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Abstract

In this paper, investment cost asymmetry is introduced in order to test wheter this kind of asymmetry
can account for asymmetries in business cycles. By using a smooth transition function, asymmetric
investment cost is modeled and introduced in a canonical RBC model. Simulations of the model with
Perturbations Method (PM) are very close to simulations through Parameterized Expectations Algorithm
(PEA), which allows the use of the former for the sake of time reduction and computational costs.
Both symmetric and asymmetric models were simulated and compared. Deterministic and stochastic
impulse-response excersices revealed that it is possible to adequately reproduce asymmetric business
cycles by modeling asymmetric investment costs. Simulations also showed that higher order moments
are insu�cient to detect asymmetries. Instead, methods such as Generalized Impulse Response Analysis
(GIRA) and Nonlinear Econometrics prove to be more e�cient diagnostic tools.

1 Introduction

Traditional analyses on economic �uctuations have achieved certain consensus regarding business cycle causes
with somewhat predictive and explicative power. Yet uncertain remain some relevant facts such as the
one of the asymmetric behavior present in the GDP components along the business cycles. Asymmetries
and nonlinearities can be seen through stylized facts, time varying amplitude in cyclical components of
macroeconomic variables for instance. A simple way to easily identify such asymmetries is by calculating
higher order moments for the distribution of cyclical components.

Overall, a very important challenge for economic models lies on data particularities, namely nonlinearities
and asymmetries, particularly for the case of DSGE models. Despite being highly nonlinear, they seem to have
symmetric behavior and symmetric transmission mechanisms as well as symmetric technology shocks. Models
with these features are unable to adequately reproduce third and fourth moments of the empirical distributions
of cyclical components of macroeconomic variables (Valderrama, 2007). On the basis of empirical analysis,
business cycles asymmetries have been treated by Nonlinear Econometrics, and mostly through Switching
Regime Econometrics. For example, Neftci (1984) uses Swithching Markov Estimation in order to study
whether correlations of economic variables di�er throughout the phases of business cycles. Supported on
basic intuition, Neftci states that if a times series is symmetric along the business cycles and two regimes or
states exist, the probability of remaining in state 1 is the same of remaining in state 2. Based on maximum
likelihood and a Bayesian re�nement of this, Neftci discovered that for unemployment series of the US economy
the probability of remaining in a consecutive decrease state is higher than the probability of remaining in a
consecutive increase state.

∗This is a �rst paper for my PH.D thesis intended to explain asymmetries in the business cycle. In am very thankful to
my advisor Professor Fernando Jaramillo for his guidance and to Universidad de Antioquia and Colciencias for �nancing my
Ph.D. studies. I would like to thank comments and sugestions by Alejandro Torres, Remberto Rhenals, colleagues attending the
semimar SER at Universidad de Antioquia, Macro Lunch at Banco de la República, Jaír Ojeda. All errors and omissions are
my own.
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Supported on concepts developed by Sichel (1993) and on the study by Clements and Krolzig (2003),
Belaire-Franch and Contreras (2003) attempted to detect and estimate three kinds of asymmetries by means
of a parametric test: deepness, stepness, and sharpness. Under the supposal that a time series is generated
by a Markov Switching-Autorresive model with M regimes in the mean (MS-AR(p)), it was found that most
of the countries sampled have certain asymmetry, except for the US and Germany. In turn, Gefang and
Strachan (2010) employed a smooth transition VAR to measure the impact of international business cycles
on the UK economy. The estimations were performed on the GDP growth rate. The countries involved in the
analysis were the US, France, and Germany. It was found that the UK economy is in�uenced asymmetrically
by other countries in the sample.

On DSGE modeling, there are Pytelarczyk (2005), Eo (2009), Belaygoned and Michel (2006), and Davig
and Leeper (2005). These works have developed DSGE models with ad hoc switching regimes on the lin-
earized dynamic equations of the model. Parameter estimations are used to perform impulse-response exer-
cises. Other works such as Tristani (2008), Karagikli, Matheson, Smith and Valey (2007), and Bullard and
Singh (2009) have developed DSGE models that introduce exogenous regime switching disturbances. Recent
applications of Bayesian Econometrics have contributed to estimate parameters for DSGE models that in-
clude explicit regime switchings for the impulse-response matrix of coe�cients as well as for time process of
disturbances.

Modern Econometrics and, up to some extent, DSGE modeling have been concerned with nonlinearities
and asymmetry of data generating processes. However, there is a further task for economists regarding the
construction of models that take into account asymmetries as the result of endogenous optimal decision-
making or, at least, include them in the basic behavioral equations of the models. Thus, in spite of the
sophisticated tools used by the the authors aforementioned, a question remains unanswered: Where do
asymmetries come from? The answer to this question might lie in modeling the behavior of �rms and agents,
considering that during booms they may behave di�erently than in recessions. That is to say, it is necessary
to study the transmision mechanisms and behaviors that cause di�erences between phases of business cycles.

Asymmetries in production and productive factor utilization can be found in the literature. Nonetheless,
some of them present controversial �ndings. Partial equilibrium models of representative �rms and convex
(symmetric) adjustment functions have been criticized as they ignore diverse features of �rms, idiosincratic
shocks, and microeconomic rigidities. These aspects have drawn more attention with their possible links to
aggregate investment dynamics: �xed adjustment costs, irreversibilities, (S,s) dynamics, and lumpy invest-
ment. In this sense, Doms and Dunne (1998) found in a sample of �rms that they adjust capital in lumpy
ways, and �xed costs explain a signi�cative part of �rms' total investment expenditure, aggregate investment
itself. A similar result has been obtained by Caballero and Engel (1994) through the estimation of a nonlinear
model. Caballero and Engel (1991) with an extension of a (S,s) model also found that lumpy investment
a�ects aggregate investment dynamics, thus showing analytically that the cross section distribution of �rms'
investment converges towards a long-run distribution. Caballero, Engel, and Haltiwanger (1995) also observe
the asynchronicities of �rms. By joining micro elements and aggregation, they deduce an inverse aggregate
investment equation. Their estimations indicate that investment elasticities of shocks vary throughout time,
which means that �rms are willing to adjust capital when facing a high scarcity of it. With respect to the
existence of micro rigidities, Cooper and Haltiwanger (2000) used an indirect inference method for a sample of
�rms.They found evidence supporting the joint existence of convex and non-convex costs, and irreversibilities.

