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Abstract: In this paper we present a scatter search (SS) heuristic for the optimal location, sizing
and contract pricing of distributed generation (DG) in electric distribution systems. The proposed
optimization approach considers the interaction of two agents: (i) the potential investor and owner of
the DG, and (ii) the Distribution Company (DisCo) in charge of the operation of the network. The
DG owner seeks to maximize his profits from selling energy to the DisCo, while the DisCo aims at
minimizing the cost of serving the network demand, while meeting network constraints. To serve the
expected demand the DisCo is able to purchase energy, through long-term bilateral contracts, from
the wholesale electricity market and from the DG units within the network. The interaction of both
agents leads to a bilevel programming problem that we solve through a SS heuristic. Computational
experiments show that SS outperforms a genetic algorithm hybridized with local search both in terms
of solution quality and computational time.

Keywords: bilevel programming; distributed generation (DG); scatter search (SS); evolutionary
algorithms

1. Introduction

Distributed generation (DG), known as the small-scale production of electricity near consumers,
has become increasingly common in distribution networks in the last decade. This trend has been
driven by different factors. Such as environmental concerns, fossil fuel resource depletion, and new
advances in small-scale generation technologies [1]. Distribution systems were not originally designed
to operate with DG; therefore, its insertion in the network must be carefully planned out. In this regard,
the integration of DG in distribution networks has been the focus of several studies [2–12]. Most of
these studies aim at harvesting the potential benefits of DG such as: reduction of power losses [2–4],
improvement of voltage profile [5], improvement of stability [6], and deferral of investments [7].
In recent years there has been an important increase in the participation of DG in distribution systems.
This has been motivated by several factors that include new advances in microgeneration and storage
technologies, new information and communications technologies, a rapid growth of demand, and the
process of liberalization of energy markets. Despite of these facts, there are still technical, economic,
and regulatory barriers for the widespread participation of DG. A review of factors that can contribute
to the definite boost of DG is presented in [13], and a survey regarding critical issues in smart grid
technologies and their integration is presented in [14]. Also, several studies have been conducted
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based on sensitivity analysis to face the challenge of improving voltage profile and active/reactive
power flows for low voltage distribution systems with DG. Examples of such studies can be consulted
in [15–17].

Potential benefits of DG depend on several factors such as its size, location, and network
parameters. The studies conducted for the optimal location and/or sizing of DG can be broadly
classified into three groups: (i) analytical expressions; (ii) exact algorithms; and (iii) metaheuristic
algorithms. In [3,4], the authors present analytical methods for the optimal location of DG in
distribution systems aiming to reduce power losses. The main disadvantage of such methods lies in
the fact that they often resort to oversimplifications of the network. Exact methods for the optimal
location and sizing of DG are presented in [18,19]. These methods are based on classical mathematical
programming and within certain conditions of convexity and differentiability can find optimal solutions
for the location and/or sizing of DG. As with analytical expressions, for the sake of their success,
mathematical-programming based methods must resort to some simplification in the modeling of
the network. These simplifications are often applied to the power balance and power flow equations.
If no simplifications of the network are considered, the optimal sizing and location of DG becomes a
non-linear non-convex optimization problem. These problems are better handled with metaheuristic
techniques rather than with classic mathematical approaches. Some metaheuristic techniques applied
to the optimal location and sizing of DG include the use of particle swarm optimization [20], genetic
algorithms [21], bee colony optimization [22], and differential evolution [23]. Hybrid metaheuristics
have also been proposed in [24,25]. A detailed description of the aforementioned methods is out of
the scope of this paper; the interested reader is referred to [26,27] for literature reviews on the optimal
placement and sizing of DG. Particularly, in [27] the authors review the applications of different
heuristics and metaheuristics for the optimal placement and sizing of DG. Despite the common usage
of population heuristics (genetic algorithms, particle swarm optimization, differential evolution, etc.),
to the best of our knowledge scatter search (SS) has not been applied to this problem before.

Consequently, the main contribution of this paper is the proposal of a SS heuristic for the optimal
location, sizing, and contract pricing of DG in power systems. The rest of the paper is organized as
follows. Section 2 presents the mathematical model used for the optimal location, sizing, and contract
price of DG. Then, Section 3 summarizes the main elements of the proposed heuristic. Section 4
presents the computational results that compare SS against a memetic algorithm. Finally, Section 5
provides the conclusions and future research possibilities.

