PHYSICAL REVIEW D 87, 053016 (2013)
Five texture zeros and CP violation for the standard model quark mass matrices
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The phenomenology of the five independent sets of 3 X 3 quark mass matrices with five texture zeros is
carried through in full detail, including predictions for the CP-violation asymmetries. Our study is done
without any approximation, first analytically and then numerically.
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L. INTRODUCTION

Although the gauge boson sector of the standard model
(SM) with the SU(3). ® SU(2); ® U(1)y local symmetry
has been very successful [1], its Yukawa sector is still
poorly understood. Questions related to this sector, such
as the total number of families in nature, the hierarchy of
the charged fermion mass spectrum, the smallness of neu-
trino masses, the quark mixing angles, the neutrino oscil-
lations, and the origin of the CP violation, remain open
problems in theoretical particle physics.

The mechanisms for fermion mass generation and flavor
mixing can be classified into four different categories:
(i) radiative mechanisms [2] (which includes the so-called
Froggat and Nielsen mechanism [3]); (ii) texture zeros in the
mass matrices which may predict self-consistent and experi-
mentally favored relations between fermion masses and
flavor mixing parameters [4,5]; (iii) family symmetries—
discrete [6] and continuous symmetries and global and
local gauge symmetries [7], and (iv) see-saw mechanisms
for electrically neutral [8] and charged particles [9], related
to a natural interpretation of the smallness of some fermion
masses.

In the SM after the local gauge symmetry has been
spontaneously broken, the quark mass terms are given by

(1.1)

where Uy, = (itg, Co, 9)1, Do, = (do, 50, bo), Uog =
(ug, o, 19)%, and Dog = (dy, so, bo)k, (the upper T stands
for transpose, and the down zero stands for weak basis
states). The matrices M, and M, in (1.1) are in general
3 X 3 complex mass matrices. In the most general case,
they contain 36 free parameters. In the context of the SM,
such a large number of parameters can be drastically cut by
making use of the polar theorem of matrix algebra, by
which one can always decompose a general matrix as the
product of a Hermitian times a unitary matrix. Since in the
context of the SM the unitary matrix can be absorbed in a
redefinition of the right-handed quark components, this
immediately brings down the number of free parameters
from 36 to 18 (the other 18 parameters can be hidden in the

_‘EM = UOLMMUOR + D_OLMdDOR + H.C,

1550-7998/2013/87(5)/053016(14)

053016-1

PACS numbers: 12.15.Ff

right-handed quark components in the context of the
SM and some of its extensions, but not in its left-right
symmetric extensions).

So, as far as the SM is concerned, we may treat without
loss of generality M, and M ; as two Hermitian quark mass
matrices, with 18 real parameters in total, out of which six
are phases. Since five of those phases can be absorbed in a
redefinition of the quark fields [10], the total number of
free parameters we may play with in M, and M ; are 12 real
parameters and one phase; this last one used to explain the
CP-violation phenomena.

But in the context of the SM it is always possible to
implement the so-called weak basis (WB) transformation,
which leaves the two 3 X 3 quark mass matrices Hermitian
and does not alter the physics implicit in the weak currents.
Such a WB transformation is a unitary transformation
acting simultaneously in the up and down quark mass
matrices [11]. That is

M, — M® = UM, U, M, — MR = Um,UT,

(1.2)

where U is an arbitrary unitary matrix. We say then that the
two representations (M, M ;) and (MR, M®) are equivalent
in the sense that they are related to the same V gy mixing
matrix. This kind of transformation plays an important role
in the study of the so-called flavor problem.

In the last paper of Ref. [11] it was shown that related to
the mass hierarchy m, < m, < m,and m; < m; < my, itis
always possible to perform a weak-basis transformation in
the Hermitian quark mass matrices such that

(MB)y = M), = (MB) ;3 = (ME);, = 0;

o, equivalently, (1.3)

(MB) = (ME),, = (MB) 3 = (ME);, = 0.

According to this, it is always possible to have
Hermitian quark mass matrices with three texture zeros
that do not have any physical implication. With three
texture zeros, the number of free parameters in MR and
MR reduces from twelve to nine real plus one phase, just
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enough to fit the measured values for the six quark masses,
the three mixing angles, and the CP-violation phenomena.
Any extra texture zero can only be a physical assumption
and should imply a relationship between the quark masses
and the parameters of the mixing matrix. But the maximum
number of such texture zeros consistent with the absence of
a zero mass eigenvalue and a nondegenerate spectrum is
just six, with three in the up and three in the down quark
sectors, respectively.

In what follows we are going to present analytic and
numeric results for the set of SM quark mass matrices
containing five texture zeros, taking special care to accom-
modate the latest experimental data available [12], includ-
ing the CP- violation phenomena.

This paper is organized as follows. In Sec. II some
features of the SM mixing matrix are presented, in
Sec. III we introduce the five independent sets of 3 X 3
quark mass matrices with five texture zeros, and in Sec. [V
we present our analytic and numerical analysis. The results
are discussed in Sec. V, and the conclusions are presented
in Sec. VI. Two appendixes are written at the end: the first
one presents the experimental measured values used in the
main text and the second one is a purely mathematical
appendix, dealing with the analytic diagonalization of real
3 X 3 orthogonal matrices.

