of an infinite periodic lattice � with
occupation probability �concentration� x=c�V� /N, where N
is the total number of sites. Two such vacancies interact if
they are separated by less than distance d. We find the per-
colation threshold function xperc�� ,d� by a finite-size analysis
of Monte Carlo simulation results. Since xperc�� ,d� may
change its value only at the discrete values of d

=d1NN,d2NN, . . . ,dnNN, . . . �where dnNN is the nth nearest-
neighbor separation on the lattice ��, we enumerate dnNN up
to a given maximum separation. Then, for each dnNN and a
given value of linear dimension L of a finite-size lattice �
�the final results are not sensitive to the precise definition of
L�, we build an appropriate neighbor table and use it to iden-
tify whether an arbitrary configuration of vacancies contains
a spanning cluster �that is, a cluster that crosses the system
from one side to an opposite side�.

III. RESULTS

A. Results for the magnetic configuration of single Hf and O
vacancies in different charge states

Figures 1�a� and 1�b� show the total density of states
�DOS� for the Hf vacancy in charge states VHf

0 and VHf
2−. We

see that the removal of a single Hf atom introduces unoccu-
pied but spin-polarized states above the VBM for VHf

0 and
VHf

2− �enclosed by the red ellipses�. The integrated DOS �not
shown� gives four empty states for VHf

0 and two empty states
for VHf

2−. The four empty states introduced by VHf
0 account for

the calculated local magnetic moment of 4�B. Figure 2 ���
and �
� shows the square of the wave function for these four
spin-polarized states in the energy range from EV−0.2 eV to
EV+0.07 eV and EV+0.14 eV to EV+0.22 eV, respectively.
It can be seen that the three empty states labeled � in Fig.
1�a� which are close to the VBM are delocalized, whereas
the empty state labeled 
 in Fig. 1�b� inside the gap is more
localized. Successive filling of these four empty levels leads
to a decrease of the local magnetic moment up to the unpo-
larized situation for VHf

4−.
Figures 1�c� and 1�d� show the total DOS for oxygen

vacancy charge states VO
0 and VO

+ . In the neutral state this
defect introduces a fully occupied spin-unpolarized mid gap
state, and in the single positive charged state it introduces a
spin-polarized mid gap state, resulting in a local magnetic
moment of 1�B. Figure 2 ��� and ��� shows the square of the
wave function of the states � for VO

0 and � for VO
+ in Figs.

FIG. 1. �Color online� Calculated total density of states �DOS�,
for two charge states of the Hf vacancy; VHf

0 and VHf
2−, and two

charge states of the O vacancy, VO
0 and VO

+ . Spin up and spin down
are depicted as upper and lower panels, respectively. The vertical
dashed lines represent the VBM and CBM of the host crystal. The
red ellipses highlight features for which we give the square of the
wave function in Fig. 2.

FIG. 2. �Color online� The square wave functions for the states
�, 
, �, and � enclosed by red ellipses and labeled in Fig. 1. Gray
and red circles represent Hf and O atoms, respectively. The green
isosurface represents the wave function.
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1�c� and 1�d�, respectively. These gap states are very local-
ized and well below the CBM, showing that the polaron
model �requiring an overlap of this level with the conduction
band� is not fulfilled.

B. Results for the formation enthalpies and transition energies
of Hf and O vacancies and equilibrium concentration of

magnetic defects in HfO2

Figure 3 shows the formation enthalpies as a function of
Fermi energy for Hf and O vacancies in HfO2. Under Hf-rich
growth conditions �dashed lines� and for all values of the
Fermi energy, the nonmagnetic defects of VO

q �q=−2,0 ,2+ �
and VHf

4− have a lower formation energy and hence higher
concentration than the magnetic defects VHf

q �q=0,1− ,2− ,
3− �. This is also true for Hf-poor conditions �solid lines�,
where the nonmagnetic defects of VO

