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ABSTRACT: Bioprocesses productivity is a compromise between two conflicting objectives,
maximization of biomass growth rate and minimization of substrate consumption. In this
work, a model based multi-objective optimization problem is solved for improving the
process productivity in plant cell suspension cultures of Thevetia peruviana. A solution of the
multi-objective problem allowed determining the optimal initial concentrations of substrate
and biomass for assuring maximal productivity. Model-based optimization is carried out
using a mechanistic model, which includes a representation of the intracellular processes
ARTICLE INFO: taking place on the plant cells. The best solutions were chosen from the Pareto front in
Received December 12, agreement with expert criterion. Results indicate that an initial inoculum concentration
2017 of 3.91g/L and an initial sucrose concentration of 23.63g/L, are recommended as initial
Accepted April 13,2018 conditions for obtaining a biomass productivity of 1.57g/L*day with an acceptable sucrose

uptake. Experimental validation of the optimal found was carried out and the productivity
obtained was 1.52g/L using an initial inoculum concentration of 4.27g/L and an initial
sucrose concentration of 25.44g/L. Results suggest that the proposed methodology can be
extended to increase the productivity in terms of metabolite production from this plant cell
cultures and other plant species.
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Biotechnological processes RESUMEN: La productividad de los bioprocesos es un compromiso entre dos objetivos en

conflicto, la maximizacion de la velocidad de crecimiento de la biomasa y la minimizacion
Optimizacion basada en del consumo de sustrato. En este trabajo, se resuelve un problema de optimizacién
2}2?;%2;&:\22(1"12%?;“3 multi-objetivo para mejorar la productividad del cultivo en suspension de células vegetales
multiobjetivo', Modelos de la especie Thevetia peruviana. La solucién del problema multi-objetivo permitio
mecanisticos, Procesos determinar las concentraciones iniciales 6ptimas de sustrato y biomasa para garantizar
biotecnoldgicos la maxima productividad. La optimizacion se lleva a cabo utilizando un modelo mecanistico,
que incluye una representacion de los procesos intracelulares que tienen lugar en las
células vegetales. Las mejores soluciones se eligieron del frente de Pareto teniendo en
cuenta el criterio experto. Los resultados indican que se recomienda una concentracion
inicial de indculo de 3.91g/L y una concentracion inicial de sacarosa de 23.63g/L como
condiciones iniciales para obtener una productividad de biomasa de 1.57g/L*dia con un
consumo aceptable de sacarosa. Se llevo a cabo la validacion experimental del 6ptimo
encontrado y la productividad obtenida fue de 1.52g/L usando una concentracién de indculo
inicial de 4.27g/L y una concentracion inicial de sacarosa de 25.44g/L.
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Los resultados sugieren que la metodologia propuesta
puede ampliarse para aumentar la productividad en
términos de produccién de metabolitos a partir de estos
cultivos de células vegetales y otras especies vegetales.

1. Infroduction

Model-based optimization can be used in biotechnological
processes to design biological systems, to enhance the
metabolite production and biomass production, and to
ensure the optimal manipulation of the genetic and
metabolic composition among others [1]. On the other
hand, in metabolic transformation by cellular systems,
many criteria require to be satisfied simultaneously, for
instance, to maximize metabolic reaction rates and steady
state fluxes and to minimize concentrations of metabolites
in transient times. In general, metabolic variables
(enzyme, substrates and metabolic concentrations) should
remain within a certain physiological range in order
to avoid undesirable effects and maintain cell viability
[2, 3]. Along these lines, multi-objective optimization
finds solutions that are optimal for several conflicting
objectives simultaneously [4]. These solutions are called
Pareto optimal solutions. Despite the existence of multiple
Pareto solutions, in practice, only one of these solutions
can be chosen, generally based on previous knowledge
[5]. Multi-objective optimization has been reported [4]
to maximize ethanol concentration and minimize each
internal metabolite concentration for ethanol production
from Saccharomyces cerevisiae. [6] used multi-objective
optimization to estimate the kinetic model parameters of
batch and fed batch fermentation processes for ethanol
production using Saccharomyces diastaticul. [7] introduced
a novel framework for the optimal development of
biotechnological processes using optimization tools
such as multi-objective  mixed-integer nonlinear
programming.  Finally, [3] presented a methodology
to maximize productivity in biotechnological processes
using multi-objective optimization.  The versatility of
the methodology was demonstrated using a large-scale
metabolic model of Chinese Hamster Ovary cells (CHO) [3].