II. THE SM MIXING MATRIX

In the SM for the six-flavor case, the Baryon charged
weak current is given by

Jur = Uo¥uDor = ULy, VekmDr, 2.1
where Ve = U, U}L is the Cabibbo-Kobayashi-Maskawa
(CKM) mixing matrix, with U, and U, the unitary matri-
ces which diagonalize the Hermitian M, M} and Mde;
square mass matrices, respectively, and U, = (i, ¢, 7); and
D; = (d, s, b)! stand for the quark field mass eigenstates.
Vekwm 18 @ 3 X 3 unitary matrix. Its form is not unique,
but the permutation freedom between the three generations
can be removed by ordering the families such that
(M], u,, l/l3) — (M, c, l) and (dl’ dz, d3) — (d, S, b) The
complex elements of Vg are thus commonly written as
|

C12C13
— i
Vekm = | —S12¢23 — Crasp3813€

_ is
$12823 = €12€23513€
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Vud Vus Vub
VCKM = Vcd Vcs Vch (22)
Via Vis Vu

The unitary of the CKM mixing matrix leads to relations
among the rows and columns of Vg in particular we
have for the columns,

Vudvtjs + Vcdvjs + thv;; = Or (233)
Vi Vi, + Vo Ve, + V V=0, (2.3b)
ViaVe, + VegVe, + VgV =0, (2.3¢)

Each of these three relations requires the sum of
three complex quantities to vanish and so can be geomet-
rical represented in the complex plane as a triangle. These
are the unitary triangles [13], though the term ‘‘unitary
triangle” is usually reserved for the relation (2.3c) only.

The three angles of the unitary triangle represented
by (2.3c), which are physical quantities and can be inde-
pendently measured by CP asymmetries in B decays, are
defined as follows [13]:

T

a =arg| — -4 LA (2.4a)
L Vudvub-
[ V.,V

B =arg| — <] (2.4b)
L thvtb .
T VoV

y=arg| — 4 ub| (2.4¢)
L VCdVCb-

The experimental findings at the B factories, fitted to
close the triangle, are [14,15]

(a, B, y), = (95.9%22,21.8 = 2.8,67.2744)  (2.5)

with an accuracy in the measurement of sin 28 no less than
20% [16].

The Cabbibo-Kobayashi-Maskawa Vg matrix, can be
parametrized by three mixing angles 6;;, 1 <j, i, j = 1,2,
3, the angles between the ith and jth families, and only one
CP violating phase [10]. Of the many possible parametri-
zations, the standard choice is [12,17]

$12€13 size”!
_ is
C12C23 — S12523813€ $23€13 | (2.6)
_ _ i
C12823 — S$12€23513€" €23C13

but the most important fact related to this matrix is that most of its entries have been measured with high accuracy, with the

following bounds [12,14],

0.970 < |V,,] = 0.976 0.222 < |V,,| =0.226 0.003 < |V,,| < 0.004

ylexp) =

0.217 < |V, = 0.237 0.960 < |V,,| =0.990 0.039 < |V,,| = 0.041 |,

2.7)

0.008 < |V,; =0.009 0.038 < |V,| =0.042 0.999 < |V,,| < 1.000
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where the experimental numbers quoted above at 95% C.L.
are beyond the purely experimental bounds (which call for
example for a |V,,| > 0.79) because they are restricted to
fit the unitary conditions of V. The numbers quoted in
(2.7) are the most convenient for our purpose, due to the
fact that we are going to confront these numbers with quark
mass matrices that must fit the SM constraints.

I11. FIVE TEXTURE ZEROS

As mentioned before, the maximum number of
texture zeros in the quark mass matrices of the SM,
consistent with a nondegenerate spectrum and with the
absence of a zero-mass eigenvalue, are three in the up
and three in the down quark sectors, respectively. With
this in mind, Harald Fritzsch proposed some time ago [4]
the existence of parallel three-texture-zero structures for
the 3 X 3 quark mass matrices M, and M, of the SM, such
that (Mq)]l = (Mq)22 = (Mq)l?: = (Mq)Sl = O’ q=u, d.
This original Fritzsch ansatz is named today in the litera-
ture as the “parallel nearest neighbor interaction form.”
With six texture zeros, there are left just six real parameters
plus one phase to describe the six quark masses, the three
mixing angles, and the CP-violation phase; hence, the
three mixing angles of the CKM mixing matrix can be
expressed as functions of the quark masses and of the
CP-violation phase.

As it has been shown in several places, the parallel
and nonparallel six-texture-zero structure does not work
properly and it has been ruled out by analytic [18] and
numeric [19] studies (only a charm quark mass half its
measured value can rescue this ansatz).

Later, Ramond-Robert-Ross (RRR) gave up the paral-
lelism between the structures of M,, and M ; and found that
there exist five phenomenologically allowed patterns of
Hermitian quark mass matrices, each one of them with
five texture zeros [5], as listed in Table 1.

TABLE I. Five RRR patterns of Hermitian quark mass
matrices.
Pattern M M
0 a, O 0 a O
I ( a, ¢, b, ) ( a; ¢4 0 )
0 b; d, 0 0 d,;
0 a, O 0 a; O
11 < aj: Cy 0 ) ( Cl:} Cq bd )
0 0 d, 0 b d,
0 a, O 0 a; O
I (a’; 0 b,,) (a:} Cq bd)
0 b; d, 0 b, d,
0 0 aqa, 0 a; O
v ( 0 ¢, b, ) (a:} cgy O )
a; by d, 0 0 d,;
0 0 a, 0 a; O
v ( 0 ¢, O ) (az cqg by )
a, 0 d, 0 by d,
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The following remarks are in order:

(1) Patterns I, I, IV, and V have three different phases,
so two are unphysical. Pattern III has four different
phases, so three are unphysical.

(i) Each pattern has seven real parameters, which
means two physical predictions. That is, for each
pattern two of the three mixing angles can be written
as a function of the six quark masses and of the
CP-violation physical phase.

(iii) The five different RRR patterns commit to at least
one (some with both) of the weak basis texture
arrangements in Eq. (1.3).

In what follows we are going to study in detail these
independent RRR patterns, paying special attention in each
case to the prediction for the Cabbibo angle and to the
CP-violation phenomena.