2+ and VHf
4− have lower

formation energy for all Fermi levels. As the formation en-
thalpy of the magnetic defects VHf

q �q=0,1− ,2− ,3− � is
rather high even for the Hf-poor growth conditions, this im-
plies a very small concentration of those under equilibrium
conditions—i.e., when the defect densities are in equilibrium
with the chemical reservoir at sufficiently high growth tem-
peratures: e.g., T1000 K. At room temperature, the equi-
librium of the defect density is generally not established, but
the density of the electronic system generally is; i.e., a new
Fermi level will be established when the defect densities for
the high growth temperature are “frozen-in” during the
cooldown to room temperature. As a result, a new distribu-
tion between magnetic and nonmagnetic charge states will be
reached �see below�. Our calculated formation enthalpy for
VHf

0 under Hf-poor conditions is 5.62 eV, in good agreement
with the value calculated by Foster et al.26 of 5.7 eV using

Vanderbilt ultrasoft pseudopotentials and GGA-PW92.
For the cases of anion vacancies, we can see from Fig. 3

that VO is amphoteric, having both donor and acceptor levels
in the gap. The formation enthalpies for VO

0 at the two types
of oxygen sites are 6.49 eV and 6.37 eV, respectively, at
Hf-poor conditions. These values are in good agreement with
the calculation by Scopel et al.,27 yielding 6.38 eV. Foster et
al.26 calculated 9.36 eV and 9.34 eV for VO

0 for the two types
of oxygen sites. Note that if we would treat VO as a shallow
donor �the calculation of the formation enthalpy of VO

0 is
corrected by the shift of the conduction band�, our calculated
formation enthalpies become 9.99 eV and 9.87 eV due to the
shallow donor-acceptor correction,22 which agrees with the
values in Ref. 26. However, this is not a correct assumption
since the calculated DOS �Fig. 1� shows that VO

0 introduces
fully occupied midgap states, which suggest that VO should
be considered as a deep donor. This treatment agrees with the
findings in hybrid functional calculations by Gavartin et
al..28 Also, we can observe from Fig. 3 that all five charge
states of the O vacancy exist as stable states for some Fermi
energies,28 contrasting the negative-U character found by
other authors29,30 for O vacancies in cubic29 HfO2 and
tetragonal30 HfO2.

Figure 4 shows the calculated anion and cation total va-
cancy concentrations of HfO2, c�VO

Total�, and c�VHf
Total� and the

concentration of moment-carrying states c�VHf
Mag� at room

temperature as well. c�VHf
Total� and c�VO

Total� are calculated tak-
ing into account the dependence of the chemical potential
��O on T and P in the gas phase of O2 �Eq. �2��. The total
maximal concentration of Hf vacancies at T=2500 K and
p�O2�=100 atm is 1.3�1017 cm−3 �x=4.5�10−6% �. Due to
the reduction of ��O with increasing temperature �see Eq.
�2��, c�VHf

Total� starts to decrease and c�VO
Total� strongly in-

creases beyond T=2500 K. At temperatures higher than T
=2800 K the concentration of oxygen vacancies becomes
higher that Hf vacancies. c�VHf

Mag� at room temperature
reaches a maximum of 6.4�1015 cm−3 �x=2.2�10−7% � at
Tgrowth=2450 K, being at least two orders of magnitude

FIG. 3. �Color online� Calculated formation enthalpies for iso-
lated anion and cation vacancies in HfO2 in different charge states.
Dashed lines denote Hf-rich–O-poor condition ���Hf=0� whereas
solid lines denote Hf-poor–O-rich condition ���Hf=−10.75 eV�
chemical potentials. Since there are two different crystallographic
sites for O in the HfO2 lattice, we show two lines: green lines
represent O type 1 and black lines O type 2. Solid dots represent the
transition energies between different charge states.

FIG. 4. �Color online� Calculated total vacancy concentrations
for Hf, c�VHf

Total�, and oxygen, c�VO
Total�, vacancy at growth condi-

tions defined by Eq. �2� with p�O2�=100 atm. c�VHf
Total� is the cal-

culated concentration of moment-carrying states.
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lower than c�VHf
Total�. This is due to either the ionization of

holes into the non-spin-polarized valence band �Tgrowth

�2000 K� or due to compensation by VO
2+ �Tgrowth

2000 K�.

C. Results for the range of VHf-VHf

magnetic interactions in HfO2

Table I gives the ferromagnetic stabilization energy
�EFM�d�=EAFM�d�−EFM�d� obtained by placing two VHf