Despite the significant
optimization, only a

benefits of multi-objective
few metabolic engineering
applications are found in the literature [3] and,
to the author’'s knowledge, there are no available
reports addressing the development of model-based
multi-objective optimization using structured models for
applications in plant cell cultures.

In this work, a multi-objective optimization to determine
the initial extracellular sucrose concentration and initial
inoculum concentration is used in order to increase
biomass productivity maintaining low levels of substrate
uptake in plant cell suspension cultures of Thevetia

peruviana. The model used in this work corresponds to
the structured model for plant cell suspension cultures
presented by [8] for this specie. Finding the optimal initial
conditions to maximize biomass productivity is the first
step towards ensuring metabolite production in this plant
cell culture.

2. Methodology

Figure 1 presents the methodology followed in this work
to formulate and solve the multi-objective optimization
problem. This methodology includes five steps, which are
presented below.

2.1 Define the model

It is recommended to use a first-principles-based
semi-physical model. The kinetic model should be
selected taking into account the level of detail in the
description of the phenomenon analyzed. According to
the general classification of the kinetic models presented
by [9], kinetic models in biotechnological processes
can be classified as unstructured and structured
models. Unstructured models focus on describing
substrate uptake, cell growth and metabolite production
at extracellular level. On the contrary, structured models
present with certain level of detail the intracellular
processes taking place. On the other hand, when the
model considers aspects such as, size of the cells,
viability, among others, it is necessary to differentiate
between segregate and non-segregated models. It is
important to highlight that the selected model must have
all parameters estimated and it must be validated.

2.2 Define the optimization problem

The general multi-objective optimization problem can be
stated as presented in Equations (1)-(5)

Mazimize{hy (X), ha (X),...,h (X)} (1)

Minimize {hy+1 (X), hpyo (X)), ..o, heyn (X))} (2)

Subject to
dX
-~ X —
f(dt’ ,t,H) 0 (3)
X (to) = Xo (4)
Xi<Xo< Xy (5)

Where,X = [z1,x2,...,z,] indicates the state variables
vector [i.e. biomass, substrates and metabolites
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Figure 1 Methodology for multi-objective optimization. Based on the works by [3, 5, 10]

concentrations). f is the set of equality (i.e. algebraic or
ordinary differential) constrains describing the system
dynamics, and {hy(X),ha(X),...,he (X)} and
{ht1 (X)), hgg2 (X)), ..., hggn (X)} are the conflicting
optimization objectives to be optimized ¢ is the time,
0 = [01,02,...,0,] is the vector of model parameters
and X is the vector of initial conditions. Equation (5)
corresponds to the boundaries of the decision variables.

2.3 Select a suitable algorithm in order to
solve the optimization problem

Among the different approaches for solving multi-objective
optimization problem, Evolutionary Multi-objective
optimization (EMO] methods have emerged, and are the
most popular [10]. EMO makes reference to the use of
Multi-Objective Evolutionary Algorithms (MOEAs) such as:
Genetic Algorithms (GAs), Evolution Strategies (ESs), and
Evolutionary Programming (EP) [10]. MOEAs are based on
natural evolution and the Darwinian concept of “Survival of
the Fittest”. This implies aspects relative to reproduction,
random variation, competition, and selection of contending
individuals within the population [10]. In general terms,
Evolutionary Algorithms (EAs]) use a population based
approach in which more than one solution participates in
an iteration and evolves a new population of solutions in
each iteration [5, 10]. Some advantages obtained using
the evolutionary algorithms are: (1) These algorithms do
not require derivative information, (2) They are relatively
simple to implement and (3) multiple trade-off solutions
can be found in a single simulation run [5, 10].