2. Mathematical Model

Most of the approaches regarding optimal location and/or sizing of DG tackle this decision
from the standpoint of the Distribution Company (DisCo). By contrast, in this paper we consider
the interaction between the DisCo and the DG owner. Consequently, we take into account a market
structure in which the DisCo is free to purchase energy either from the wholesale energy market, from
DG units within its network, or both. In this case, the DisCo aims at meeting the network demand at
the lowest possible cost while keeping network constraints. On the other hand, the DG owner aims
at maximizing his profits from the energy sales to the DisCo. This interaction leads to a Stackelberg
leader-follower game that we model as a bilevel programming problem [19].

The methodology proposed in this paper is suitable for an energy market in which the DisCo and
DG investor are willing to engage in business. Also, we assume that power losses (or a percentage of
them) are paid by the DisCo. This is the case of most deregulated electricity markets in which
the regulator promotes mechanisms to force DisCos to reduce power losses. Furthermore, the
action-reaction nature of the proposed approach implies dispatchability of DG resources. That is, the
DisCo, based on an optimal dispatch calculation, might be willing to purchase certain amount of
power from the DG units, at a given period, for which the DG must be available.
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2.1. Decision-Making Problem of the Distribution Company

To meet the expected demand, the DisCo must decide on how much energy to purchase from the
wholesale energy market and how much from the DG units within its network. At first glance, the
easiest solution would be to buy energy from the cheapest source. However, the energy price is not the
only factor that the DisCo must take into account when purchasing energy, since a power injection in
an unsuitable bus might lead to problems such as overvoltage or an increase in power losses. Therefore,
in order to account for network constraints, the DisCo must solve an optimal dispatch considering the
presence of DG. For a given location and contract price, the solution of the optimal dispatch would
yield the right amount of power to be purchased from the DG units and the wholesale energy market
in order to minimize costs while meeting network constraints.

2.2. Decision-Making Problem of the Distributed Generation Owner

The objective function of the DG owner, considered in the proposed model, is the maximization
of profits from the energy sales to the DisCo. In this case the DG owner must decide over the location,
size, and contract price of the DG units. Also, he must take into account the reaction of the DisCo.
Regarding contract price, negotiating a low energy price might result in more energy sales but not
necessarily in more profits. As regards location, the owner of the DG must be aware of the fact that the
impact of DG is highly dependent on the bus where it is located. Regardless of the energy price, the
DisCo might not be willing to buy energy from the DG units if it has a negative impact on the network.
Finally, the sizing of the DG is important, since it determines the investment costs and has a direct
impact on the profits of the DG owner.

2.3. Bilevel Modeling Framework

The decision-making problems of both the DisCo and DG owner can be combined into a bilevel
programming framework as shown in Figure 1. In this case, the upper level optimization problem
corresponds to the DG owner; he must decide over the size, location, and contract price of the DG
units (action). Once this information is known by the DisCo (located in the lower level optimization
problem), he uses it as parameters for an optimal dispatch and determines the amount of energy
he would be willing to purchase from the DG units (reaction). The DG owner now knows how
much energy would be bought from his units, and is able to compute his expected profits. With this
information, he might want to change his strategy testing new locations, contract prices, and sizes
of DG. The process is repeated until an equilibrium is reached. That is, until there are not incentives
for any of the agents to change their decisions. The idea behind this leader-follower game lies in
the fact that the leader must consider the reaction of the follower before setting his strategy. That is,
the DG owner takes into account the impact of the DG units in the network before deciding on their
parameters. Equations (1)–(20) describe the mathematical model of the proposed methodology.
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2.4. Upper Level Optimization Problem

The objective function of the upper level optimization problem consists on the maximization
of profits of the DG investor given by (1). In this expression, J represents the candidate locations
for the DG units. The first term of the objective function corresponds to the income due to energy
sales, where CPDGj is the contract price in $/MWh, associated to the jth DG unit; PDGj(t) is the power
dispatched of the jth DG unit in time interval t in MW; and CDGj is the production cost of the jth DG
unit in $/MWh. Whereas the second term corresponds to the investment cost, where ICDGj(t) is the
portion of the installation cost of the jth DG unit corresponding to time interval t; PMax