0 de-
fects at separation d in a 96-atom supercell. We see that the
stabilization energy is rather strong for the first neighbors
and then it starts to decrease rapidly. At the first neighbor the
ferromagnetic stabilization energy is 205 meV and at the
“fifth” neighbor �see below, Sec. III D� the ferromagnetic
stabilization energy is 39 meV. We further considered the
moment-carrying VO

− state ��=1�B� of the oxygen vacancy
as a possible source of ferromagnetism. We find, however,
antiferromagnetic coupling—e.g., �EFM�d�=−74 meV for
close vacancy pairs with d=2.6 Å �sharing two cations�, fall-
ing off to �EFM�d�=−8 meV for more distant pairs with d
=6.4 Å. Thus, we conclude that oxygen vacancies are not
responsible for ferromagnetism.

D. Results for the percolation threshold for the cation
sublattice of the HfO2 Baddelayite structure

Figure 5 shows the calculated percolation threshold stair-
case and the cationic shell structure of HfO2. The cationic
shell structure is rather complex in the Baddelayite structure
in comparison with other oxides �e.g., CaO, TiO2�. The Bad-
delayite structure shows 16 shells at a distance less than 6 Å,
where some of then can be considered as “degenerate”; i.e.,
the distance between different shells is less than 0.25 Å. For
all the shells the numbers of neighbors is not larger than two
atoms. Due to the complexity of this structure, we have av-
eraged out some of the shells that fall in our “degenerate”
definition to carry out the calculation of the percolation
thresholds. From the percolation staircase we can see that the
minimal Hf vacancy concentration needed to establish per-
colation on the HfO2 lattice at d=d1NN is x=30.5%. This
minimal concentration falls when the distance of the interac-
tion between two Hf vacancies increases. We have calculated
the minimal concentration needed to establish percolation up
to the fifth shell, where this concentration is x=13.5% on the
HfO2 lattice. Thus, the calculated equilibrium Hf vacancy
concentration of charge states which lead to nonzero mag-
netic moments falls short by eight orders of magnitude from
the minimal percolation density. Thus, to establish ferromag-
netism in HfO2 requires an enhancing factor of defect con-
centrations relative to equilibrium of the order of 108.

IV. CONCLUSION

The theoretical prediction of ferromagnetic semiconduc-
tors or insulators requires the assessment of several condi-
tions, concerning the deviation from the ideal host lattice,
which need to be met simultaneously. We addressed these
conditions in a case study of ferromagnetism in HfO2 with-
out magnetic ions: �i� Which defects in which charge states
carry a magnetic moment and, thus, are candidates to pro-
mote ferromagnetism? �ii� What is the concentration of these
magnetic-moment-carrying states when considering real ma-
terials conditions—e.g., equilibrium growth under realistic
conditions and the formation of compensating defects which
may eliminate the magnetic charge states? �iii� What is the
range of interactions of the magnetic defects? �iv� What is
the concentration needed for magnetic percolation given the
range of interactions? Under realistic growth conditions, can
this concentration be achieved for the magnetic defects in
their moment-carrying charge state? In HfO2, we find that
both types of lattice vacancies do have specific charge states
in which they carry magnetic moments. A ferromagnetic pair
interaction exists, however, only in the case of VHf. The equi-
librium concentration of VHf in moment-carrying states is
much lower than the concentration needed for magnetic per-
colation.
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TABLE I. Calculated ferromagnetic stabilization energy
��EFM=EAFM−EFM� as a function of Hf vacancy pair distance �dij�.