IV. ANALYTIC AND NUMERIC ANALYSIS

A. Pattern I

This pattern was studied previously in Ref. [18]. The
complex Hermitian quark mass matrices for this pattern
can be written as

0 la, e 0
My = la,le”i* Cy b, lee |, @.D)
0 b, |e~ i d,
0 layle’ 0
M = lagde ¢, 0 (4.2)
0 0 4,

As can be seen, for this pattern the mixing angles 63 and
6,3 between the third family and the first two families,
come only from the up quark sector. The complex phases
are removed by going to a prime basis using the following
unitary transformations:

M6 Uy d6 do
ey | =uvrt| e | sh | =050 | 43
t(/) o b6 bO

where UY? and U Zf are complex diagonal matrices as
presented in Appendix B.

So, in the primed basis, the algebra reduces to diagonal-
ize the two real symmetric mass matrices (B17) for ¢ = u
and (B7) for ¢ = d, which are

0 la, © 0 a4l ©
Mi=\la,) ¢, bl M,=|lasd c; 0|
0 b, d, 0 0 d,

with diagonalization carried through in Appendix B.
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From the former analysis we can evaluate the mixing
matrix Vi, = 0¥ U U0 T, where U2 and UY
are as defined in (4.3) and calculated in Appendix B and
O and OZf are given by (B19) and (B9), respectively.

The elements of the CKM mixing matrix can be ex-
pressed in the context of this pattern as

Ndo—m, (g + e [d,mgm,)

Jd,—m,(— Jmmgm, + e\ [d,mm,)

PHYSICAL REVIEW D 87, 053016 (2013)
(VéKM)lm = (Olfb)ll(OZf)ml + eiqsl(oyb)[Z(OZf)mZ
+ €i¢2(0ffh)13(02f)m3,

where ¢ = (alf — ab) and ¢, = (af + BY).
The use of the matrices in Appendix B allows us to write
the following analytic mixing matrix:

4.4)

dumatm)m,—=m,)m+m,)

—ei?1 \/dumrmd(du +mc)+\/(du +m ) mgm,m,
N mg+m)(me+m)m+m,)

1 —
VCKM -

N (mg+m)m—m,)(m,+m,),

e\ [d,m.m;+ Jmgm,m, it

— pit2 Ndutmo)m —d)my
du(mt_mu)(mf +mu)

me(m,—d,)(d,—m,)

‘/du(md+mx)(m(» +mg)(me+my)

Ny (metm)me+m,) |

dyFme

\/—du +m, (e’ \/dumdm,+ M,

\/—d,, +m,(e'?1 \/d,,msm,—. [momgm,

pihs Nt mom (d,—m,)

'\/du (mg+my)(me+m)(m,—m,)

where as anticipated, the last column is a function of
the parameters in the up quark mass matrix only, and a
common phase ¢'?2 in that column can be removed by a
redefinition of the b quark field.

Our approach now is the following: first we use the free
parameter d, in order to fit the experimental value V., and
then use the phase ¢, to fit |V, |; when the central quark mass
values are used, we obtain for this pattern the result d,, = m,
and ¢; = 1.6. The next step is to fine-tune both d,, and ¢,
using a random numerical analysis and quark masses m,, and
my at 20 values with the other four quark masses at 1o [20]
and aiming to get results as close as possible to the ones
presented in V) in (2.7). Finally, for the best values obtained
we calculate the CP asymmetries «, 3, and 7y as in (2.4).

Notice that a crude approximation for which d,, = m,,
using further m, > >m_, > >m,,, implies from the mixing

matrix Vi, that
Voo~ s | e s m_| 4.5)
‘ mg + my mg me

a form advocated in several references [21]. But to set
d, = m, implies b, = 0, according to Eq. (B18), and not
only that but we also get back to a parallel six texture zero
pattern with 6,3 = 6,3 = 0 (something that can be seen
also from V{y, the 3 X 3 mixing matrix above). So, our
fine-tunning approach is mandatory, d,, must be different
from m,, and any analysis done for which expression (4.5)
plays a central role must produce dubious predictions. In
this regard, the conclusions in Ref. [21], which are contrary
to ours, may be wrong.

For pattern I, the numerical subroutines used throw the
following numbers (mass parameters are in GeVs and
angles in radians):

m, =0.0023,  m, =0560, m, =172,
mg =0.0029,  m, =0.06,  m,=2.89,
d,=171.721<m, &, = 161,

N mg+mg)(me+m,)(m—m,)

A du(metm)(m,—m,)

which imply the following 3 X 3 mixing matrix:

0.97428 0.22532 0.00264
0.22517 0.97349 0.04020 |,
0.00865 0.03934 0.99919

with numbers in quite good agreement with the experi-
mental measured values. Finally, the three angles of the
unitary triangle of the B decays CP asymmetries calculated
according to (2.4) for this pattern are

(e, B, y)k = (90.79, 16.51, 72.68),

which not only close the triangle but are such that & and y
agree with the measured value at 1o and B at 20.

B. Pattern 11

Notice for this pattern that the mixing angles 6,5 and 6,3
between the third family and the first two families come
only from the down quark sector. Also, this pattern is
obtained from the previous one by the following replace-
ments: M, = M and M}, — MY and d, — d,;, where d; is
the free parameter of this pattern.