DGj is the size

of the jth DG unit in MW and ∆t is the length of the time interval. The objective function given by
(1) is subject to the minimum (PMin) and maximum (PMax) size limits of DG units, and the actual
size selected (PMax

DGj ) (Equation (2)); and, the fact that the DG owner is willing to operate k DG units

(Equation (3)). Equations (4)–(6) define the decision variables for the location (yi), size (PMax
DGj ) and

contract price (CPDGj) of each DG unit j ∈ J. Constraint (6) avoids selling energy from DG units that
are not under operation. In this constraint, CPmax represents the maximum admissible contract price.
Finally, the reaction of the DisCo expressed in (7) represents the lower level optimization problem:

Max ∑
t∈T

∑
j∈J

∆t{ (CPDGj − CDGj)PDGj(t)− ICDGj(t)PMax
DGj } (1)

Subject to:
PMinyj ≤ PDGj(t) ≤ PMax

DGj ≤ PMaxyj ∀j ∈ J; ∀t ∈ T (2)

∑
j∈J

yi = k (3)

yi ∈ {0, 1} ∀j ∈ J (4)

PMax
DGj ≥ 0 ∀j ∈ J (5)

0 ≤ CPDGj ≤ CPmaxyi ∀j ∈ J (6)

Reaction of the Distribution System Operator (7)

2.5. Lower Level Optimization Problem

The lower level optimization problem (reaction of the DisCo) is given by Equations (8)–(20). For a
given candidate solution of the DG investor regarding location, sizing, and contract pricing of the DG
units, the DisCo reacts by purchasing a certain amount of energy from the DG units. The DisCo aims
to minimize the cost of meeting the expected demand (8). The first term of Equation (8) corresponds to
the cost of energy provided by the wholesale energy market; ρSEk (t) is the energy price at substation k
in time interval t in $/MWh and PSEk(t) corresponds to the power provided to the network through
substation k in time interval t. The second term of Equation (8) corresponds to the payments associated
with the DG units within the DisCo’s network. Equations (9) and (10) correspond to active and reactive
power balance constraints. PGn(t) and PDn(t) are the active power generated and demanded in bus
n, in time interval t, respectively, while Pn(t) corresponds to net active power injected in bus n in
time interval t. QGn(t) and QDn(t) are the reactive power generated and demanded in bus n, in time
interval t, respectively, while Qn(t) corresponds to net reactive power injected in bus n in time interval
t. Equations (11) and (12) correspond to the expressions of active and reactive power injected in bus n,
respectively. Gnm and Bnm are the real and imaginary entries in position (m, n) of the system admittance
matrix; θnm(t) corresponds to the angle between buses n,m in time interval t and Vn(t) corresponds to
the voltage magnitude in bus n in time interval t. Equations (13) and (14) represent active power limits
supplied by substations and DG units, upper scripts Max and Min stand for maximum and minimum
limits, respectively. Equations (15) and (16) represent limits on reactive power and voltage magnitudes,
respectively. Equation (17) represents apparent power limits in every line lnm. Equation (18) stands
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for the active and reactive components of apparent power. Equations (19) and (20) represent the
mathematical expressions of active and reactive power flow on lines, respectively:

min ∑
t∈T

∑
k∈K

∆tρSEk (t)PSEk(t) + ∑
t∈T

∑
j∈J

∆tCPDGj(t)PDGj(t) (8)

PGn(t)− PDn(t)− Pn(t) = 0 ; ∀n ∈ N , ∀t ∈ T (9)

QGn(t)− QDn(t)−Qn(t) = 0 ; ∀n ∈ N , ∀t ∈ T (10)

Pn(t) = Vn(t) ∑
m ∈ N

Vm(t)[Gnm cos θnm(t) + Bnmsinθnm(t)]∀n,m ∈ N , ∀t ∈ T (11)

Qn(t) = Vn(t) ∑
m ∈ N

Vm(t)[Gnmsinθnm(t) − Bn,mcosθnm(t)] ∀n,m ∈ N , ∀t ∈ T (12)