In opposite direction, there are DSGE with micro rigidities, which have not encountered relative consensus
of those works in partial equilibrium. Veracierto (2002) concludes that investment irreversibilities generate
a small di�erence compared to a canonical RBC model. In a similar fashion, Thomas (2002) claims that
lumpy investment does not have signi�cative e�ects on aggregate investment. Khan and Thomas (2003)
discovered that when �xing prices, it is possible to produce non-linear dynamics in aggregate investment,
which then disappears by allowing price adjustment. Di�erently, Bachman, Caballero and Engel (2006a),
and Bachman, Caballero and Engel (2006b) pointed out two existing smoothing mechanisms: pre-general
equilibrium smoothing (which explains 60% of investment variance) and general equilibrium smoothing (which
explains the remaining 40%). They have also demonstrated that the particular speci�cation used by Khan
and Thomas (2003) involves a small partial equilibrium e�ect which is reproduced in general equilibrium. A
more realistic speci�cation entails a big partial equilibrium e�ect that, as a consequence, implies an important
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aggregate e�ect on a general equilibrium model.
Since consensus between those studies has been unmet, this paper addresses a di�erent and more �aggre-

gate� modeling strategy. In this paper, asymmetric investment cost is introduced in order to test whether
this asymmetry can account for asymmetries in business cycles. Among some works on asymmetries in factor
demand and factor adjustment costs, an excellent contribution in this line, and roughly close to the present
work, has been made by Palm and Pfann (1997). Their work addresses sources of asymmetry in production
factors dynamics1.They have indicated that linear-quadratic models and the implications of their simmetry
is unable to pass statistical tests. Although they are not interested in the study of business cycles in a general
equilibrium framework, their proposal poses two questions also addressed in the present paper: What are
the sources of the asymmetries? and Why do all tests for the underlying structures of adjustment costs are
important for the aggregate production factors dynamics? 2. Their model for asymmetric production factor
dynamics is built on the assumption that "(...) �rms, when making contingency plans on the use of factor
imputs, account for di�erences in adjustment costs during di�erent phases of business cycles" .3 A general-
ization of adjustment functions is proposed for both capital and labor. Given speci�c functional forms for
production functions and adjustment costs (which nests the symmetric cost function), the model is estimated
for �rst order conditions of pro�t maximization, and the null of symmetric cost function is rejected. Next, the
estimated model is solved and simulated by means of Parameterized Expectations Algorithm (PEA) given
the real prices of factors and productivity shocks. The aim of the simulation is to test whether the existence
of external nonlinearity has some impact on dynamic factor input asymmetry of data. External nonlinearity
is introduced by modeling real prices of factors as a nonlinear (quadratic) bivariate AR(1,1) process. A linear
bivariate AR(1,1) is also modeled to serve the purpose of control framework. The main conclusion reveals
that 50% of the dynamic factor demand asymmetry in the manufacturing sector of the Netherlands is ex-
plained by behavioral or internal asymmetries caused by asymmetric adjustment costs, while the remaining
50% is caused by external nonlinearities in real price factors.

Other studies have dealt with asymmetries in factor adjustment costs. Jaramillo et al. (1993) have
worked on asymmetries for labor of the Italian industry, with �ring costs being di�erent to hiring costs. Their
hypothesis was tested by a general model that nested symmetric costs, thus rejecting the null of symmetry.
Pfann and Palm (1993) make a distinction between skilled and unskilled labor 4 for manufacturing sectors
in the UK and the Netherlands. They found that data rejected the null of symmetric costs. Moreover, their
results revealed a very interesting fact: hiring costs are higher than �ring costs for unskilled labor, whereas
the opposite is also true for skilled labor. About adjusting labor costs, Hamermesh and Pfann (1995) used a
generalized cost function including gross and net changes in labor. Their estimations have revealed that this
modeling is necessary to track down correctly labor demand dynamics of the US manufacturing sector.

2 A simple model with asymmetric investment costs

Let us suppose a hypothetical economy with neither technoloy nor population growth and cost of investment
being asymmetric, which implies a greater disinvestment cost than investment. In the symmetric case, the
investment cost assumes the very traditional form ψ

2 (∆k− in)2, being in net investment in steady state and
∆k = k+1−k net investment. When ∆k = in, there is not any investment cost, i.e. the cost function reaches
a threshold at that point. It is important to bear in mind that in an economy with neither population growth
nor technological progress, net investment equals zero in the steady state.

Furthermore, it is known that the investment cost around that point, for instance ∆k = ε or ∆k = −ε
( ε > 0), is not the same in such a case where the economy is in recession, ∆k = −ε, and when it is in
expansion, ∆k = ε. Thus, if we suppose that decreasing the investment is more costly than increasing it, the
investment cost in each state is:

1This is exactly the title of their paper
2I quote textually from Palm and Pfann (1997) pag. 362
3I quote textually from Palm and Pfann (1997) pag. 364
4More preciselly, they distinguish production and non-production workers.
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Figure 1: Smooth transition function

C(∆k) =

{
ψ1

2 (k+1 − k − in)2, if ∆k < 0
ψ2

2 (k+1 − k − in)2, if ∆k > 0

}
, ψ1 > ψ2 (1)

Let us suppose φt a smooth transition function between the states. If we de�ne such transition function
as an indicator function (or as a probability function), the regime switching cost function will be5:

C(∆k) =
ψ2

2
(k+1 − k − in)2 + φt(

ψ1

2
(k+1 − k − in)2 − ψ2

2
(k+1 − k − in)2) (2)

where φt is a logistic one:

φt = b/(1 + exp(γ(k+1 − k − in))) (3)

b =

{
1, if asymmetric beharior
0, if symmetric behavior

}
(4)

If γ → ∞, φ has an almost instanteneuos change,if γ → 0, φ → 0.5. if kt+1 − kt − in < 0, φt → 1, if
kt+1 − kt − in > 0, φt → 0. �gure 1 shows the transition function for γ = 10, 5, 2.5, and �gure 2 shows
symmetric and asymmetric (black line) cost functions for ψ2 = 1 (red line), ψ1 = 4 (green line) and γ = 0.5.

Thus, if we rewrite the capital cost adjustment we have:

C(∆k) = ϕt = ϕ2t + φt (ϕ1t − ϕ2t)

being

ϕ1t =
ψ1

2

(
kt+1 − kt − in

)2
(5)

ϕ2t =
ψ2

2

(
kt+1 − kt − in

)2
(6)

The marginal cost of adjusting capital in periods t and t+ 1 respectively will be

∂ϕt
∂kt+1

=
∂ϕ2t

∂kt+1
+

∂φt
∂kt+1

(ϕ1t − ϕ2t) + φt

(
∂ϕ1t

∂kt+1
− ∂ϕ2t

∂kt+1

)
(7)

∂ϕt+1

∂kt+1
=
∂ϕ2t+1

∂kt+1
+
∂φt+1

∂kt+1
(ϕ1t+1 − ϕ2t+1) + φt+1

(
∂ϕ1t+1

∂kt+1
− ∂ϕ2t+1

∂kt+1

)
(8)

5Pfann and Palm (1997) proppose a quadratic-exponential function to model asymmeties in cost functions C(∆k) =
exp(βk∆k) − 1 − βk∆k + 1

2
γk(β∆k)2 and C(∆n) = exp(βn∆n) − 1 − βn∆n+ 1

2
γn(β∆n)2 for capital and labor respectively.
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Figure 2: Symmetric and asymmetric adjustment cost functions

Suppose that capital evolves as:6

kt+1 = (1− δ)k + y − c− C(∆k) (9)

yt = Atk
α
t n

1−α
t (10)

1 = nt + lt (11)

In other words, we assume neither population nor technological growth. The problem of the family, sup-
posing a central planner perspective, is the standard one: choose consumption, leisure, and capital sequences
to maximize the intertemporal utility function.