As in the previous pattern, we start by removing
the complex phases from MY and MY and then use the
results in Appendix B in order to diagonalize the orthog-
onal mass matrices. When done, the CKM mixing matrix
for this pattern reads VI, = OY UL U"PT[0%P]", where
the orthogonal and unitary matrices are presented in
Appendix B. The elements of the CKM mixing matrix
can be expressed now as

(Ve = (0)1(05),1 + €41(0i)n(0}") 2

+ e ®2(00)5(0%7) 30 (4.6)

where ¢ = (af — a¥) and ¢, = —(ay + BY), which
allows us to write the following analytic forms:
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4.7)

no_ memy(dg — mg)my e ym,(dy — mg)my
U one T m)d Oy — g ) e+ m)omy = m)mg + )
v Jmempmg(dy + my) 3 e'tr\fmom,(d; + my)
Y N md my F m)mg +m)  ngF m)om, + m)ng + m)
yI — V(=d, + my)mgmem, e iyfmy(=dy + my)m, ’
Vime + m,)d (m, —mg)(my, + mg)  f(m, + m,)(my, — my)(my, + my)
i — e 1\(dy — mg)mgm, _ Vmmy(dg — mg)m ’
Vime +m,)(my, —mg)(mg + my)  (m, + m,)d,(m, —mg)(mq + m,)
VI = — e P1ymsm.(dy + my) Vmymg(dy + mg)m,
T N m ), ¥ m)ng T mg) e F m)dmy, + m)mg m)
pil = e'1yfmemy,(—dy + my,) V(=dy + my)m,mgm, ,
Vime +m,)(my, — mg)(my, + my)  J(m, + m,)d,(m, — mg)(m, + m,)
T —— (my, — dg)my(dy + my) VIl = gids (my, — dy)(dy — mg)m

dy(my, — mg)(myg + my)

dd(mb + ms)(md + ms)’

VI = it my(dy —mg)(dy + ms),
" dy(my, — mg)(my, + my)

where again the last row is a function of the parameters in
the down quark mass matrix only, and the phase /> can be
removed by a redefinition of the field for the quark z. The
form of the former mixing entries recommends to use d; to
fit the experimental measured value V,, and then ¢, to fit
V.s» Which produces d; = m;, and ¢, = 1.45.

Notice that for d; = m, and m, > m,,, VI acquires the
form presented in Eq. (4.5). But again, d; = m, drives
pattern II to a six-texture-zero ansatz with 63 = 6,3 = 0,
implying once more a mandatory fine-tunning for the free
parameter d,.

The random numerical analysis for pattern II throws the
following numbers (mass parameters in GeVs and angles
in radians as before):

m, = 0.0023,
my = 0.0029,
d, = 2.8855 < m,,

m, = 0.560,
m, = 0.060,
¢1 - 16,

m, = 172,
my, = 2.89,

which imply the following 3 X 3 mixing matrix:

0.97437 0.22493 0.00250
0.22478 0.97363 0.03900 |,
0.00856 0.03813 0.99924

with numbers again in good agreement with the experi-
mental measured values. Finally, the three angles of the
unitary triangle of the B decays CP asymmetries are
calculated for this pattern to be

(o, B, 7)1V = (86.78,16.11,77.11),

which again close the triangle and are such that « and y
agree with the measured value at 1o with a value for
B at2o.

C. Pattern II1

Proceeding as in the two previous patterns and using
the notation introduced in Appendix B, we have now
Vil = O U U T[0PTT, where the elements of the
CKM mixing matrix can be expressed as

(Vek)im = (O 1(04")n + €21(07")n(0}) 2

+ e (08" ;3(04°) 30 (4.8)

where ¢ = (o)) — ay) and ¢, = (a, — a) + B — BY),
which allows us to write the following analytic forms:
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(m; —m,) mm mymg(d; — my) 4
m _ ¢ c s 4 it [ _
Vud J(mt - mu)(mc + mu)(mb - md)(md - ms) dd(mt —m,+ mu) ¢ mumd(dd md)

+ el®2 mymg(m, + m,)(m, — m,)(my, — dg)(dy + my)
dd(m[ - m, + mu)(ml - mc) '

(m, — m,) mmomymy(dy; +mg) .
m _ t c e s) _idy d, +
VMS J(mt - mu)(mc + mu)(mb + ms)(md + ms) dd(mf - m. + mu) ¢ mumS( d mS)

_ ei¢2\/mums(ml + mu)(mc B mu)(mb B dd)(dd + md)
dy(my —m + m,)(m, —m,) '

(mt -—m ) mym_.m md(mb - dd) :
VIH — ¢ c's + i —d
b ﬂm—mm%+mmW+mmW+m» dylmy —mg ) €y = da)

dd(mr - m, + mu)(mt - mc)

3 ei¢2\/mumh(m, + m,)(m. — m,)dy + my)(d; — md)J

ylr — (mt + mu) mtmumbms(dd B md) — ol ,m my(d, — my)
«d (mt + mc)(mc + mu)(mb - md)(md + ms) dd(mt —m.+ mu) T ¢

dd(mt —m + mu)(mt + mu)

(m, + m,) m,m,mymy(d,; + my) I
VHI _ t u "ty K + i}, d, +
“ J(mt + mc)(mc + mu)(mb + ms)(md + ms) dd(mt —m. + mu) ¢ mcmS( ¢ mS)

+ ei¢2\/mcms(mt - mc)(mc - mu)(mb B dd)(dd - md)
dd(mt - mg + mu)(mt + mu) ’

Yl — (mt + mu) mtmumsmd(mb - dd) — oit ,m m (m —d )
cb (mt + mc)(mc + mu)(mb + ms)(mb - md) dd(mt - me + mu) o b ¢

+ ¢i?2 memy(m, — m.)(m. — m,)dy — mg)(dq + my)
dd(mt —m; + mu)(mt + mu) ,

(m, — m,) m.m,mymg(d; — my) .
VIII — C u C u R + l¢] d _
z ¢%+mNW—MM%+mMW—md dylmy —mg + gy € Nmimalda = ma)