PMin
SEk
≤ PSEk (t) ≤ PMax

SEk
; ∀k ∈ K , ∀t ∈ T (13)

PMin
DGj (t) ≤ PDGj(t) ≤ PMax

DGj ; ∀j ∈ J , ∀t ∈ T (14)

QMin
SEk
≤ QSEk (t) ≤ QMax

SEk
; ∀k ∈ K , ∀t ∈ T (15)

VMin
n ≤ Vn(t) ≤ VMax

n ; ∀n ∈ N , ∀t ∈ T (16)

− SMax
lnm ≤ Slnm(t) ≤ SMax

lnm ; ∀lmn ∈ L , ∀t ∈ T (17)

Slnm(t) = Plnm(t) + jQlnm(t) ; ∀lmn ∈ L , ∀t ∈ T (18)

Plnm(t) = V2
n (t)gnm −Vn(t)Vm(t)gnm cos (θnm(t))−VnVmbnmsen(θnm(t)); ∀lmn ∈ L , ∀t ∈ T (19)

Qlnm(t) = − V2
n (t)bnm +Vn(t)Vm(t)bnm cos (θnm(t))−VnVmgnmsen(θnm(t)); ∀lmn ∈ L , ∀t ∈ T (20)

For a given location, sizing and contract pricing of the DG units (upper level solution), the
optimization problem given by (8)–(20) is basically an optimal dispatch.

2.6. Illustrative Example

From an economic point of view, the straightforward solution for the DisCo would be to purchase
energy from the cheapest source. However, the solution to the problem given by (1)–(20) is not that
simple, since the DisCo must take into account not only the price of energy but also its impact in the
network (power losses, voltage profile, congestion, etc.). An effective way to consider these aspects
is by means of an optimal dispatch based on an AC optimal power flow. Figure 2 illustrates such a
situation. Consider the 5-bus distribution system depicted in Figure 2a. A demand of 10 MW and
5 Mvar is considered for all buses, and an impedance of 0.01 + 0.1 j Ω is considered for all lines.
Suppose that there is only one single DG unit to be allocated to either in bus 2 or bus 5 that provides the
total demand of the bus. Both DG locations are advantageous to the DisCo in terms of improvement of
voltage profile (see Figure 2b) and the reduction of power losses (see Figure 2c). However, it is evident
that the DisCo would prefer the DG to be located in bus 5. If the DisCo is willing to pay a higher price
for the energy supplied in bus 5 than for the one supplied in bus 2, there is an incentive for the DG
investor to raise the price of the contract and propose the location of the DG unit in bus 5.

Within the bilevel programming scheme given by (1)–(20), the decision of the upper level problem
would be to install a DG unit in bus 5 at a given energy price. With this information the DisCo evaluates
the impact of such a DG unit solving the lower level problem given by (8)–(20). Note that in this case
the DisCo considers technical (network limits) and economic issues (price offers). The solution of the
lower level optimization problem determines how much energy the DisCo would be willing to buy
from the DG owner. With this information, the DG owner determines his profits. Regarding DG size,
there is a limit from which the DG creates counter flows and causes technical problems in the network.
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Such a situation, as well as other technical limitations can be accounted for as additional constraints in
the lower level optimization problem.Energies 2017, 10, 1449 6 of 15 
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Figure 2. (a) 5-bus distribution system; (b) impact of distributed generation (DG) location in voltage
profile; and (c) impact of DG location in power losses.

3. Solution Approach

While genetic algorithms rely mostly on random decisions in their selection, crossover, and
mutation operators, SS is a population-based heuristic that relies on deterministic procedures [28].
In power systems, SS applications include the planning of transmission network expansion [29], electric
power load forecasting [30], and bi-objective environmental/economic dispatch [31].

Developed in the 1970s, recent applications of SS show its effectiveness to solve nonlinear
optimization problems [32], and in optimization problems where the evaluation of the
objective function implies costly computations (e.g., black-box optimization [33] and simulation
optimization [34]). This advantage makes SS a good candidate for the solution of the bilevel
optimization problem in models (1)–(20) since every feasible solution of (1)–(7) requires the solution of
an optimal dispatch to find the reaction of the DisCo (problems (8)–(20)).

