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1. Introduction

The suitable use of crystal growth techniques allows the tailoring of the conduction and valence
band profiles in semiconducting heterojunction systems. The incorporation of dopants results in the
formation of high-density carrier gases and the band profiles become renormalized due to the
many-body effects that can be theoretically accounted for by using self-consistent descriptions. The
particular shape of the potential energy profile in this case changes with the application of the so-
called modulation doping [1,2]; but very limited geometrical heterostructure potential configurations
are achieved by this way. A more successful approach in this direction is the one known as composi-
tional grading (for early reports see, for instance, [3-5] and references therein). Works dealing with
different properties of compositionally graded heterojunctions have continued appearing throughout
the years, and it is possible to refer a few as examples [6-11].
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The use of compositional grading would allow the practical realization of semiconductor quantum
confined quasi-two-, -one-, and -zero-dimensional nanosystems, with non-abrupt interfaces and/or
with functional position-dependence of the conduction and valence band potential energy profiles.
The possibility of designing specific confining potential shapes paves the way for the suitable tuning
of different physical properties which can become the fundamentals of electronic and optoelectronic
device applications. The semiconducting zincblende alloy Al,Ga;_, As reveals as one of the most prom-
ising materials for the obtention of this kind of heterosystems given the high degree of Al composition
controlling achieved in nowadays crystal growth technologies, its direct bandgap regime up to x = 0.45
and the wide knowledge about its basic properties already attained.

Among the different possible profile configurations one finds the inverse parabolic one [12-19]. Al,.
Ga;_x As-based heterostructures with inverse parabolic confinement have been the subject of the
study of several optical nonlinearities in recent years [17,18]. In this paper, we are aimed at studying
the nonlinear optical absorption and optical rectification related with intersubband electron transi-
tions in a Al,Ga;_x As inverse parabolic quantum well (QW) with asymmetric rectangular potential
barrier geometry. The purpose is to investigate the influence of the asymmetric confinement in the
light absorption and the occurrence of second-order optical rectification. In accordance, the work is
organized as follows: Section 2 will briefly present the theoretical framework of the study. Section 3
is devoted to discuss the obtained results and, finally, Section 4 contains the conclusions of the work.

2. Theoretical framework

Ref. [18] contains a detailed description of the model used in the calculation of the single electron
states in the conduction band of the inverse parabolic QW. The authors consider the effective mass and
parabolic band approximations. The main differences between our calculation and that reported in
[18] are that we are not including external electric field effects and that the conduction band confining
potential function now corresponds to an asymmetric barrier geometry:

Vi, z<-L)2
V)= % (1-®?), ld<L2 M
Vs, zZ> +L/2

The quantity ¢ = x;/x., where x, is the value of the Al concentration in the left-hand barrier and x. is the
Al concentration at the QW center (in our particular asymmetric configuration we are assuming
Vi > V,). Besides, L represents the well width.

The way of obtaining the single particle wavefunctions relies in a method developed by Xia and Fan
[20], which was posteriorly used in the calculation of optical absorption in superlattices under mag-
netic fields by de Dios Leyva and Galindo [21]. Such an approach is based on the expansion of the elec-
tron states over a complete orthogonal basis of sine functions associated with a QW of infinite
potential barriers with a width taken as L., = 50 nm. Consequently, the z-dependent eigenfunctions
of the effective mass Schrodinger-like conduction band Hamiltonian, with the potential given in Eq.
(1) are written as

0= (2) S sn (1217 @

This is a pretty much realistic approach to the calculation of the confined electron states given that
actual QW heterostructures do not contain infinite width potential barriers. Of course, the number
of terms included in the calculation can neither be infinite. The convergence of Eq. (2), for the specific
width of the QW considered, is ensured until 107> meV with the incorporation of 200 terms in the
expansion of the ¢(z) wavefunctions.

The optical coefficients to be evaluated are [22]: the absorption one, with its maximum resonant
peak value given by;
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and the second-order optical rectification coefficient, with is maximum peak amplitude;
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In these expressions, &g is the vacuum permittivity, c is the speed of light in vacuum, n is the refractive
index, and N is the electron density in the QW. In addition, wg; = (E; — Ep)/his the frequency value cor-
responding to the 0 — 1 intersubband transition, whilst M = (¢i|z|¢;). The quantities Tp and T are the
lifetimes of the electron in the ground and first excited states respectively. They are associated with
damping mechanisms in the system and will be taken as input parameters in the calculation with
fixed values: To=1 ps, and T; = 0.2 ps [18,23].