B e,’¢2\/mcmd(mt —m)(m. —m,)(m, —dg)(d,; + ms)J

_ e[¢2 mtmd(mt B mc)(mt + mu)(mb B dd)(dd + ms)
d;(m, — m, + m,)(m, — m,) ’

(m - m ) m.m mbmd(dd +m ) .
V[u _ c u cMy s) _ idy (d, + )
z ¢w+mmm—mmW+mﬂm+m» dylm, —mg F gy ¢ Nmms(da+m,)

+Mvwmwﬁmm%+mmm—@wfme

dd(mt - m; + mu)(mc - mu)
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(mc B mu)

yll —
b (mt + mc)(mt - mu)(mb + ms)(mb - md)

mcmumdms(mb B dd) i ’
+ ih, _
[‘\/ dd(mt _ mc + mu) 5 mtmb(mb dd)

dd(mt - m. + mu)(mc - mu)

N ei¢2\/m,mb(mt —my)(m, + m,)(dy + m)(d,; — md)J' (4.9)

Notice that for d; = m, and m, > m, > m,, VI ac-
quires the form presented in Eq. (4.5). But again, d; = m,,
drives pattern III to a six-texture-zero ansatz.

Written in the previous form, all the entries for Viky
include two different phases, ¢; and ¢,, none of them
absorbed immediately by a redefinition of a single quark
field; but since it is a well-known fact that the SM mixing
matrix can be parametrized with only one single phase, our
analysis makes sense only for the following three different
cases, which must be studied separately:

(1) Case 1: ¢p; # 0, ¢p, = 0.

(i) Case 2: ¢p; =0, ¢, # 0.

(iii) Case 3: ¢, = ¢, # 0.

The numerical analysis for pattern III and for ¢; = ¢,
throws the following numbers (mass parameters in GeVs
and angles in radians as before):

m, = 0.0023,  m,=0560, m, =172,
my = 0.0029,  m, =006  my, =289,
dd = 2889, Q’)l = d)z = 16,

(VoD im = (02101 + €41(05) (OF) iz + €92(05) 50 ) 3,

where ¢ = (ad — @) and ¢, = (a? + By —

which imply the following 3 X 3 mixing matrix:
0.97437 0.22493 0.00247
0.22408 0.97365 0.03837 |,

0.00817 0.03757 0.99926
with numbers again in good agreement with the experi-
mental measured values. Finally, the three angles of the

unitary triangle of the B decays CP asymmetries calculated
for this pattern are

(a, B, y)V = (92.73, 16.22, 71.06),

which again close the triangle and are such that « and y
agree with the measured value at 1o and B at 20

D. Pattern IV
Proceeding in a similar way, we have for this pattern
that the CKM mixing matrix reads now Vi, =
05U U0 T, and the elements of the CKM mixing
matrix can be expressed as

(4.10)

@), which allows us to write the following analytic forms:

\/mtmcms(mt - du + mc) + eid)l\/mdmu(du -

me + mu)(mt +m, — du)(mt -my, = du)

v _
Vud Jimg + my)(=d, + m, + m;)(m, + m,)(—=d, + m, + m, — m,)(m, + m,) ’
YV — — Jmmemg(m, — d, + m,) + e '\Jm;m,(d, — m, + m,)(m, + m, — d,)m, — m, — du)’
Jmg + m)(=d, + m. + m)(m. + m,)(=d, + m. + m, — m,)(m, + m,)

VIV = oit Jm,(m, —d, + m,) ’

Vime + m,)(m, + m,)
yIy — —e'Prmmy(m, — d, + m.)(d, — m. + m,) + Jmm.m,m,(m, — d, — mu))

Vme(mg + mg)(m, + m,)m, —m)(m; + m. —m, —d,)

v _ etrmfm,(m, — d, + m.)(d, — m. + m,) + Jmym.m,m,(m, — d, — mu)’

Jm (my + mg)m. + m,)(m, — m.)(m, + m, — m, — d,)
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VIV = gits Jm. (m, — d, + m,)
Jim, — m.)(m, + m )
Vv _ e'Prfmgm,(m, —d, + m.)d, — m. +m,)(m, —d, — m,) + Jmm.m,(d, — m, +m,)
; g m)d, = me + m)on, + m; — my, — d)om, — m)om, + m,) ’
€= 0y Ty = = 0y =) + T d, + me = m)

\/(md + ms)(du
V;IIY _ €i \/mt(d
V(m, —

- m, + m,)

m)m,—i—mu)

where again the common phase ¢’#2 in the last column can
be removed by a redefinition of the b quark field.

The numerical analysis for pattern IV is (mass parame-
ters in GeVs and angles in radians as before)

m, = 0.00127,  m.=0.619, m,=1717,
my = 0.0028,  m, = 0055  m, =289,
d,=17139, ¢, = L9,

which imply the following 3 X 3 mixing matrix:
0.97331 0.22549 0.00333
0.22934 0.97242 0.04144
0.00889 0.04163 0.99909

5

with numbers again in good agreement with the experi-
mental measured values.

Finally, the three angles of the unitary triangle of the B
decays CP asymmetries calculated for this pattern are

—m, +m,)m, + m, —

m, — du)(mt -

m.)(m, + m,)

4.11)

(e, B, y)IV) = (95.23,19.36, 65.42),

which not only close the triangle, but the three agree with
the measured value at 1o.