3.1. Scatter Search General Structure

SS combines and improves systematically the elements stored in a small reference set (RefSet) of
good solutions found during the search process. Algorithm 1 depicts the general structure of the
proposed SS for DG optimization.

Algorithm 1. Scatter search for DG optimization

1 P = ∅
2 While |P| ≤ n do
3 S = DiverseGeneration()
4 If S /∈ P then
5 P ∪ {S}
6 End-if
7 End-While
8 Evaluate the solutions in P and sort them by non-increasing profit (Equation (1))
9 Build Re f Set with the best b/2 solutions of P, Re f Set = {S1, . . . Sb/2}
10 Add to Re f Set the most diverse b/2 solutions in P with respect to those already in Re f Set
11 Sort Re f Set by non-increasing profit (Equation (1))
12 new = true
13 While (new) do
14 new = f alse
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15 For all S and S′ ∈ Re f Set do
16 If (S and S′ has not been combined before) then
17 S = Combine(S, S′)
18 S = Improve(S)
19 new = Update(Re f Set, S)
20 End-if
21 End-For all
22 End-While
23 Return S∗ = argmaxS∈Re f Set{ f (S)}

As Algorithm 1 shows, SS initially builds a set P of diverse solution using the diversification
generation method (Lines 1–7). Once the number of desired diverse solutions (n) is reached, SS builds
the initial Re f Set (Lines 8–11) with the best b/2 solutions in P. Moreover, to favor diversity, the
remaining b/2 solutions added to Re f Set are those in P more distant to solutions already in Re f Set.
Then, the main loop (Lines 13–22) of SS iterates until no new solutions are inserted in Re f Set. This
main loop follows three steps for all pairs of solutions in Re f Set (that includes at least one new
solution): (i) combines the two solutions to obtain a new solution S (Line 17); (ii) applies the solution
improvement method to S (Line 18); and (iii) tries to update the Re f Set by inserting S on it (Line 19).
SS finishes when no new solutions are inserted in the Re f Set. SS returns the best solution of the DG
optimization problem in Re f Set (the solution with the largest profit for the DG owner) (Line 23).

3.2. Scatter Search Components

As it can be seen in Algorithm 1, the proposed SS uses four methods, namely: (i) diversification
generator method (DiverseGeneration); (ii) solution combination method (Combine); (iii) improvement
method (Improve); and (iv) reference set update method (Update). This section describes the details of
each one of these methods. Likewise, two other important components for the SS implementation are
discussed: the solution representation and the distance metric needed to maintain the diversity of the
solutions in Re f Set.

3.2.1. Solution Representation and Objective Function Evaluation

To represent the solutions of the DG optimization problem we use the two-row array depicted in
Figure 3a. The position in the array correspond to the elements in J, the first row corresponds to the
size of the DG located in the j-th element of J (PMax

DGj ). To reduce the search space, the possible sizes of

the DGs are constrained to a discrete set of options T = {PS1 = PMin, P2, . . . , P|T| = PMax}. Therefore,
as can be seen in Figure 3, the first row indicates the index in T and not the value of PMax

DGj . On the
other hand, the second row represents directly the contract price (CPDGj) in monetary units. Figure 3b
presents an example of a solution with 10 candidate buses in J where the DG owner seeks to locate
3 DGs (k = 3) with three possible sizes (|T| = 3). In this solution DGs are located in the 3rd, 4th and
10th elements of J. The DG located at the 3rd candidate bus is of maximum size, whereas the two
others are of the smallest possible size.
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Figure 4 illustrates the evaluation process of the example solution of Figure 3. The leftmost part of
Figure 4 presents the DG owner decisions for problems (1)–(7) (i.e., location, size, and contract price of
their DG units). With this information, the DisCo (rightmost part of Figure 4) solves an optimal power
dispatch (Equations (8)–(20)) to decide how much energy to buy from the wholesale market and the
DG units to serve the expected demand at minimum cost. The DisCo returns this information to the
DG owner so that he can calculate his profits (Equation (1)). This process repeats every time a new
solution is found by the SS.
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3.2.2. Distance Measure