2.4 Select the Best Solution from the Set of
Pareto Solutions

Solution to the multi-objective optimization problem
results in a series of Pareto solutions. In most cases,
the Pareto optimal set contains more than one element
because there exist different trade-off solutions to the
problem which offer different compromises between the
objectives.  In practice, solving a multi-optimization
problem often means that a human decision-maker is
involved using expert knowledge of the system under
study [11]. However, when the number of Pareto optimal
solutions is high, it could be difficult to select the best
solution given the large set of alternatives. In this case,
the best solution can be determined using the concept of
"Knee solutions” [12]. A "knee” is defined as a region
in the Pareto optimal front, which is visually a convex
bulge in the front, and often constitutes the optimum in
trade-off solutions to the problem [13]. In this work, the
concept of "knee” solution is used in conjunction with the
expert knowledge of the authors on the growth of plant cell
suspension cultures of Thevetia peruviana for solving the
optimization problem presented in section 3.

2.5 Validate the solution

Two approaches are generally used in order to validate the
solutions obtained. In the first place, it is recommended
to carry out an experimental cross validation using the
optimal conditions selected from the Pareto front, for
comparing the results obtained in real experiment, from
those obtained by the mathematical solution of the
problem. In a second approach, results delivered by the
multi-objective optimization are compared with reports of
the literature for similar biotechnological process [14, 15].
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3. Multi-objective optimization in
plant cell suspension cultures of T.
peruviana

In this section, application of the methodology described in
Section 2 is carried out for the case of plant cell suspension
cultures of T. peruviana

3.1 Model description

The model used in this work is a mechanistic model
proposed by [8] for describing the cell growth, substrates
uptake and the main metabolites involved in the central
metabolism in plant cell suspension cultures of T.
peruviana. This model comprises 28 metabolic species,
33 metabolic reactions, and 61 parameters. Two sets of
experimental data were used for parameter identification.
Furthermore, a different data set was used for model
validation. Experimental data sets were obtained carrying
out different kinetic studies at different initial sugars
concentration and inoculum concentration. pH was
adjusted between 6.5 and 7.5. Each experiment was
conducted during 18 days. The extracellular sugars were
determined by an HPLC (Agilent), coupled to refractive
index detector using a coregel 87P column and water as
mobile. The biomass concentration was determined using
the dry weight method.

Although this model is used as a case study to present
the optimization strategies to maximize metabolite
production, such strategies can be generalized for
application to models of different plant cell cultures
and biotechnological processes. The metabolic pathway
considered in the model development is summarized
model in Figure 2.

3.2 Definition of the optimization problem

An important variable in order to get the best performance
in biotechnological processes is the productivity. The
productivity p; is a measure of the economic viability of
the process and it is defined as the ratio between the
variation on the concentration of the desired product and
the variation of the time, i.e. the derivative of the biomass
concentration with respect to the time as presented in
Equation (6).

pi (t) = dx; (t) /dt (6)

On the other hand, substrate concentration should remain
within a certain physiological range in order to avoid
undesirable effects and maintain cell viability.