Rn

dij

�Å�
�EFM

�meV�

R1aNN 3.425 205

R1bNN 3.437 66

R3NN 4.538 51

R5NN 5.937 39

FIG. 5. Percolation threshold and number of nearest neighbors
�NN� vs cation-cation distance. Due to the complexity of the Bad-
delayite structure, some shells are averaged out to a single one for
the calculation of the percolation thresholds �see Sec. III D�.
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APPENDIX: PERCOLATION STAIRCASES
IN COMMON LATTICES

Substitution of the host lattice sites by guest atoms X
generally leads to modification of the system properties. No-
table examples include impurity doping of semiconductors
leading to electrical conductivity,31,32 substitution of the non-
magnetic host by magnetic ions leading to ferromagnetism,33

the formation of bond length anomalies upon isovalent
alloying,34 and the appearance of new phonon bands upon
alloying light-mass impurities in heavy-mass host lattices.35

A special type of property change upon alloying or doping
occurs when the interaction between the guest atom X leads

to the onset of a macroscopic effect when the interacting
atoms form an infinite connected cluster.20 When this hap-
pens we say that the interaction percolates the system.
Whereas any amount of substitution of the host by X can lead
to some property change, the occurrence of “wall-to-wall”
percolation leads to the onset of collective effects, such as
the formation of metallic impurity bands,31,32 collective
ferromagnetism,33 bond length singularities,34 and phonon
anomalies and anomalous microhardness.36–40

The smallest concentration xperc sufficient for establishing
percolation is called the percolation threshold. Clearly, the
value of xperc

�,n depends on lattice type � �fcc, bcc, sc, etc.�
through its topological site connectivity and on the interac-
tion radius Rn within which an X atom “sees” another atom

FIG. 6. �Color online� Percolation threshold and number of
nearest neighbors �NN� vs cation-cation distance for the rocksalt
crystal structure �fcc� cation sublattice.

FIG. 7. �Color online� Percolation threshold and number of
nearest neighbors �NN� vs cation-cation distance for the La2O3

crystal structure �bcc� cation sublattice.

FIG. 8. �Color online� Percolation threshold and number of
nearest neighbors �NN� vs cation-cation distance for the CsCl crys-
tal structure �sc� cation sublattice.

FIG. 9. �Color online� Percolation threshold and number of
nearest neighbors �NN� vs cation-cation distance for the diamond
crystal structure.
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X. The interaction radius depends in turn on the physical
property being considered. While for mechanical properties34

Rn might be confined to the atomic radius of X �and thus
percolation exists when nearest neighbors form a continuous
cluster�, for magnetic X-X interactions Rn might be the range
of the Heisenberg exchange between the magnetic ions, and
it can extend to 5–15 neighbors.6,41,42

In the past xperc
�,n was calculated for many types of discrete

problems �site and bond percolation, directed percolation,
bootstrap percolation, etc.� for simple lattices such as �
=fcc, bcc, sc and mostly for n=first nearest neighbors.43,44

Two types of methods for estimating xperc have been used:
analytic �series expansion, � expansion, etc.� and Monte
Carlo. We will use the Monte Carlo method since it can be
applied it to arbitrary lattices with arbitrary interaction dis-
tance. We restrict this study to an analysis of percolation and
will not analyze other critical properties.

Method of calculation. Consider guest atoms X that ran-
domly occupy the sites of an infinite periodic lattice � with
occupation probability �concentration� x. Two atoms X inter-
act if they are separated by less than45 Rn. Our model is a
generalization of the classical site percolation model20 �in
which Rn is just the nearest-neighbor distance� and could
serve to describe, for example, ferromagnetism in dilute
magnetic semiconductors,33 in which the range Rn of ex-
change interactions between the magnetic ions is much larger
than the nearest-neighbor distance.6,41,42 On a given lattice �,
we find the percolation threshold function xperc

�,n by a finite-
size analysis of Monte Carlo simulation results. Since xperc

�,n

may change its value only at the discrete values of Rn
=R1NN,R2NN, . . . ,RnNN, . . . �where RnNN is the nth nearest-
neighbor separation on the lattice ��, we begin by enumerat-
ing RnNN up to a given maximum separation. For each RnNN
and a given value of linear dimension L of a finite-size lattice
� �the final results are not sensitive to the precise definition
of L�, we build an appropriate neighbor table and use it to

identify46 whether an arbitrary configuration of X atoms con-
tains a spanning cluster �that is, a cluster that crosses the
system from one side to an opposite side�. Then, for a trial
occupation probability x, we find the spanning probability
��x ,L�. One way to implement a finite-size scaling analysis
is to define an “effective” percolation threshold xeff�L ,�0� by
��x ,L�=�0 for an arbitrary fixed value of �0�1/2. Then,
one can identify xperc by plotting xeff vs L−1/� �where � is the
so-called correlation-length critical exponent20� and using the
scaling relation20

xeff�L,�0� − xperc � L−1/�. �A1�

Here, we use a different version of this analysis by noting
that if one selects as the value of �0 the infinite system
spanning probability ��, then �assuming 0����1�, up to
the same higher-order terms as in Eq. �A1�, the true and the
“effective” percolation thresholds are equal: xeff�L ,���
�xperc=const, and