SS seeks to balance the quality and the diversity of the initial set of solutions P (Lines 9 and
10 of Algorithm 1). This creates the need to have a distance measure to compare the two solutions.
To accomplish this task we use a simple distance measure that only compares the location of the
DGs, ignoring the sizes and contract prices. The main motivation to ignore these two variables in
the distance measure is the fact that the improvement operator modifies these variables. Therefore,
after improvement, two solutions with the same locations for the DGs may result in the same local
optima (with identical sizes and prices). For a given pair of solutions S and S′, the distance measure
dist(S, S′) operates in two steps. First, according to Equation (21), it uses the values of the first row of
each solution to derive the binary variables (yj), indicating whether or not a DG is located in candidate
bus j. Then, in the second step it uses the Hamming distance of the location variables to calculate
dist(S, S′) using Equation (22). Where yS

j (yS′
j ) indicates the value of the y variable for the candidate

bus j is solution S (S′), respectively. Using dist(S, S′) in Line 10 of Algorithm 1, we add sequentially
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the solution Sd ∈ P that is more distant to all solutions already in Re f Set until completing b solution
(i.e., Sd = argmaxS′∈P\Re f Set {minS∈Re f Set dist(S, S′)}):

yj =

{
1 if sj ≥ 0
0 if sj = 0

(21)

dist(S, S′) =
|J|

∑
j=1

∣∣∣yS
j − yS′

j

∣∣∣ (22)

3.2.3. Diversification Generator Method

The first step of the SS generates a large set of diverse solutions P of size n, from which it selects
the initial solutions in Re f Set (Lines 2–7 of Algorithm 1). We consider three different diversification
generator methods (DiverseGeneration). The first one is a completely random (Rand) method that
selects randomly the location, size and price of the solutions in P. By contrast, the second one (Sist)
generates diverse solutions in a deterministic way as follows. For the location, we use the procedure
described in [35] that generates (systematically) binary vectors with k values different from zero. Then,
for the size we use the maximum size (P|S|) and for the contract price also the maximum admissible
price (CPmax). The third method (SistRand) combines the two previous ones by generating the location
systematically according to [35], but generating the size and the contract price randomly.

3.2.4. Solution Combination Method

To combine pairs of solutions in Re f Set (Line 17 of Algorithm 1), we use only the location
decisions (i.e., the y variables). Therefore, we use again Equation (21) to derive the location decisions
of a given solution S. Then, with the binary vectors of y variables we apply a deterministic variant of
the combination method for the knapsack problem described in [36] (p. 63). This combination method
uses the objective function of the solutions ( f (S)) to bias the selection towards the candidate locations
of high-quality solutions.

Method (Combine(S, S′)) generates a new solution following four steps: (i) it calculates a score
(score(j)) for each candidate location in J according to Equation (23); (ii) then, it sorts the locations
in non-decreasing order of the score; (iii) it picks the first k to locate there the DGs; and finally;
and (iv) it sets the size and contract price to random values as in the randomized diversification
generation method:

score(j) =
f (S)yS

j + f (S′)yS′
j

f (S) + f (S′)
(23)

3.2.5. Improvement Method

Since the distance operator, diversification generation and combination methods focus on the
location variables, we decided to apply the improvement method (Line 18 of Algorithm 1) to the
other decisions of the DG optimization problem. Therefore, the improvement method (Improve(S))
applies a local search to the DG size (PMax

DGj ) or contract price (CPDGj) of solution S. Since the evaluation
of a candidate solution implies the call of an (time-consuming) optimal dispatch, each time the
improvement method is called, it operates with the same probability in only one of these decisions
for a randomly selected DG of the solution. If the improvement is applied to the size (contract price),
the method evaluates the increase/decrease of ±0.5 MW (±0.5 $/MWh) systematically until no more
improvements can be achieved. For the initial solution, both increase and decrease of the size (contract
price) are considered, and the direction (increase/decrease) with the larger improvement (if any) is
selected for the next iterations. The local search stops as soon as no improvement is obtained or the
minimum/maximum values for the variables are reached.
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3.2.6. Reference Set Update Method