E. Pattern V
Proceeding in a similar way, we have for this pattern
that the CKM mixing matrix reads now Vi =

0d4yddy P [0%P]", and the elements of the CKM mixing
matrix can be expressed as

(Vs)im = (08),1(04°) 1 + €41(080)15(04?) 2
+ ei¢2(03d)l3(0:}/h)m3’ (412)
where ¢, = —a¥ and ¢, = (ad — a¥ — BY), which

allows us to write the following analytic forms:

vV \/mbmsmt(dd —my) — e ?2f(m,
ud —

—dg)d, + mg)mgm,

Vd (my, — mg)(img + mg)(m, + m,)

s

— dg)(dg —

md)msmu

Vo= mpmam,(dy + my) + e'*24/(m,

us

\/(mt + mu)dd(mb + ms)(ms + md)

s

\ ms(dd + ms)

>

4.13)

W Jmamom,(m, — d,) + e'2\fm,m,(m; + d,)(d, — my,)
ub

Jim, + m,)d (m, — mg)(my, + my)
Vyd _ €i¢' de(dd - md) chx _ —€i¢'

Vmy —mg)(imy + my)

\/(mb + ms)(md + ms)’

my,(my, — d;) v

V;; = ei¢l s V =

_\/mumbms(dd -

my) — ' P2fm,m (m, — dg)(d,; + my)

Vm, — mg)(m, + my) .

V(m, + m,)dy(m,

- md)(ms + md)

VY — —m,mymy(dy + my) + €2 fmmi(m;, — d,)(dy — my)

ts y
‘\/(mt + mu)dd(mb + ms)(ms + md)

VY — —m,mamy(my, — dg) + e'*24fm,my,(dy + m,)(dg — my)

th )

Vm, + my)d (my, + mg)(m;, — my)

where the phase ¢; can be removed by a redefinition of the charm quark field.
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The numerical analysis throws now the following
numbers (mass parameters in GeVs and angles in radians
as before):

m, = 0.00127,  m, =0.619,  m, = 1717,
my =0.0029,  m, =0.055,  m, = 2.89,
d;=2885 ¢, =109,

which imply the following 3 X 3 mixing matrix:

0.97463 0.22377 0.00266

0.22361 0.97381 0.04122 |,

0.00891 0.04034 0.99915
with numbers again in quite good agreement with the
experimental measured values. Finally, the three angles

of the unitary triangle of the B decays CP asymmetries
calculated for this pattern are

(@ B, 7)) = (88.83, 16,36, 74.81),

which close the triangle and are such that & and y agree
with the measured value at 1o, with a value for 8 at 20.

F. Related patterns

The analysis shows that a weak basis transformation
using the unitary matrix

1
U=1]0
0

- O O

0
1|=ut
0

shows that UMSSU = M™? and also that UMY U = M4,
So, a pattern like

0 0 a, 0 0 ay
MMVI = 0 bu 0 ) M}{I = 0 dd bd
a, 0 ¢, ay by ¢y

should be physically equivalent to pattern II.
A pattern like

0 a, O 0 0 ay
M =\1a ¢, b, |; M"T=10 ¢ 0
0 b d, a0 d,

should be physically equivalent to pattern I'V.
And a pattern like

0 a O 0 0 ay
MY =1a b, 0 [ MM=10 c¢; by
0 0 ¢ ay by d,

should be physically equivalent to pattern V.

PHYSICAL REVIEW D 87, 053016 (2013)

V. DISCUSSION OF THE RESULTS

All the five-texture-zero patterns studied here produce
numerical results for the CKM mixing matrix and CP
violating parameters (a, B3, y) in agreement with the mea-
sured values up to 2¢. Pattern IV reproduces them up to
1o. Since the results are presented for the best-fit values,
all the patterns are predictive, as far as the up-to-date
measured numbers are concerned.

But, how sensitive is our numerical analysis to the
variations of the quark mass values? Since the answer to
this question is pattern dependent, let us do it for pattern I'V,
the most predictive one.

Since m, > m, > m, and the experimental uncertainty
in the top quark mass Am, is such that Am, > m, > m,,
then for the up quark sector it is enough to consider
variations to the top quark mass in the interval 168.7 =
m, (GeV) = 174.7.

Our results show that the numerical predicted values
remain stable for the entire interval, as far as the difference
(m, — d,) stays constant, in a range from 0.28 to 0.33
[notice that all the CKM entries for pattern IV but V1Y ~1
in Eq. (4.11) depend upon the difference (m, — d,,)].

Now, for the quark masses in the down sector, the CKM
mixing matrix for pattern IV does not depend upon the b
quark mass (due to the block form of the down quark mass
matrix in this particular pattern). For the other down quark
masses we have that the numerical results are stable as far
as the strange quark mass is in the range 0.051 =
m, (GeV) = 0.060 and for the down quark mass 0.025 =
my (GeV) = 0.030.

Can we relate our different parametrization of the
CKM mixing matrix with other different parametriza-
tions, especially to the advocated standard parametriza-
tion [17] in matrix (2.6)? The answer to this question is an
academic exercise without much physical sense, because
the adoption of a parametrization of the flavor mixing is
an arbitrary fact and not a physical issue. In particular,
our phase ¢, in pattern IV and the phase 6 of the standard
parametrization are not physical quantities. The real
physical parameters are in this case the CP-violating
mixing angles («, B, y).

Also, the rotation parameters 6q,, 0,3, and 63 of the
standard parametrization are not physical entities either.
For example, in the standard parametrization, 6, =
tan ~!(V,,/V,4), Which is a real number. In any of our
parametrizations, (V,,/V,,) is a complex number, without
direct relation to 61,.

Since generally one expects that the flavor-mixing pa-
rameters do depend on the elements of the quark mass
matrices, we feel that our CKM mixing entries are more
realistic that any ad hoc parametrization.