U(c) = E0

∞∑
t=0

βt

[
cηt l

1−η
t

]1−θ
1− θ

(12)

Subject to equations (2), (3) and (4). The lagrangean function for this problem is:

L = E0


∞∑
t=0

βt

[
cηt l

1−η
t

]1−θ
1− θ

+
∞∑
t=0

λtβ
t [(1− δ)kt + yt − ct − C(it)− kt+1]

 (13)

First order conditions are:

∂L
δc

=
[
cηt l

1−η
t

]−θ
ηcη−1
t l1−ηt − λt = 0 (14)

∂L
δkt+1

= −λt − λt
∂C(∆kt+1)

∂kt+1
+ βEt

{
λt+1

[
(1− δ) + f ′(kt+1)− ∂C(∆kt+2)

∂kt+1

]}
= 0 (15)

∂L
δnt

= −
[
cηt l

1−η
t

]−θ
(1− η)cηt l

−η
t + λt(1− α)Atk

α
t n
−α
t = 0 (16)

∂L
δλt

= −k+1 + (1− δ)k + y − i− C(∆kt+1) = 0 (17)

6This model is as simple as possible, the stardard way to model costs of investment is to includ them into the entertemporal
pro�t function of �rms and then solve for the descentralised equilibrium. However altough is possible to do this so, is preferable
to �rst solve and simulate this simple model and introduce more complex elements later.
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By using the functional forms we have that:[
cηt l

1−η
t

]−θ
cη−1
t l1−ηt

{
1 +

∂C(∆kt+1)

∂kt+1

}
− βEt

{[
cηt+1l

1−η
t+1

]−θ
cη−1
t+1 l

1−η
t+1

[
(1− δ) + f ′(kt+1)− ∂C(∆kt+2)

∂kt+1

]}
= 0 (18)

−
[
cηt l

1−η
t

]−θ
(1− η)cηt l

−η
t +

[
cηt l

1−η
t

]−θ
ηcη−1
t l1−ηt (1− α)Atk

α
t n
−α
t = 0 (19)

k+1 − (1− δ)k − y + c+
ψ2

2
(k+1 − k − in)2

+ φt(
ψ1

2
(k+1 − k − in)2 − ψ2

2
(k+1 − k − in)2) = 0 (20)

As we can see (18) is the Euler equation for consumption which seems to be quite similar to the traditional
one. However, by taking into account that ∂C(∆kt+1)

∂kt+1
and ∂C(∆kt+2)

∂kt+1
are no longer linear expressions and, in

fact, depend on the sign of ∆k, if we replace the expressions corresponding to these derivatives within the
Euler equation for consumption, we will have:

0 = η
[
cηt l

1−η
t

]−θ
cη−1
t l1−ηt

{
1 +

(
∂ϕ2t

∂kt+1
+

∂φt
∂kt+1

(ϕ1t − ϕ2t) + φt

(
∂ϕ1t

∂kt+1
− ∂ϕ2t

∂kt+1

))}
(21)

− βEt

{
η
[
cηt+1l

1−η
t+1

]−θ
cη−1
t+1 l

1−η
t+1

[
(1− δ) + f ′(kt+1)−

( ∂ϕ2t+1

∂kt+1
+ ∂φt+1

∂kt+1
(ϕ1t+1 − ϕ2t+1)

+φt+1

(
∂ϕ1t+1

∂kt+1
− ∂ϕ2t+1

∂kt+1

) )]}
In this expression, it is possible to see that the transition probability between regimes φt does appear on

both sides of the equation for t and t+ 1, and so does the change on this probability in interaction with the
di�erence of adjustment costs ∂φt

∂kt+1
(ϕ1t − ϕ2t)

7 . In this line of reasoning, the equation for intratemporal
optimality condition in the cannonical RBC will also be misspeci�ed. By transforming the equivalent of[
cηt l

1−η
t

]−θ
(1− η)cηt l

−η
t from(18) into (19) we will have:

[
cηt l

1−η
t

]−θ
(1− η)cηt l

−η
t

= η


β
{

1 +
(
∂ϕ2t

∂kt+1
+ ∂φt

∂kt+1
(ϕ1t − ϕ2t) + φt

(
∂ϕ1t

∂kt+1
− ∂ϕ2t

∂kt+1

))}−1

Et

{[
cηt+1l

1−η
t+1

]−θ
cη−1
t+1 l

1−η
t+1

[
(1− δ) + f ′(kt+1)−

( ∂ϕ2t+1

∂kt+1
+ ∂φt+1

∂kt+1
(ϕ1t+1 − ϕ2t+1)

+φt+1

(
∂ϕ1t+1

∂kt+1
− ∂ϕ2t+1

∂kt+1

) )]}


× (1− α)Atk
α
t n
−α
t (22)

Thus (22) shows that regime change probability and the interaction between probability derivative and
adjustment costs di�erence also induce asymmetries.

3 Dynamics, calibration and simulation

Since the Euler equation of this model is nonlinear, as a regular DSGE's Euler equation, and asymmetric, it is
necessary to use numerical methods to simulate it and solve it. Two alternative methods are addressed here-
after to show the inconvenience of using traditional log-linearization: Parameterized Expectations Approach

7If we admit that including,\textit{ad hoc},transition probabilities matrices into the dynamic systemofacanonical RBC model,

there is still remaining a mispeci�cation error, which is the expression related ∂φt
∂kt+1

(ϕ1t − ϕ2t)
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(PEA) and Perturbations Method (PM). PEA was formalized by Marcet and Marshall (1994) and is a global
method consisting of approaching the expectations equations8. PM is a local procedure based on k-order
Taylor approximations around a particular point (the steady state for the case of DSGE and RBC models).
A very useful and powerful tool for this method is Dynare, which allows up to third-order approximations9.

3.1 Loglinearisation

Lets suppose that η = 0 and that nt = 1, we will rewrite the system as:

ϕ1t =
ψ1

2

(
kt+1 − kt − in

)2
(23)

ϕ2t =
ψ2

2

(
kt+1 − kt − in

)2
(24)

C(∆k) = ϕt = ϕ2t + φt (ϕ1t − ϕ2t) (25)

k+1 = (1− δ)k + y − c− C(∆k) (26)

yt = f(kt) = Atk
α
t (27)

lnAt = ρ lnAt−1 + εt,ε v (0, σ2
ε) (28)

�rst order conditions are:
c−θt = λt (29)

λt + λt
∂ϕt
∂kt+1

= λt+1β

[
(1− δ) + f ′(kt+1)− ∂ϕt+1

∂kt+1

]
(30)

∂ϕt
∂kt+1

=
∂ϕ2t

∂kt+1
+

∂φt
∂kt+1

(ϕ1t − ϕ2t) + φt

(
∂ϕ1t

∂kt+1
− ∂ϕ2t

∂kt+1

)
(31)

∂ϕt+1

∂kt+1
=
∂ϕ2t+1

∂kt+1
+
∂φt+1

∂kt+1
(ϕ1t+1 − ϕ2t+1) + φt+1

(
∂ϕ1t+1

∂kt+1
− ∂ϕ2t+1

∂kt+1

)
(32)

Now, we consider the �rst order Taylor approximation around the log of the steady state for each regime,
this is for ∆k > 0 and for ∆k < 0:

In the �rst regime or during a recession as∆k < 0, the log-linearized model is:

−θĉt = λ̂t (33)

kk̂t+1 = (1− δ)kk̂t + yŷt − cĉt − ϕϕt (34)

yŷt = AkαÂt + αAkk̂αt (35)

ϕϕ̂t = ϕ1ϕ̂1t (36)

ϕ1ϕ̂1t = ψ1 (kt+1 − kt) kk̂t+1 − ψ1 (kt+1 − kt) kk̂t (37)

8An excelente and didactic reference about this method and its practical applications is Marcet and Lorenzoni (2001).
9The package also includes a Dynare++ module which allows up to seven-order approximation.
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We will now take advantage of the fact that if we have a function g(x), its log-linearisation becomes
g(Xt) ' g(X)(1 + ηxt), being xt = ln(Xt/X), η = ∂f(X)

∂X
X

f(X) .