When trying to insert a new solution in the Re f Set (Line 19 of Algorithm 1), procedure
Update(Re f Set, S) returns a Boolean value (new), that is true only if S is inserted in Re f Set. The
following condition must be valid to insert S in Re f Set : ∃S′ ∈ Re f Set : f (S) > f (S′). That is,
solution S must be better than at least one solution already contained in Re f Set. As pointed out before,
SS tries to balance the quality and the diversity of the solutions in Re f Set. Therefore, once the update
is successful (i.e., new = true) the distance measure is used to select which solution is replaced. In this
case, the solution removed from Re f Set (Sout) is the closest to S with a worse objective function (i.e.,
Sout = argminS′ ∈Re f Set: f (S)> f (S′){dist(S, S′)}). The update of the reference set is then performed with

the following operation: Re f Set = Re f Set ∪ {S}\{Sout}.

4. Tests and Results

The SS heuristic was implemented in Matlab. We used the Matpower software [37] to solve the
optimal dispatch (Equations (8)–(20)) required to evaluate the reaction of the DisCo for each solution
found during the search. After some preliminary experiments, we set the size of the initial population
of diverse solutions (P) to n = 20 and the size of the Re f Set to b = 6. These small values provide short
running times without compromising the solution quality. All of the experiments reported in this
section were performed in a computer with an Intel Pentium processor with 2 GB of RAM running
under Windows 7.

To evaluate the performance of SS we use a distribution system with 34 buses. Figure 5 depicts
the structure of this system. Appendix A provides the detailed information of the buses, lines and
demands of this system.
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4.1. Diversification Generator Method Comparison

This first experiment compares the performance of the three diversification generation methods
(Sist, Rand and SistRand), as described in Section 3.2.3. We performed three runs of each variant of
the SS, with different seeds for the random number generator. Tables 1 and 2 present the results of this
experiment. As it can be seen in Table 1, the randomized diversification generation method achieves
the best results. Even its worst results outperform the other variants. As expected, the deterministic
variant (SS-Sist) obtains the same results in all of the runs. The detailed information of Table 2 shows
a convergence towards the same contract price and size in all of the best solutions, being the main
difference the location of the DG units. This result can be explained by the effect of the improvement
method, which searches for the best size and contract price, but does not affect the location of the DG
units. Moreover, this result also supports the SS design that only takes into account the location of the
DG units while combining and comparing the solutions in the RefSet.
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Table 1. Results for scatter search (SS) with different diversification generation methods.

SS Variant
DG Owner Profit Average Running

Time (s) Best Profit
Solution 1 Solution 2 Solution 3

SS-Sist 165,036 165,036 165,036 422 165,036
SS-Rand 165,952 166,303 166,731 407 166,731

SS-SistRand 165,339 165,484 165,119 607 165,484

Table 2. Best solutions of each SS variant for the 34-bus distribution system.

SS Variant
DG Unit (Bus, Price($/MWh), Size (MW))

DG Owner Profit
1 2 3

SS-Sist (24, 77.0, 1.5) (29, 77.0, 1.5) (30, 77.0, 1.5) 165,036
SS-Rand (27, 77.0, 1.5) (29, 77.0, 1.5) (30, 77.0, 1.5) 166,731

SS-SistRand (24, 77.0, 1.5) (27, 77.0, 1.5) (31, 77.0, 1.5) 165,484

Figure 6 depicts the results of the best runs of the three variants. As it can be seen, SS-Sist obtains
very good results in the initial iterations, but is unable to improve the quality of the solutions in Re f Set
during many iterations. On the other hand, the randomized variants begin with worst solutions but
steadily improve their quality.Energies 2017, 10, 1449 11 of 15 
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4.2. Comparison against Other Metaheuristics

In a second experiment, we compare the results of SS against those obtained with a memetic
algorithm (i.e., a genetic algorithm hybridized with local search [38]). As a benchmark, we use the
memetic algorithm (MA) developed in [39]. This MA extends the work of [21] to include the size of the
DG as a decision variable. The general control of this MA is based on the work of Beasley and Chu [40];
as the SS, this MA uses a steady-state population replacement strategy, where only one chromosome
is replaced in each iteration; furthermore, both heuristics share the solution representation and the
improvement procedure (local search in the MA). On the other hand, there are several differences
between the MA and the SS. First, while the MA uses a classical one-point crossover, the SS uses
a deterministic voting procedure. Second, the MA relies on a (randomized) mutation operator to
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preserve the diversity of its population, whereas SS uses the distance measure and the reference set
updating procedure as a mechanism to obtain a diverse Re f Set. Third, while SS has a small reference
set (b = 6), the MA uses a large population with 100 chromosomes. Furthermore, to evaluate the
impact of the solution improvement component (local search), we used as additional benchmark a
simple genetic algorithm (GA). This simple method is obtained by removing the local search from
the MA. Table 2 compares the results of the MA, the GA, and the proposed SS. For comparison we
select the best and worst variants of the SS (SS-Rand and SS-Sist). Three runs of both methods were
performed. Results for the MA and GA are taken from [39].