Can we do the mathematical exercise to relate the
phase ¢, in pattern IV to the phase 6 of the standard
parametrization (or to any other phase of an arbitrary
parametrization)? The answer is yes” and the simplest
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way to do it is to use the Jarlskog [22] invariant, which for
the sake of convenience we use as

= *Im. (Vus Vcb V*b Vc*s)r (5 1)

u

which for the standard parametrization takes the form
J = 15¢33¢235125135,3 sin 8, with a numerical evaluation
producing [12] (2.80 = J = 3.16) X 1073,

For pattern IV, an analytic expression for J can
be obtained, but it is prohibitively long to quote here.
A numerical evaluation is more viable, and for the best-
fit values for the quark masses, we get J = 2.87 X 1073,
which falls in the allowed range of the standard parame-
trization. Of course, this value is sensitive to the variation
of the quark mass values. In particular, we see that a
strange quark mass (keeping the other masses in the best-
fit values) in the interval 0.048 < m, (GeV) = 0.056 is
compatible with the range of the Jarlskog invariant of the
standard parametrization.

VI. CONCLUSIONS

In this paper we have presented our exhaustive study
of all the possible five-texture-zero quark mass matrices
and their connection with the CP-violation phenomena for
three SM families. Analytic and numeric studies were
performed in full detail.

Let us provide the following concluding remarks:

(1) In the context of the SM or its extensions without
right-handed currents, the quark mass matrices M,
and M, can be taken to be Hermitian without loss of
generality. Non-Hermitian quark mass matrices are
relevant only when physics beyond the SM is being
considered.

(2) By counting free parameters we have that three
texture zeros or less in the Hermitian quark mass
matrices of the SM do not imply physical predic-
tions for the elements of the flavor-mixing matrix,
because these texture zeros can always be obtained
in a trivial way by using weak basis transformations.

(3) Each one of the five RRR patterns studied here
includes two physical relationships between the
quark masses and the mixing angles, as can be
seen from VéKM; #=11I, ..., V. These predictions
are case dependent but far from being trivial.

(4) Four and six texture zeros imply one and three
physical relationships, respectively, and allow us
to write one of the three mixing angles as functions
of the six quark masses and the CP-violation phase.
But six texture zeros are already ruled out by ana-
lytic and numerical considerations [18,19].

(5) More than six texture zeros are not possible because
they imply either Det M, = 0 or a degenerate quark
mass spectrum, both of which are incompatible with
the real world.

(6) For the five patterns studied here, number IV
(or equivalent number VII) reproduce all the

PHYSICAL REVIEW D 87, 053016 (2013)

experimental measured values, including the
CP-violation asymmetries, at 1o. For the other
patterns, the 8 angle appears at 2¢. So, five texture
zeros are far from being ruled out.

(7) In our analysis for pattern IV, the several con-
straints for the strange quark mass imply 0.051 =
m, (GeV) = 0.056.
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APPENDIX A: MASS VALUES

For the experimental mass values used for carrying
out the numerical calculations in the main text, we
have adopted the following ranges of quark masses [20]
at the M energy scale (where the Vg matrix elements
are measured).

Down sector

m, = 2.89 = 0.009 GeV
mg = 5571% MeV
my = 2.90*13% MeV

Up sector

m; = 171.7 = 3.0 GeV
m, = 0.619 = 0.084 GeV
m, = 1.27133, MeV

The light quark masses m,, m,; and m, can be further
constrained using the mass ratios [23]

m,/my = 0.553 +0.043  m,/m, = 18.9 = 0.8. (Al)

Notice also that due to the experimental errors,

m; = m,xm, = m,.

APPENDIX B: ORTHOGONAL MATRICES

In this appendix we derive the analytic orthogonal ma-
trices that diagonalize the several 3 X 3 real quark mass
matrices coming from the five different RRR patterns. As
can be seen, the ten quark mass matrices in Table I can be
grouped in only five different forms.

For the analysis we write the parameters of the several
real mass matrices as functions of the quark mass eigen-
values m,, m,, and m5, with the hierarchy |m,| < |m,| <
|ms], by making use of the following invariant forms:
u[M, ], u[(M,)?], and det[M,].

1. Bidiagonal form

For this form the Hermitian quark mass matrix is

0 0 la,lei
Myt = 0 ¢ 0 | @D
Iaqle_i“z 0 d,
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where the nonzero elements are only in the two diagonals.
From the table, only matrix MY belongs to this form.

Since det[M4] = —c¢,|a,|* <0 for ¢, > 0, we use for
the diagonal quark mass matrix Dg(m, m,, —ms). Now
using U% = Dg.(1, 1, €'4), we have

0O o0 |aq|
UeMgUugl™ = 0 ¢, 0 |=M¥. (B
la,| 0 d,

The three matrix invariants provide us with the
following set of equations:

_ 2. _
cg t dq =my; — my + m;s, |aq| Cq = mympms,

la 1> = c,d, = mimy + myms — myms, (B3)
which allow us to write
dq =myp — mg3, Cq = my, |aq| = \/mlm3 (B4)

with the exact diagonalizing transformation 04! given by
N

Nosem my+ms

0dd = 0 1 0 , (B5)
— S
+ my+ms 0 m3+m,;

which implies a mixing between the first and third quark
families proportional to

. my
sm013 =
my + ms

2. Block Form

For this form, the Hermitian quark mass matrix is

0 |aq|ei"‘z 0
Mg = | la e ¢, 0 (B6)
0 0 d

q
From the Table, matrices M}, MY, and MY belong to
this form.
Using Usf = Dg.(1, ¢/®, 1) we have

0 la, 0
U MU T = lal ¢, O |=M)f. B
0 0 d

q

PHYSICAL REVIEW D 87, 053016 (2013)

We wuse for the diagonal quark mass matrix
Dg(m,, —m,, m3). The 3 X 3 matrix invariants combined
with the hierarchy |m;| < |m,| < |m;]| allow us to write

Iaql :'\/mlmZ:

with the solution associated with the exact diagonalizing
transformation O(Qbf ) given now by

dq =ms, Cq =myp— My, (BS)

m m
m +2mz * my +]m2 0
oy =1 - 3 B9
i I Tl
0 0 1
3. Nearest-neighbor form
For this form, the Hermitian quark mass matrix is
0 la,lei 0
My = | la,le=" 0 b, leP (B10)
0 b, e~ P d,
From the table, only M belong to this form.
Using Us" = Dg.(1, e’ e @it By)) we have
0 la,| 0
UMy U™ = lagl 0 byl | = M,
0 bl d,
(B11)

Using the definitions

Momy = L0 M) O = Diag(my, —mz, my), (B12)

where the subindices 1, 2, 3 in the diagonal forms refer,
respectively, to the masses for the quarks u, ¢, and ¢ for the
up sector, as well as d, s, and b for the down sector.