��x = xperc,L� = �� = const. �A2�

Thus, we begin with some trial occupation probability x
and search for the value of x at which ��x ,L� becomes size
independent.47,48 This allows us to gradually increase the sta-
tistical precision �number of Monte Carlo trials�, using the
highest precision only as necessary for the values of x very
close to xperc.

The above discussion pertains to percolation on one sub-
lattice. For example, the cation sublattice of zinc-blende
GaAs and the cation sublattice of rocksalt CaO both exhibit
fcc percolation. The results for xperc

�,n vs Rn of such single
sublattices are shown in Figs. 6–10. We can consider also a
case of percolation on more than a single sublattice. For
example, at temperatures where the A-type and B-type lat-
tices of A1−xBx fcc alloy become completely random, an im-
purity X can substitute interchangeably on either site. For

such cases in which a parent multisite lattice �̃ can be sub-
divided into N�1 periodic sublattices �1 , . . . ,�N and impu-

FIG. 10. �Color online� Percolation threshold and number of
nearest neighbors �NN� vs cation-cation distance for the anatase
crystal structure cation sublattice.

FIG. 11. �Color online� Comparison between the percolation
thresholds of zinc blende versus diamond.
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rities occupy only a subset �=�i� ¯ �� j of those sublat-
tices �where �i , . . . , j�� �1, . . . ,N��. This corresponds to an
impurity atom X substituting for only a particular constituent
in an ordered compound, whereas different choices of � for a

fixed �̃ correspond to either different types of ordering or to
order-disorder transitions. The numerical procedure for find-

ing the percolation threshold remains unchanged; however,
we will define x̃perc as the average concentration of impurities

with respect to the parent lattice �̃, so as to be able to com-
pare the results for different types of ordering of the same
amount of impurity atoms. The results for such pairs are
shown in Fig. 11.

1 I. S. Elfimov, S. Yunoki, and G. A. Sawatzky, Phys. Rev. Lett.
89, 216403 �2002�.

2 M. Venkatesan, C. Fitzgerald, and J. Coey, Nature �London� 430,
630 �2004�.

3 C. Das Pemmaraju and S. Sanvito, Phys. Rev. Lett. 94, 217205
�2005�.

4 J. Coey, M. Venkatesan, and C. Fitzgerald, Nat. Mater. 4, 173
�2005�.

5 J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, and
L. S. Dorneles, Phys. Rev. B 72, 024450 �2005�.

6 J. Osorio-Guillén, S. Lany, S. V. Barabash, and A. Zunger, Phys.
Rev. Lett. 96, 107203 �2006�.

7 G. Bouzerar and T. Ziman, Phys. Rev. Lett. 96, 207602 �2006�.
8 H. Weng and J. Dong, Phys. Rev. B 73, 132410 �2006�.
9 A. N. Andriotis, M. Menon, R. M. Sheetz, and L. Chernozaton-

skii, Phys. Rev. Lett. 90, 026801 �2003�.
10 A. Andriotis, R. Sheetz, E. Richter, and M. Menon, Europhys.

Lett. 72, 658 �2005�.
11 A. Andriotis, M. Menon, R. Sheetz, and E. Richter, Carbon-

Based Magnetism �Elsevier, Amsterdam, 2006�, p. 483.
12 N. H. Hong, J. Sakai, N. Poirot, and V. Brizé, Phys. Rev. B 73,

132404 �2006�.
13 A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C.