λλ̂t + λ
∂ϕ(x)

∂kt+1

(
1 + η11k̂t+1

)
+ λ

∂ϕt(x)

∂kt+1

(
1 + η21k̂t+1

)
(38)

= βλλ̂t+1

[
(1− δ) + f ′(kt+1)− ∂ϕt+1(x)

∂kt+1

]

+ βλ

 f ′(k)
(

1 + η31k̂t+1

)
− ∂ϕt+1(x)

∂kt+1

(
1 + η41k̂t+1

)
−∂ϕt+1(x)

∂kt+1

(
1 + η51k̂t+2

) + βλf ′(k)
(

1 + η61Ât+1

)

η11 =
∂2ϕt

∂kt+1∂kt

kt
∂ϕt(x)
∂kt+1

, η21 =
∂2ϕt

∂kt+1∂kt+1

kt+1

∂ϕt(x)
∂kt+1

, η31 =
∂2f(kt+1)

∂kt+1∂kt+1

kt+1

f ′(kt+1)
,

η41 =
∂2ϕt+1

∂kt+1∂kt+1

kt+1

∂ϕt+1(x)
∂kt+1

, η51 =
∂2ϕt

∂kt+1∂kt+2

kt+2

∂ϕt(x)
∂kt+1

, η61
∂2f(kt+1)

∂kt+1∂At+1

At+1

f ′(kt+1)

Thus, for the previous equations (evaluated in the steady state which implies kt+1 = kt = k̄,) we have:

−θĉt = λ̂t (39)

k̄k̂t+1 = (1− δ)k̂t + ȳŷt − c̄ĉt (40)

λ̂t = βλ̂t+1

[
(1− δ) + f ′(k̄)

]
+ βf ′(k̄)

(
1 + η31k̂t+1

)
+ βλf ′(k̄)

(
1 + η61Ât+1

)
(41)

ȳŷt = Āk̄Ât + αĀk̄αk̂t (42)

lnAt = ρ lnAt−1 + εt, εt v (0, σ2
ε) (43)

Notice that this linearised model for the recession regime is formed by linear equations.
In the second regime or during a boom as ∆k > 0, the linearised model becomes:

−θĉt = λ̂t (44)

kk̂t+1 = (1− δ)kk̂t + yŷt − cĉt − ϕϕt (45)

yŷt = AkαÂt + αAkk̂αt (46)

ϕϕ̂t = ϕ2ϕ̂2t (47)

ϕ2ϕ̂2t = ψ2 (kt+1 − kt) kk̂t+1 − ψ2 (kt+1 − kt) kk̂t (48)

Because this approximation is evaluated in the steady state, which impplies kt+1 = kt = k̄,

λλ̂t + λ
∂ϕ(x)

∂kt+1

(
1 + η12k̂t+1

)
+ λ

∂ϕt(x)

∂kt+1

(
1 + η22k̂t+1

)
(49)

= βλλ̂t+1

[
(1− δ) + f ′(kt+1)− ∂ϕt+1(x)

∂kt+1

]

+ βλ

 f ′(k)
(

1 + η32k̂t+1

)
− ∂ϕt+1(x)

∂kt+1

(
1 + η42k̂t+1

)
−∂ϕt+1(x)

∂kt+1

(
1 + η52k̂t+2

) + βλf ′(k)
(

1 + η62Ât+1

)
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η12 =
∂2ϕt

∂kt+1∂kt

kt
∂ϕt(x)
∂kt+1

, η22 =
∂2ϕt

∂kt+1∂kt+1

kt+1

∂ϕt(x)
∂kt+1

, η32 =
∂2f(kt+1)

∂kt+1∂kt+1

kt+1

f ′(kt+1)
,

η42 =
∂2ϕt+1

∂kt+1∂kt+1

kt+1

∂ϕt+1(x)
∂kt+1

, η52 =
∂2ϕt

∂kt+1∂kt+2

kt+2

∂ϕt(x)
∂kt+1

, η62
∂2f(kt+1)

∂kt+1∂At+1

At+1

f ′(kt+1)

Thus, for the previous equation (evaluated in the steady state implying kt+1 = kt = k̄), we have:

−θĉt = λ̂t (50)

k̄k̂t+1 = (1− δ)k̂t + ȳŷt − c̄ĉt (51)

λ̂t = βλ̂t+1

[
(1− δ) + f ′(k̄)

]
+ βf ′(k̄)

(
1 + η32k̂t+1

)
+ βλf ′(k̄)

(
1 + η62Ât+1

)
(52)

ȳŷt = Āk̄Ât + αĀk̄αk̂t (53)

lnAt = ρ lnAt−1 + εt, εt v (0, σ2
ε) (54)

As seen, even for the recession regime, the linearization of the model in the boom regime leads us evidently
to a set of linear equations with di�erent coe�cients. Then, in order to simulate the full model including the
possibility of moving from one regime to the other, it would be necessary to model a transition probability
matrix for all the equations in the system, which has the incovenience of being ad hoc. Therefore, it imposes
transitions on the dynamics of all the equations, which is not modeled as the model's internal mechanisms
of transmision. This makes it asymmetric by itself (Belaygoned & Michel, 2006; Davig & Leeper, 2005; Eo,
2009; and Pytelarczyk, 2005).

3.2 PEA algorithm

Now, PEA will be used in order to preserve the nonlinear features of the model.10 With the goal of mapping
the general form of PEA, the Euler equation and the capital transition equations are writen as in (18), (19)
and (20), these conform the system as:

g(Et [Φ(zt+1, zt)] , zt+1, zt, ut) = 0

in this seting,

Φ(zt+1, zt) = l
−(1−η)(1−θ)
t Et

{[
cηt+1l

1−η
t+1

]−θ
cη−1
t+1 l

1−η
t+1

[
(1− δ) + f ′(kt+1)− ∂C(∆kt+1)

∂kt+1

]}
×
{

1 +
∂C(∆kt)

∂kt+1

}−1

thus
c
η(1−θ)−1
t = βΦ(zt+1, zt)

zt = (ct, kt, kt−1, At)

zt+1 = (ct+1, kt+1, kt+2, At+1)

10convergence results, and algorithm basics are found in Marcet and Marshall (1994) and Marcet and Lorenzoni (1998).
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xt = (kt−1, At)

The complete PEA algorith is as follows:

1. According to Marcet and Marshall (1994), it seems necessary to choose an adequate function Ψ
(
β̃, xt

)
to approximate arbitrarily close to Φ(zt+1, zt). This will represent almost any function, except for a neural
network. zt is the vector of endogenous and exogenous variables as shown in the expectations function; xt is
a subset of variables used as regressor in the function Ψ; and β̃ is a parameter vector in the approximation
function Ψ.