In this work, this objective is defined as "Levels of
Substrate” LS see Equation (7).

q
LS(t) :Z|l‘j (t) —.I‘j(]’ [7]
j=1

Where 5 = 1,2,...,q corresponds to the number of
substrates involved, z; (t) is the measured value of the z;
variable at each time "t" and x;,. is the initial condition
for each z;. Two objective functions are defined: (i)
maximization of biomass productivity and (i) minimization
of the levels of substrate (in this case, extracellular
sucrose). These objective functions are presented in
Equations (8) and (9).

hy (l‘o,ESUCQ) = Jib/tb (8)

h2 (xo,ESUCO) = |ESUC—ESUCQ| [9]

Where zo and ESUC, are the decision variables,
initial conditions for inoculum and extracellular sucrose
concentrations, respectively. ¢; corresponds to the time in
which maximum productivity is obtained. x; corresponds
to the biomass value at time ¢; and ESU corresponds to
the extracellular sucrose value at time %y,.

3.3 Selection of the Optimization Algorithm

The optimization problem is completely formulated in
Equations (10) and (11).

Mazimize hy (xg, ESUC)H) (10)

Minimize ha (z9, ESUC)) (11)

where, the boundaries for xg and ESUC, are defined
in Equations (12) and (13) which are based on expert
criterion for the case of plant cell suspension cultures of
T. peruviana,

13 < ESUC, < 28 (13)

Finally, Equation (14) describes the dynamics of the model.
For solving the optimization problem, a Multi-Objective
Genetic Algorithm (MOGA) was used.

dX
at Zriﬂ}j — M

J

(14)

3.4 Selection of the Best solution from the
Pareto front

The Pareto front found when solving the problem (stated
at (10)-(14)) is shown in Figure 3, and some points
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Figure 3 Pareto front for plant cell suspension cultures of T.
peruviana

are presented also in Table 1. A "Knee” solution
can be observed in the region with productivities
between 1.4g/Ld and 1.6g/Ld.  The selected point,
around to the "knee” solution, corresponds to an initial
inoculum concentration of 3.9063g/L and initial sucrose
concentration of 23.6289g/L to obtain a productivity of
1.5659g/Ld.

3.5 Validation of the selected solution

For validating the selected optimal point from the Pareto
front (number 3 in Table 1), an experimental run was
carried out by using initial concentrations of 4.27g/L
of initial inoculum concentration and 25.44g/L of initial
sucrose concentration (closer as possible to the selected
optima due to some deviations associated to dilution
effects, and impurities in the sucrose used). Results of
the experimental run for biomass production in order to
validate the Pareto solution are presented in Figure 4.

Figure 2 Model description taken from the work by [8]
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Figure 4 Validation of the selected Optima using Initial
conditions of 4.27g/L of initial inoculum concentration and
25.44g/L of the initial sucrose concentration: a) Biomass
Concentration and b) Sucrose concentration

Experimental validation resulted in a productivity of
1.52g/Ld, reached at day 8th.  This "experimental
productivity” has an error of 3.1% with respect to
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Table 1 Efficient optimum profile solutions in plant cell suspension cultures of T. peruviana

No. Initial inoculum

Initial sucrose

Productivity Time

concentration [g/L] concentration [g/L] [g/Ld] [d]
1 3.9 13.6 1.4 4.8
2 2.0 13.6 0.7 4.8
3 3.9 23.6 1.5 7.5
4 3.9 15.8 1.4 5.3
5 3.8 22.6 1.5 7.2
6 2.0 13.6 0.7 4.8
7 3.9 17.7 1.4 5.8
8 3.9 26.4 1.7 8.4
9 3.3 13.6 1.1 4.8

the productivity value reported by the solution of the
multi-objective optimization problem.

4. Conclusions

Model based multi-objective optimization is proposed
as a tool for finding initial conditions (inoculum and
sucrose concentrations) that optimizes the batch
operation of plant cell suspension cultures of Thevetia
peruviana. Maximization of biomass while keeping lower
values of sucrose uptake are the objectives used in the
multi-objective framework. Optimization results were
experimentally validated, showing a god agreement. The
proposed multi-objective optimization framework can be
used for including maximization of metabolites production
during the development of research studies in plant cell
cultures of this and another species, as well as in other
kind of biotechnological applications.
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