N. R. Rao, Phys. Rev. B 74, 161306�R� �2006�.
14 G. Watkins, Radiation Damage in Semiconductors �Dunod, Paris,

1964�.
15 A. Stoneham, Theory of Defects in Solids �Clarendon, Oxford,

1975�.
16 M. Abraham, Y. Chen, L. Boatner, and R. Reynolds, Solid State

Commun. 16, 1209 �1975�.
17 B. Rose and L. Halliburton, J. Phys. C 7, 3981 �1974�.
18 T. Kaspar et al., Phys. Rev. B 73, 155327 �2006�.
19 L.-H. Ye and A. J. Freeman, Phys. Rev. B 73, 081304�R� �2006�.
20 D. Stauffer and A. Aharony, Introduction to Percolation Theory,

2nd ed. �Taylor and Francis, London, 1992�.
21 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 �1999�.
22 C. Persson, Y.-J. Zhao, S. Lany, and A. Zunger, Phys. Rev. B 72,

035211 �2005�.
23 R. Weast and M. Astle, CRC Handbook of Chemistry and Phys-

ics, 60th ed. �CRC Press, Boca Raton, FL, 1979�.
24 J. Ihm, A. Zunger, and M. Cohen, J. Phys. C 12, 4409 �1979�.
25 G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 �1995�.
26 A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen,

Phys. Rev. B 65, 174117 �2002�.
27 W. Scopel, A. da Silva, W. Orellana, and A. Fazzio, Appl. Phys.

Lett. 84, 1492 �2004�.
28 J. Gavartin, D. M. nos Ramo, A. Shluger, G. Bersuker, and B.

Lee, Appl. Phys. Lett. 89, 082908 �2006�.
29 Y. Feng, A. Kim, and M. Li, Appl. Phys. Lett. 87, 062105 �2005�.
30 K. Xiong, J. Robertson, M. Gibson, and S. Clark, Appl. Phys.

Lett. 87, 183505 �2005�.
31 N. Mott, Metal-insulator Transitions �Taylor and Francis, Lon-

don, 1974�.
32 E. Schubert, Doping in III-V Semiconductors �Cambridge Univer-

sity Press, Cambridge, England, 1993�.
33 T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A. MacDonald,

Rev. Mod. Phys. 78, 809 �2006�.
34 L. Bellaiche, S.-H. Wei, and A. Zunger, Phys. Rev. B 56, 13872

�1997�.
35 O. Pages, T. Tite, K. Kim, P. Graf, O. Maksimov, and M. Tama-

rgo, J. Phys.: Condens. Matter 18, 577 �2006�.
36 E. Rogacheva, Inorg. Chem. 33, 1130 �1997�.
37 E. Rogacheva, A. Sologubenko, and I. Krivul’kin, Inorg. Chem.

34, 545 �1998�.
38 E. Rogacheva, T. Tavrina, and I. Krivul’kin, Inorg. Chem. 35,

236 �1999�.
39 E. Rogacheva, J. Phys. Chem. Solids 64, 1579 �2003�.
40 E. Rogacheva, J. Phys. Chem. Solids 66, 2104 �2005�.
41 A. Franceschetti, S. V. Dudiy, S. V. Barabash, A. Zunger, J. Xu,

and M. van Schilfgaarde, Phys. Rev. Lett. 97, 047202 �2006�.
42 L. Bergqvist, O. Eriksson, J. Kudrnovský, V. Drchal, P. Ko-

rzhavyi, and I. Turek, Phys. Rev. Lett. 93, 137202 �2004�.
43 B. I. Halperin, S. Feng, and P. N. Sen, Phys. Rev. Lett. 54, 2391

�1985�.
44 S. Feng, B. I. Halperin, and P. N. Sen, Phys. Rev. B 35, 197

�1987�.
45 Note that this definition differs from the one in the model of

“overlapping spheres” of radius R. In the latter, two spheres
“interact” whenever their separation is less than 2R.

46 J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438 �1976�.
47 Note that the L→� value of the spanning probability �� may

differ depending on the details of the calculation setup such as
the relative shape of the lattice unit cell and the Monte Carlo
box; however, the resulting xperc is insensitive to those details.

48 J. Cardy, J. Phys. A 25, L201 �1992�.

NONSTOICHIOMETRY AS A SOURCE OF MAGNETISM IN… PHYSICAL REVIEW B 75, 184421 �2007�

184421-9