2. Choose an initial β̃ ,and for both initial values of state variables and a sequence of stochastic shocks
compute

ct =
[
βΨ
(
β̃, xt

)]1/(η(1−θ)−1)

(55)

β, η and θ are parameters of the utility function.
3. From step 2 we have series for ct, and with kt, and zt; we are now to use Newton-Raphson (N-R) in

order to appoximate lt, from the equilibriun equation.

lt =
(1− η)ct

η(1− α)ztkαt (1− lt)−α
(56)

4. From series obtained in steps 1 and 2 , obtain kt+1 from the motion equation of capital:

kt+1 − (1− δ)kt − yt + ct +
ψ2

2
(kt+1 − kt − in)2 + φt(

ψ1

2
(kt+1 − kt − in)2 − ψ2

2
(kt+1 − kt − in)2) = 0 (57)

then we have time series for ct+1, kt+1, kt+2,zt+1and lt.
5. De�ne and compute:

cREt =


βl
−(1−η)(1−θ)
t Et

{[
cηt+1l

1−η
t+1

]−θ
cη−1
t+1 l

1−η
t+1

[
(1− δ) + f ′(kt+1)− ∂C(∆kt+2)

∂kt+1

]}
×
{

1 + ∂C(∆kt+1)
∂kt+1

}−1


1/(η(1−θ)−1)

(58)

6. Regress 1
β (cREt )η(1−θ)−1 on Ψ

(
β̃, xt

)
and obtain new estimated values for β̃.stop when you �nd a �xed

point for β̃ such that β̃f = G(β̃f )
being

G(β̃) = arg min
ζ

1

T

T∑
t=0

∥∥∥Φ(zt+1

(
β̃
)
, zt

(
β̃
)

)−Ψ
(
ζ, xt

(
β̃
))∥∥∥2

(59)

In order to capture nonlinearities and asymmetries from this model set up, it is needed a more �exible
functional form:

Ψ
(
β̃, xt

)
= exp (Ω(β̃)) (60)

Ω(β̃) = β̃1 + β̃2 ln kt−1 + β̃3 ln zt (61)

To stabilize the algorithm and to assist for convergence, steps 3 and 4 must be modi�ed by imposing
moving bands as suggested by Maliar and Maliar (2003).

Note that if we impose b = 0, or ψ1 = ψ2, we will obtain a standard DSGE model with symmetric
adjustment costs. In this way, we can simulate both models for the the same time series of shocks and
compare their time path as well as their higher order moments.Table 1 displays calibration parameters and
steady state values in order to compare an asymmetric model with a symmetric one. Parameter cost for
the symmetric model is calibrated as ψ = 0.5 (ψ1 + ψ2). Thus, the symmetric adjustment cost will be an
intermediate case of low and high costs regime.
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Figure 3: Asymmetric and symmetric models simulations

Figure 4: Asymmetric and symmetric models simulations
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Table 1: Calibration

Parameter Variable
α 0.4 kss 2,329
ψ1 4 yss 0,916
ψ2 1 css 0,852
ψ = 0.5(ψ1 + ψ2) 2,5 inss 0
ρ 0.9 kss/yss 2.543
θ 2 rss 0.013
δ 0.0273 nss 0,492
σ2
ε 0.018 β = 1

1+rss 0.885
γ 500 ibss 0.0636

Table 2: Di�erences in moments of raw data from PEA for symmetric and asymmetric models simulations

Note: for each variable, autocorrelation (for the raw data), relative standard deviations (for the raw data,
HP �ltered and BK �ltered time series), are computed on the time series simulated by using PEA for
the symmetric and the asymmetric versions of the model, then di�erendes were taken as follows: ρsimx −

ρasimx ,
(
σx

σy

)sim
rawdata

−
(
σx

σy

)asim
rawdata

,
(
σx

σy

)sim
HP
−
(
σx

σy

)asim
HP

,
(
σx

σy

)sim
BK
−
(
σx

σy

)asim
BK

. Sample periods were 500,

replicated 500 times. Thus estatistics reported are means of di�erences and critical values for 95% con�dence
interval. Null hypothesis: symmetric model is di�erent than asymmetric model.
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Table 3: Di�erences in Kurtosis and Skewness of HP �ltered data from PEA for symmetric and asymmetric
models simulations

Note: for each variable (simulated by using symmetric and asymmetric versions of the model), cyclical
components were computed using HP �lter. Then, Kurtosis and skewness were calculated on the full sam-
ple and on the negative and positive of the cyclical components. Then di�erendes were taken as follows:
(Kurtosis)

sim
HP − (Kutosis)

asim
HP , (Skewness)

sim
HP − (Skewness)

asim
HP . Sample periods were 500, replicated 500

times. Thus estatistics reported are means of di�erences and critical values for 95% con�dence interval. Null
hypothesis: symmetric model is di�erent than asymmetric model.

3.3 Perturbations algorithm

Although PEA algorithm and projections algorithm are generally time expensive, they are more precise
as they are global approximation methods. However, it is possible to use a higher order 11 PM, which
approximates the steady state and is less expensive than PEA algorithm. Through simulations carried out
on Dynare, this latter method uses higher order derivatives of the dynamic system evaluated in the steady
state.

3.4 COMPARING PEA AND PERTURBATIONS ALGORITHM

It is known that global approximation methods such as PEA are costly in terms of time and computation.
However, local approximations such as log-linearisation and perturbations are less expensive. Notwithstand-
ing, the issue of accuracy is yet a matter of concern. In this section, simulated time series with both algorithms
are compared in order to asses accuracy and get an idea about how similar these algorithms are, making it
possible to decide whether, without loss of accuracy, to use perturbations algorithm instead of a PEA algo-
rithm. This experiment is performed by simulating pseudo-data for both methods in the following fashion: i)
imposing symmetry in adjustment costs (ψ1 = ψ2 = ψ = 2.5), and ii) imposing asymmetry (ψ1 = 4, ψ2 = 1).
Other parameters remain the same as shown on table1.

3.4.1 Simulating the symmetric model

Table 3.4.1 hows the correlations of macro variables simulated by using PEA and PM (for the symmetric
model). It can be seen that time series simulated by PEA move quite close to those simulated by PM.