The values of the left- and right-hand potential barrier heights come from the application of the
60:40 band-offset rule to the energy bandgap differences at the z= —L/2 and z = +L/2 interfaces. We
have used the compositional dependence of the Al,Ga;_,As energy gap as Ey(x)=(1519+ 1155
x +370 x*) meV. The Al molar fraction corresponding to the left-hand barrier is, in our case, x;=0.3.
In order to simplify the problem, we have taken homogeneous values of both the electron effective
mass and dielectric constant throughout the whole structure. Given that x is small enough, the numer-
ical differences that can be introduced via the inclusion of mechanical and dielectric mismatches are,
in fact, negligible. In consequence, the calculation procedure considers the corresponding GaAs values:
m, = 0.067m, (Mg being the electron free mass) and & = n? = 12.5.

3. Results and discussion

Fig. 1 contains our results for the energies of the lowest four electron states in the inverse parabolic
QW with rectangular barriers in the symmetric barrier configuration. Fig. 1a shows these quantities as
functions of the QW width for x. = x;, and Fig. 1b depicts the functional dependence of the energies on
the height of the inverse parabolic potential at the QW center, for L = 20 nm. The horizontal dashed
line indicates the energy position of the left-hand barrier top, V.

One may readily see that, as expected, the energies corresponding to the considered levels are
decreasing functions of the QW width. However, in this symmetric case, the range of L reported guar-
antees that only the first two confined states actually belong to the inverse parabolic structure
(although for narrow enough wells (L < 8 nm), there is only one). The higher ones appear as a result
of the influence of the infinite barriers put at +L_./2 for the sake of the calculation tool. That is why the
decrease observed for them is much less pronounced.

Keeping the symmetric QW geometry but reducing the height of the central parabolic barrier, Vj, it
is possible to confine the four lowest states allowed within the parabolic well region. All these quan-
tities are increasing functions of the central barrier height. By augmenting V}, the upper levels are pro-
gressively removed from the parabolic QW. It is also possible to notice that when V}, ~ V; = V; and the
QW is sufficiently wide, the ground state becomes degenerated, with the energy E, corresponding to
two different states in a double quasi-triangular QW. This is due to the effect of the central barrier that
uncouples the left and right potential wells.

The energy levels that correspond to the asymmetric barrier (V5 = Vo/2) geometry appear depicted
in Fig. 2. First, Fig. 2a shows these levels as functions of the QW width for a fixed parabolic central
barrier height V,, = Vp/4. Then, in Fig. 2b we present these quantities as functions of V, when L is fixed
at 20 nm.

As expected, the QW confined energies are now lower. According to Fig. 2a, if L lies below 3 nm, not
a single electron state confines within the inverse parabolic QW level; and in the range of widths re-
ported, there will be —again, at most- two electronic levels belonging to our active QW region. How-
ever, now the asymmetry prevents the degeneracy of the ground state when L becomes large.

With a fixed QW width, the variation of V}, implies the growth in the E;, (i=0,...,3), but in this case
the asymmetric QW is only able to confine the first three states when the central parabolic barrier
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Fig. 1. Energies of the lowest four states for a rectangular quantum well plus inverted central parabolic quantum well with
symmetric potential barriers. In (a) the results are as a function of the well width for a fixed value of the central potential
barrier: Vi, = V. In (b) the results are as a function of the height of the central inverted parabolic barrier for fixed values of the
quantum well width: L =20 nm.

height is small enough. The progressive increase in V}, up to the value of the right-hand rectangular
barrier can only lead to the occurrence of a single confined state, the ground one, whereas the higher
levels are pushed upwards to the region of energies confined by the infinite QW of width L.

To help understanding the optical properties presented below, we show in Figs. 3 and 4 the calcu-
lated coefficients Mgl and |Moo — My4| in the symmetric and asymmetric inverse parabolic QW config-
urations respectively.