The three matrix invariants allow us now to write

mymynms

- 2
dq =my — my + ms, |aq| - ’
my —my + my

b |2 = (m3 — my)(m3 + my)(my — my)
q

, B13
mp —m2+m3 ( )

and the exact diagonalizing transformation O7" for this
particular form is expressed as

mymz(ms—m,)

my (my—m;)

- my (my—my)(m; +ms)
+J(m3

iJ(m3_ml)(m2+ml)(ml —my+m3)

+
—N (mz—m,)(m, +my)

—my)(my +my)(my —my+m3)

myms(m; +ms)

my(my +ms3)

2
q TN (my+my)(m3 +my)(my —my+ms)

Vo

2+ m3)(m;+my)

i\/(mz my(my = my)(my —m,) , (B14)

+my)(m3+my)(my —my+m3)

my iy (my —my)

m3(my—m;)

+
_'\/(mz+m3)(m3*ml)(ml —my+m3)

=V (my+m3)(mz—m;)

_'_J ms(my—my,)(m +ms)
VN (my+m3)(my—m;)(my —my+m3)
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where one has the freedom to choose two equivalent possibilities of phases (the up or down signs).
For the up quark sector, due to the fact that m, > m, > m,, the former matrix (B14) can be expanded as

=1 - muc/z) im(l - mct/2 - muc/z) I\/n—/l_u—t(l - mye t mct/z)
Oﬁn = i\/’nuc(l - muc/z) :(1 - mct/2 - muc/z) t\/n_?;(l - My — mct/z) s (BIS)
e\ fmy, i\/m_ct(] = Mye/2 = me/2) (1 = me/2)

where mi; = m,-/mj, i<jiyi,j=1,2,3 = u,c,t, respectively, and we have taken m,, = 0.

4. Weak basis form

For this form, the Hermitian quark mass matrix is

0 la,le'® 0
Myt = | la,le " ¢, |b,lePi |. (B16)
0 Ible 4,

From the Table, matrices M}, M, M'1', and MY belong to this form.
Using Uy? = Dg.(1, e, e@+B7)) we have

0 la, O
UPMpP LU = [ lagl ey 1Byl | = MG (B17)
0 b, 4,
The matrix invariants allow us now to write
cg=m = mytmy—d, @ =TT _ _ml)(d‘f;rmz)(m —do), (BI8)

q

where we use for the diagonal quark mass matrix Dg(m,, —m,, m3). Notice here that for d, = mj3, b, = 0 and thus M};’b
acquires the block form with an extra texture zero.
The exact diagonalizing transformation O;Vb can be expressed now as [24]

4 myms(dy,—m;y) 4 myms(dy+my) 4 mymy(m3—d,) r
N nz—m)my+my)d,  —\(ny+m)mz+my)d,  —\ (my+m3)(mz—my)d,
OWb = my(d,—m;) — my(d,+m;,) m3(m3fd,) . B19
4 N ) Gt ) Y G ) (B19)
T my(m3—d,)(my+d,) + my(my—dy)(dy—m,) + m3(dy—m)(dy+my)
(my—my)(m;+my)d, (my+my)(m3+my)d, (my+m3)(mz—my)d,

5. See-saw form

For this form, the Hermitian quark mass matrix is

0 0 la,le'
M = 0 ¢, b, lePa |. (B20)
|aq|e_"°“q |bq|e_iﬁ?1 d,

From the table, only matrix M) belongs to this form. Now, for the diagonal quark mass matrix we use Dg(—m,, m,, ms).
Using now US® = Dg.(1, €@ =B eivy) we have
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0 0 |aq|
U;’,SMff[U;',S]_1 =| 0 c, bl |= M;iR). (B21)
lagl 1bgl d,
The 3 X 3 matrix invariants allow us to write
my +my —d,)d, —my +m)(—d, + my—m
= st = )y~ st )y s —m)
—d, —my; +my + my
) mymyms, (B22)
la,|> = ,
—dq—ml +m2+m3
where d, = m3 — my, b, = 0, and M}’ becomes the two-diagonal form with an extra texture zero.
The exact diagonalizing transformation O’ is given now by
_ mymz(—d,+my+ms) _ my(dy—my+m)(—d,+msz+m;) my(—dg+my+ms)
(my+my)(my +m3)(—d,—m,+my+ms3) (my+my)(my+m3)(—dy—m;+my+ms) (my+my)(m, +ms3)
05 = myms(—d,+mz—m,) my(dy+my—my)(—dy+my+m3) my(—dy—my +m3) (B23)
4 (my+my)(—dy—my+my+ms)(—my+ms) (my+mp)(—dy—my+my+ms)(—my+ms3) (my+my)(—my+ms)

(1]

(3]

mymy(d,—my+m,)

ms(—dy+my+mz)(—d,—m +m3)

(dy—my+m;)msy

\/(*m2+m3)(7dq —my+my+ms3)(my +ms3)

\/(*dq*m] +my+m3)(—my+mz)(m +m3)

\/(7m2+m3)(m1 +m3)
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