11Log-linearisation is a �rst order Taylor approximation. Thus, higher-order approximation refers to second order, third order
and so on.
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Table 4: Di�erences in Kurtosis and Skewness of BK �ltered data from PEA for symmetric and asymmetric
models simulations

Note: for each variable (simulated by using symmetric and asymmetric versions of the model), cyclical
components were computed using BK �lter. Then, Kurtosis and skewness were calculated on the full sam-
ple and on the negative and positive of the cyclical components. Then di�erendes were taken as follows:
(Kurtosis)

sim
BK − (Kutosis)

asim
BK , (Skewness)

sim
BK − (Skewness)

asim
BK . Sample periods were 500, replicated 500

times. Thus, estatistics reported are means of di�erences and critical values for 95% con�dence interval. Null
hypothesis: symmetric model is di�erent than asymmetric model.
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Table 5:

Note: each variable was simulated (in the symmetric model) by using both PEA and PM algorithms, then
the correlations (of the raw data) are computed as
follows: corr(xPEAt , xPMt ). Sample periods were 500, replicated 500 times.
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Table 6: Di�erences in moments of raw data from PEA and PM methods for the symmetric model simulations

Note: for each variable in the symmetric model, autocorrelation (for the raw data), relative standard devia-
tions (for the raw data, HP �ltered and BK �ltered time series), are computed on the time series simulated by

using PEA and Perturbations Method, then di�erendes were taken as follows: ρPEAx − ρPMx ,
(
σx

σy

)PEA
rawdata

−(
σx

σy

)PM
rawdata

,
(
σx

σy

)PEA
HP

−
(
σx

σy

)PM
HP

,
(
σx

σy

)PEA
BK

−
(
σx

σy

)PM
BK

. Sample periods were 500, replicated 500 times.

Thus estatistics reported are means of di�erences and critical values for 95% con�dence interval. Null hy-
pothesis: PEA simulations are very close to PM simulations.

displays di�erences in autocorrelations, relative variances (compared to σx/σGDP ) computed on the raw
data in the upper panels, and di�erences in relative variances computed on both HP and BK �ltered data.
Lower and upper bounds for a 95% con�dence interval are also reported. In general, gross investment, labor,
and leisure seem to have more persistence in the PEA than in the PM algorithm, whereas consumption
and capital present lower persistence. Relative standard deviations seem to be quite similar for the two
algorithms. For the case of relative standard deviations, they seem to be very similar because the mean
value of their di�erences lies inside the con�dence interval. The results for the di�erences of relative standard
deviations are mixed: While both HP and BK �ltered data of labor and leisure seem to have the same relative
standard deviation, consumption seems to decrease and be higher for capital and investment. Tables7 and
3.4.1 show the di�erences in kurtosis and skewness of PEA data and PM data for HP and BK �ltered data
respectively. In these tables, an unabiguous result is evident: mean of di�erences in kurtosis and asymmetries
are containend within a 95% con�dence interval. Under the light of these results, it is possible to think of
the Perturbations algorithm as one very close to PEA.

3.4.2 Simulating the asymmetric model:

Tables 9-3.4.2 show the same statistics as tables 3.4.1-3.4.1, but computed on the simulations of the asym-
metric model (ψ1 = 4, ψ2 = 1). Several simulations were made for di�erent values of γ (500, 100, 50, and 25),
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Table 7: Di�erences in moments of HP �ltered data from PEA and PM methods for the symmetric model
simulations

Note: for each variable in the symmetric model (simulated by PEA and PM), cyclical components were
computed using HP �lter. Then, Kurtosis and skewness were calculated on the full sample and on the
negative and positive of the cyclical components. Then di�erendes were taken as follows: (Kurtosis)

PEA
HP −

(Kutosis)
PM
HP , (Skewness)

PEA
HP − (Skewness)

PM
HP . Sample periods were 500, replicated 500 times. Thus

estatistics reported are means of di�erences and critical values for 95% con�dence interval. Null hypothesis:
symmetric model is di�erent than asymmetric model.
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Table 8: Di�erences in moments of BK �ltered data from PEA and PM methods for the symmetric model
simulations

Note: for each variable in the symmetric model (simulated by PEA and PM), cyclical components were
computed using BK �lter. Then, Kurtosis and skewness were calculated on the full sample and on the
negative and positive of the cyclical components. Then di�erendes were taken as follows: (Kurtosis)

PEA
BK −

(Kutosis)
PM
BK , (Skewness)

PEA
BK − (Skewness)

PM
BK . Sample periods were 500, replicated 500 times. Thus

estatistics reported are means of di�erences and critical values for 95% con�dence interval. Null hypothesis:
symmetric model is di�erent than asymmetric model.
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Table 9:

Note: each variable was simulated (in the symmetric model) by using both PEA and PM algorithms, then
the correlations (of the raw data) are computed as
follows: corr(xPEAt , xPMt ). Sample periods were 500, replicated 500 times.

because for γ →∞ the smooth transition function becomes a step function; its derivative tends to in�nite as
well, and the model will lose its di�erentiability which is the corner stone of the PM algorithm. However, 100,
50 or 25 are still high values, thus the results reported in tables 9-3.4.2 are those for the simulations using
γ = 25. In general, the means of the di�erences between moments of PEA and PM are contained within the
95% con�dence interval as well as for the case of the results in the symmetric model, which means that PEA
and PM are very close to each other.

3.5 Deterministic simulation

Moreover, in order to test the the model's construction consistency, deterministic simulations were performed
imposing a deviation (negative and positive) of the technology process when simulating a one time shock.
Instead of solving it by employing any approximation algorithm, Dynare's exact solver was used by imposing
a = 1.06 and a = 0.94, which is equivalent to having e = 0.058268908 and e = −0.061875404 respectively.12

Figures5 and 6 show a path time of key macro variables ct, yt, kt, int, nt, ibt, at, φt (consumption, income,
capital, net investment, labor, gross investment, technology, and transition function).

Figures 5 and 6 show re-scaled variables 13. Given the calibration, several interesting behaviors were
observed. For instance, the reaction of consumption towards a negative perturbation is stronger than when a
positive shock occurs. This can be explained by the fact that disinvestment costs are higher than investment
costs. It is important to note that the investment reaction during recession is lower that that during a boom.

12It would be also possible to impose a symmetric e (this is, the same size of the shock in absolute value) but there would not
be a great di�erence in the results.

13Rescalation is necesary for comparison of the variables in a single plane. For simulated variables with a negative shock the
computation is abs(xt) −max(xt) ad for variables with a positive shock xt − min(xt) .
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Table 10: Di�erences in moments of the raw data from PEA and PM methods for the asymmetric model
simulations

Note: for each variable in the symmetric model, autocorrelation (for the raw data), relative standard devia-
tions (for the raw data, HP �ltered and BK �ltered time series), are computed on the time series simulated by

using PEA and Perturbations Method, then di�erendes were taken as follows: ρPEAx − ρPMx ,
(
σx

σy

)PEA
rawdata

−(
σx

σy

)PM
rawdata

,
(
σx

σy

)PEA
HP

−
(
σx

σy

)PM
HP

,
(
σx

σy

)PEA
BK

−
(
σx

σy

)PM
BK

. Sample periods were 500, replicated 500 times.