From Fig. 3 we directly observe that the symmetry leads to the vanishing of intrasubband matrix
elements M;; (i=0,1). Therefore, we verify that no second-order optical rectification is achieved in
symmetric inverse parabolic QWSs with rectangular barriers. The square of the intersubband matrix
element, My;, has a mixed behavior as the result of the growth in the QW width. Initially, when
L =0, this element has its largest value, which corresponds to the expected value of the z-position be-
tween states that extend from — L. /2 to +L../2. Then, as long as the QW augments, this element will
represent, first, the expected value of the electron position between the ground state confined within
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Fig. 2. Energies of the lowest four states for an asymmetric rectangular quantum well (V; = Vo and V, = Vy/2) plus inverted
central parabolic potential barrier. In (a) the results are as a function of the well width for a fixed value of the central potential
barrier: V}, = Vp/4. In (b) the results are as a function of the height of the central inverted parabolic barrier for fixed values of the
quantum well width: L =20 nm.

the QW and the first excited state confined by the external infinite well. Since the ground state wave-
function is spatially localized inside the well, this expected value diminishes. But, as long as the width
L augments the ground state wavefunction spreads over a wider region and the first excited one be-
comes localizes in the well, provided the level E; confines in it. The overlap between the two wave-
functions strengthens and the intersubband expected value of the electron position starts to rise.
The further widening of the QW leads to the degeneracy of the ground state. In this situation, the elec-
tron probability density will have two well defined maxima centered at the quasi-rectangular —almost
uncoupled- wells. Therefore, the larger values of z will be those that greatly contribute to the expected
electron position value.

Observing Fig. 3b, it is possible to give a similar explanation for the increasing variation of |[Mo; | as
a function of Vj, when the well width keeps fixed. The larger the height of the parabolic central barrier,
the more defined the double quasi-triangular QW geometry. In consequence, the main contribution to
the electron position expected value comes from the bigger z-values -in positive and negative direc-
tions- inside the QW.
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Fig. 3. Involved matrix elements for a rectangular quantum well plus inverted central parabolic quantum well with symmetric
potential barriers. In (a) the results are as a function of the well width for a fixed value of the central potential barrier: Vj, = Vy. In
(b) the results are as a function of the height of the central inverted parabolic barrier for fixed values of the quantum well width:
L=20nm.

For the asymmetric inverse parabolic QW the situation for the dipole matrix elements is somewhat
different; but can be explained straightforwardly with the help of the results given in Fig. 2 for the
energy levels. First, we readily notice that the term | My, — M14] is, in general, distinct from zero. It
vanishes if L =0 because that is the limit of a symmetric infinite QW and both intrasubband matrix
elements become null. There is also another value at which the absolute difference vanishes (at
L~ 13.5 nm). In such case, the ground and first excited states confine within the QW region. Then,
what happens is that the expected value of the electron position becomes the same for both levels.
Otherwise, one notices that there is an increment in the term when the well width augments from
zero to approximately 7 nm, and then it begins to diminish. If one observes Fig. 2a, it becomes clear
that the initial increase comes from the combination of the progressive localization of the ground state
and the fact that the first excited one spreads over the region z € [ — L/2, +L./2]. Then, the expected
value My, is progressively larger than Mgo. Going above L ~ 5 nm, the value of the squared difference
remains practically constant because the energy E; changes very little —although diminishes. The
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Fig. 4. Involved matrix elements for a asymmetric rectangular quantum well (V; =V, and V, = Vy/2) plus inverted central
parabolic quantum well. In (a) the results are as a function of the well width for a fixed value of the central potential barrier:
Vi = Vo/4. In (b) the results are as a function of the height of the central inverted parabolic barrier for fixed values of the
quantum well width: L =20 nm.

reduction when L > 8 nm comes from the fall in E;, and turns to be more abrupt after this energy le-
vel becomes confined by the inverse parabolic QW because |¢1(z)|* mostly lies within the QW region.

The intersubband squared matrix element |Mg;|*> behaves much alike the symmetric case, with the
exception of the lowest L interval where it exhibits a rather sharp increase. It should be noticed that, in
that region, both Ey and E; correspond to extended states of the external infinite well and, as soon as
the ground state becomes confined by the inverse parabolic well, the magnitude of My; stops raising
and initiates a sharp decrease.