Thus estatistics reported are means of di�erences and critical values for 95% con�dence interval. Null hy-
pothesis: PEA simulations are very close to PM simulations.
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Table 11: Di�erences in moments of the HP �ltered data from PEA and PM methods for the asymmetric
model simulations

Note: for each variable in the symmetric model (simulated by PEA and PM), cyclical components were
computed using HP �lter. Then, Kurtosis and skewness were calculated on the full sample and on the
negative and positive of the cyclical components. Then di�erendes were taken as follows: (Kurtosis)

PEA
HP −

(Kutosis)
PM
HP , (Skewness)

PEA
HP − (Skewness)

PM
HP . Sample periods were 500, replicated 500 times. Thus

estatistics reported are means of di�erences and critical values for 95% con�dence interval. Null hypothesis:
symmetric model is di�erent than asymmetric model.
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Table 12: Di�erences in moments of the BK �ltered data from PEA and PM methods for the asymmetric
model simulations

Note: for each variable in the symmetric model (simulated by PEA and PM), cyclical components were
computed using BK �lter. Then, Kurtosis and skewness were calculated on the full sample and on the
negative and positive of the cyclical components. Then di�erendes were taken as follows: (Kurtosis)

PEA
BK −

(Kutosis)
PM
BK , (Skewness)

PEA
BK − (Skewness)

PM
BK . Sample periods were 500, replicated 500 times. Thus

estatistics reported are means of di�erences and critical values for 95% con�dence interval. Null hypothesis:
symmetric model is di�erent than asymmetric model.
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Figure 5: Re-scaled variables

Consistently, income reaction during a recession is lower than during booms. Not only can this be explained
by the investment decrease, but also by the labor decrease. The size of the adjustment in labor during
recession is higher than during boom due to the fact that the decrease in wage during recession is not as big
as the increase during boom. Thus, the models reproduces labor as well as wages increases during booms,
and labor decreases and smaller wage reductions, which is all a signal of real rigidities in wages. Thus, most
of the adjustment in this economy is led by consumption and labor. Obviously, in expansion periods, capital
increases are bigger than capital decreases during recessions. It can also be seen that expansions are longer
than recessions. This is also seemingly true for income and consumption. Figures 7 and 8 show time path
deviations from the steady state.

3.6 Impulse response

Impulse Response (IR) is one of the most used analysis tools in macroeconometrics. However, it must be used
carefully. Because the DSGE model studied in this paper is non-linear and asymmetric, IR analysis should
not be performed as usual, assuming that the DGP is linear-multivariate. Moreover, it could be mistaken to
simply shock technology once and then follow the whole system's adjustment. Therefore, in order to gauge
asymmetric e�ects of shocks in this hypothetical economy, General Impulse Response Function (Koop et al.,
1996) (GIRF hereafter) is to be adopted.14.

Because of asymmetric DGP of this DSGE model, multivariate data simulated by using this very model
lacks the following properties: symmetry property, linearity property, and history-independence property.
Thus, linear impulse response functions (VAR-based) are not appropriate tools for analyzing the dynamics
of such DSGE model. The GIRF, as de�ned by Koop et al. (1996), is conditioned by shocks and/or history:

GIY (n, vt, ωt−1) = E[Yt+n|vt, ωt−1]− E[Yt+n|ωt−1], for n = 0, 1...

Wherein Yt is a vector of variables, vt, a current shock ωt−1 is the history, and n is the forecast horizon.
Koop et al. (1996) also describe a simple algorithm to compute these conditional expectations by means of
Monte Carlo integration. According to this method, GIRF could be considered as a distribution of impulse
responses for each period in the forecast horizon. Impulse responses computed in this way are calculated and
reported by Dynare. By default, Dynare throws the �rst 100 observations and reports GIRF for a horizon

14Local Projections Impulse Response (Jordá, 2005) could also be used, but this technique is susceptible of symmetry, thus it
would be not possible to detect asymmetry in data of this hipothetical model.
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Figure 6: Re-scaled variables

Figure 7: Deviations from the steady state
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Figure 8: Deviations from the steady state

of 40 periods ahead.Figures 9 and 10 show impulse response (50 draws) for one standard deviation shock
(positive and negative) on the perturbation term of the technology process; all variables except for labor and
marginal products are considered as logarithms.

3.7 Conditioning on a particular shock

The �rst simulation exercise consisted of giving one standard deviation shock (positive and negative) to
the technology process in the asymmetric investment cost model. The parameterization for this version of
the model is the same as in table 1 �xing ψ1 = 4, ψ2 = 1 and γ = 100. The simulation was performed
once (one replication); the response of macroeconomic variables in this hypothetical economy to negative
shocks (in average) are asymmetric with respect to positive shocks (graphs 11 and 12 show the absolute
values of responses of variables to negative shocks (blue) and to possible time shocks (green)). Replications
of this excercise consisted in simulating 500 time series for the history of the model; this isωt−1 simulated
500 times. The economy was given the same standard deviation shock. Thus, the GIRF was computed as
GIY (n, vt,Ωt−1) = E[Yt+n|vt,Ωt−1]−E[Yt+n|Ωt−1] being Ωt−1 an information set of the previous history, and
vt a particular negative and positive standard deviation shock. Figures11 and 12 show these IR functions.
The time paths for these impulse responses look softer, but this fact in no way a�ects the nature of the
results. Figure 13 shows a Relative Intensity Indicator (RII), which means the ratio of impulse responses as
shown in Figure 9; this is: impulse-response after positive shock divided by impulse-response after negative
shock for each variable. If this indicator is greater than -1 and smaller than 0, negative shock is greater than
the positive one; and the opposite occurs if the indicator is smaller than -1. On shock, negative impact on
consumption, income, and labor are more intense than the positive impact, which is, however, more long-
lasting than the negative, at least for consumption and income. For labor, negative e�ect is more intense
and long-lasting. On the other hand, for capital positive shock, it is always more intense and long-lasting.
This means that at short-term the adjustment is spread all over the variables, whereas at medium-term the
adjustment is shared only between capital and labor.

3.8 Conditioning on a particular history

Due to the fact that asymmetric models are history-dependent, it is necessary to ask ourselves the question
on what the time path of the economy would be when in a boom that is positively or negatively shocked, or
when in a recession that is positively or negatively shocked. The results of simulating a positive shock as the
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Figure 9: Impulse Response Function (50 replicas)

Figure 10: Impulse Response Function (50 replicas)

26



Figure 11: General Impulse Response Function (500 replicas)

Figure 12: General Impulse Response Function (500 replicas)
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Figure 13: Relative Intensity Indicator

economy undergoes a boom or simulating a positive shock as the economy undergoes a recession are trivial:
a recession deepening and boom sharpening. However, because of business cycles asymmetry, it would be
necessary to perform the simulation in order to know the quantitative e�ects. In fact, it would be interesting
to know the quantitative e�ects of a negative shock during a boom and a positive shock during a recession. To
perform the exercise here proposed, it must be supposed that the economy is initially shocked (positively or
negatively) in period one, and in period four it will receive a shock in the opposite direction to the one received
in period one. Thus, the exercise deals with computing GIY (n, vt, Ω̃t−1) = E[Yt+n|vt, Ω̃t−1]− E[Yt+n|Ω̃t−1]
being Ω̃t−1 the state of the economy (either in boom or in recession) and vt a positive or negative shock.

There is another important detail to consider: this exercise is time-dependent. This implies that the new
position of the economy after the second shock would depend directly on how far it is from the steady state.
That is to say, the longer the horizon of GIRF, the closer the economy will be to the steady state. Therefore,
depending on the size of the shock (and on the economy's asymmetric structure) the economy could jump
(suddenly perhaps) from a boom onto a recession, and vice versa. In order to standardize the timing problem,
the exercise was performed as follows: the second (positive or negative) shock was introduced in a time t0
so that the technology gap were half of its initial value on shock. In this section, all variables have been
measured in logarithms. In such a way, gaps between variables can be interpreted as log-deviations from the
steady state.

3.8.1 A second shock in the opposite direction of the �rst shock

Figure 14 shows the GIRF of the economy after receiving a postive shock during a recession and a negative
shock during a boom. In this exercise, it was very clear that a shock in the opposite direction pushes the
economy to the next phase of the cycle, making it fall from a boom to a recession or making it jump from a re-
cession to a boom. For the case of capital, it slowly reverses, nonetheless, the accumulation (deaccumulation)
process induced by a positive (negative shock).

Because the model is asymmetric, the intensity of the fall will be di�erent from the intensity of the jump.
Then, it is necessary to compare the time paths after the second shock. Figure 15 shows the path of the
economy after the second shock. Nevertheless, it is not conclusive about the asymmetries and the intensity
of the shock. Figure 16 shows absolute deviation values from the steady state after the second shock. Also,
�gure 17 shows the intensity indicator (absolute values). This reveals that, on shock, the negative shock e�ect
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Figure 14: GIRF for the �rst and the second shock

Table 13: Variation of the gap from the steady state after shocks

during a boom is more intense than the one for consumption and income. Di�erently, the opposite takes
place for labor investment and capital; besides, for medium-term e�ects of positive shock during recession,
it seems to be more long-lasting.

Table 13 shows the variation of the gap after each shock. Gap variations when the economy is disturbed
by a negative (positive) shock during a boom (recession), in absolute values, are greater only for consumption,
whereas they are smaller for other variables; i.e., the pos/neg column is greater than the neg/pos column for
consumption in period seven, while the opposite occurs for other variables. This takes place as investment
decreases are more expensive than investment increases. As a consequence, consumption will su�er the major
part of the adjustment on a negative shock. Hitherto, it could be concluded that during a recession the e�ect
of a positive shock on the economy is more intense than the e�ect of a negative shock during a boom and
this probably occurs because booms are more long-lasting than recessions.
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Figure 15: GIRF for the second shock

Figure 16: GIRF for the second shock (absolute values)
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Figure 17: Relative Intensity Indicator for the second shock (absolute values)

3.8.2 A second shock in the same direction of the �rst shock

We might also wonder about the e�ect of a positive shock during a boom or about the e�ect of a negative
shock during recession. To answer these questions, we have performed an excercise similar to the previous
one. But, instead of giving a negative shock after a positive one, we give both a �rst and a second positive
shocks. A �rst negative shock and a second negative shock are also simulated. Figures 18 to 20 show that
when the economy is disturbed by a second positive shock, the boom regime protracts and the recession
regime exacerbates.

This qualitative e�ect is expected, but what really concerns us here is its magnitude. Table 14 shows the
size of the increase (decrease) of the gaps after the second positive (negative) shock. When the economy is
in a boom and receives a positive perturbation (columns pos/pos), the variation value of the consumption
gap in period 7 (in absolute values) is smaller than that when the economy is in a recession and receives a
negative perturbation (columns neg/neg). For the other variables, the completely opposite case takes place.
One more time, the explanation for this behavior is that the booms are more long-lasting than recessions.
Also, because decreasing investment is more expensive than increasing it, the most part of the adjustment
on shock relies on consumption.

4 Preliminary Conclusions

The DSGE model proposed here with asymmetric investment costs is able to generate asymmetric business
cycles.

In general, recessions seem to be deeper (for consumption) than expansions and expansions seem to be
more long-lasting than recessions. Thus, deepness and sharpness would be captured by this model's dynamics.

The adjustment intensity su�ered by consumption and labor, with a smaller reaction in wages during
recession and a greater increase in wage during booms, is an indicator that there is real rigidity on wages.

Asymmetries in RBC models could be more adequately captured by General Impulse Response Functions
than by higher order moments. However, a more rigurous test for the properties of the asymmetric model
proposed here (and in two papers proceeding from my doctoral thesis) could include the application of
nonlinear econometric tools that could serve indeed a powerful tool for this purpose.

For the agenda: i) estimate parameters of the model for the real economy; ii) test for asymmetries in the
time series and simulate with these nonlinear econometric models.
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Figure 18: GIRF for the �rst and the second shocks (absoloute values)

Figure 19: RII for the �rst and the second shocks
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Figure 20: RII for second shock (absolute values)

Table 14: Variation of the gap from the steady state after shocks
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6 Appendix

6.1 Loglinearising the model

When we linearise the full model including the asymmetric cost function of investment, we have as well as in
the linearisation regime by regime, a set of linear equations and the nonlinear and asymmetric dynamics of
the theoretical model originally constructed desappears.

−θĉt = λ̂t (62)

kk̂t+1 = (1− δ)kk̂t + yŷt − cĉt − ϕϕt (63)

yŷt = AkαÂt + αAkk̂αt (64)

ϕϕ̂t = ϕ2ϕ̂2t + φφ̂t (ϕ1 − ϕ2) + φ (ϕ1ϕ̂1t − ϕ2ϕ̂2t) (65)

ϕ1ϕ̂1t = ψ1 (kt+1 − kt) kk̂t+1 − ψ1 (kt+1 − kt) kk̂t (66)

ϕ2ϕ̂2t = ψ2 (kt+1 − kt) kk̂t+1 − ψ2 (kt+1 − kt) kk̂t (67)

φφ̂t =
γexp(−γ(k − k))

[1 + exp(−γ(k − k))]
2 kk̂t+1 −

γexp(−γ(k − k))

[1 + exp(−γ(k − k))]
2 kk̂t (68)
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λλ̂t + λ
∂ϕ(x)

∂kt+1

(
1 + η1k̂t+1

)
+ λ

∂ϕt(x)

∂kt+1

(
1 + η2k̂t+1

)
(69)

= βλλ̂t+1

[
(1− δ) + f ′(kt+1)− ∂ϕt+1(x)

∂kt+1

]
+ βλ

 f ′(k)
(

1 + η3k̂t+1

)
− ∂ϕt+1(x)

∂kt+1

(
1 + η4k̂t+1

)
−∂ϕt+1(x)

∂kt+1

(
1 + η5k̂t+2

) 
+ βλf ′(k)

(
1 + η6Ât+1

)
This system is the same as the one we have when there is no asymmetries in the cost of investment. thus,

nonlinear behavior of investment is not captured when using �rst order Taylor approximations. Thus we
need a di�erent numerical method to simulate and test this model.
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