Analyzing the dependence of these two matrix element coefficients with respect to the variation of
the height of the central parabolic barrier [Fig. 4b], it is seen that the shape of the |My|* curve pretty
much resembles that of its corresponding one in Fig. 4a; but now, the justification is somewhat dis-
tinct. The initial increase observed for V, € [0,70] meV obeys to the fact that the first excited state
(localized within the QW or not) and the ground state shift upwards pushed by the rise of the QW bot-
tom. Therefore, the corresponding wavefunctions spread over a larger coordinate interval and the va-
lue of the intersubband matrix element of the electron position grows. The fall observed between 70
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meV and ~160 meV is due to the fact that augmenting V}, in such range implies that whilst | ¢o(z)[?
remains confined in the QW, the electron density of probability that corresponds to the first excited
state spreads towards the right-hand infinite barrier, a region where the ground state probability den-
sity is very small. The further rise in |[Mo;|* relates with the enhancement of the spatial extension of
the ground state, pushed upwards by the central barrier. One may also see an abrupt change in the
slope of this curve at the value of V,, where there is an anti-crossing of the first and second excited
states (in the infinite well region of confinement). This phenomenon is confirmed by noticing that
the value of [Mgo — M14] is almost equals to zero at that point, which is related to the fact that the
two states acquire very similar electron density distributions (notice that for such a value of V}, the
ground state lies close to the right-hand barrier top).

Nonetheless, the range of V), values of actual interest in regard with the coefficients of optical
absorption and nonlinear optical rectification is Vj, € [0, ~ 140 meV]. This is because we shall only
have the ground and first excited states confined within the QW in such an interval. It is directly seen
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Fig. 5. Resonant peak of the nonlinear optical absorption (omax) and nonlinear optical rectification ()omax) in @ symmetric
rectangular quantum well (V4 =V, = V) (a) and asymmetric rectangular quantum well (V; = Vg and V5 = V/2) (b) plus inverted
central parabolic quantum well. The results are as a function of the height of the central inverted parabolic barrier for fixed
values of the quantum well width: L =20 nm.
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from Fig. 5 that the rectification coefficient has a maximum peak amplitude at a value where, accord-
ing to Fig. 4b, there will the maximum contribution from the product |M01|2\M00 — M|

On the other hand, the maximum peak amplitude of the optical absorption coefficient shows a
decreasing behavior as a function of the height of the central parabolic barrier in the symmetric
and the asymmetric QW geometries as a result of the combination of the functional dependencies
of |[Mg1|? and wo; with respect to V;, (we see, for instance, that in the symmetric case E; — E, decreases
also when 7, augments).

With respect to the magnitude, it can be noticed that the values obtained for o,,,« are of the same
order of magnitude than the ones reported by Kasapoglu et al. [18] in the case of a symmetric inverse
parabolic QW with an applied electric field-although with a narrower well width.

4. Conclusions

In this work we have studied the properties of the electron states in Al,Ga;_x As-based inverse par-
abolic quantum wells, making emphasis in the asymmetric configuration with rectangular potential
barriers. The results show the dependence of the positions of the energy levels confined within the
well region as functions of its width and the height of the inner inverse parabolic barrier. This geom-
etry allows, in principle for the appearance of intersubband electron-related optical responses like the
nonlinear optical rectification, without the need, for instance, of the application of external probes like
an electric field.

However, since the asymmetric system can accommodate less confined levels, there is a wider
range of central barrier heights in which ~compared with the symmetric quantum well case- no inter-
subband transition occurs and the optical responses considered are not present. But in the particular
configurations where these transitions between the confined ground and first excited are possible, the
magnitude of the optical rectification peak is more than order of magnitude larger than its correspond-
ing one in -for example- asymmetric Poschl-Teller quantum wells [24]; and of the same order of mag-
nitude than yomax in the case of exciton-related nonlinear optical rectification in asymmetric
cylindrical quantum dots under the influence of an external electric field [25]. Therefore, we may con-
clude that a compositionally graded heterostructure like the inverse parabolic QW could find applica-
tion as an optical rectifier.
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