As it can be seen in Table 3, the proposed SS outperforms both the MA and the GA, both in
solution quality and running time. The best SS solution offers 5.8% more profit to the DG owner
than the best MA solution. Even the worst variant of SS (Sist) obtained solutions with 4.7% more
profit. Remarkably, SS took a small fraction of the running time of the MA to reach better results
(only 0.13% of the time of MA). According to [39], the MA took 3.5 h of running time on average to
solve the DG optimization problem. Clearly, removing the local search from the MA produces a much
faster method. The GA only took 20 min of running time on average. However, the quality of the
solutions deteriorates. The best GA solution offers only 21% of the profit of the worst SS solution.
Moreover, both methods were implemented in Matlab, but the MA experiments were run in a much
faster computer with an Intel Core i5 processor (with 4 GB of RAM). These results show that SS offers
a good option to solve DG optimization problems where the objective function evaluation consumes
long running times.

Table 3. Results for SS, memetic algorithm (MA) and genetic algorithm (GA) on the 34-bus
distribution system.

Method
DG Owner Profit Average Running Time (s) Best Profit

Solution 1 Solution 2 Solution 3

SS-Rand 165,952 166,303 166,731 407 166,731
SS-Sist 165,036 165,036 165,036 422 165,036

MA 156,128 157,601 155,423 302,400 157,601
GA 25,100 21,500 35,000 1200 35,000

5. Conclusions

This paper tackles the optimal location, sizing, and contract pricing of DG in electric distribution
systems. To model this problem we follow a bilevel programming approach that considers the
interaction between the DisCo and the DG owner.

These joint decisions (location, sizing, and contract price for the DGs) represent a challenge since
the complexity of electric distribution systems hinders the application of exact optimization methods.
Therefore, population metaheuristics like genetic algorithms and particle swarm optimization, among
others, are one of the preferred options to solve this problem. As an alternative, this paper proposes a
SS that relies (mostly) on deterministic mechanisms to preserve the quality and diversity of a small set
of reference solutions.

Computational experiments on a test system with 34 buses reveal the effectiveness of the proposed
SS. The comparison against a memetic algorithm and a genetic algorithm shows that the proposed
heuristic is able to find better solutions in much shorter running times. The use of a small set of
solutions and the deterministic diversity preserving mechanism of SS represent an advantage in
problems where the objective function evaluation is a time-consuming task (as the DG optimization
problem tackled in this paper).

Future research directions include the use of SS for multiobjective variants of the problem
considering other performance measures (power losses, reliability, voltage stability, etc.), in addition
to the DG owner profit. Likewise, the use of SS for the solution of other optimization problems
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that arise in the planning and operation of electric distribution systems (network configuration and
reconfiguration, reliability optimization, etc.) appears as a promising alternative.
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Appendix A

Tables A1 and A2 provide respectively the bus and line data for the 34-bus distribution system
used in Section 4. We use a value of 60 $/MWh as operative cost (CDGj) for all candidate DGs, an
annualized investment cost (ICDGj(t)) of $50,000 per installed MW and put a limit k = 3 on the number
of DGs to operate in the system. Moreover, the system is evaluated using an aggregated demand curve
that considers high, medium and low demand with its corresponding wholesale energy market price
as depicted in Figure A1.

Table A1. Bus data for the 34-bus distribution system.

Bus P (MW) Q (Mvar) Bus P (MW) Q (Mvar)

1 0 0 18 0 0
2 0.1555 0.0820 19 0.0113 0.0057
3 0.1555 0.0820 20 0.0424 0.0198
4 0.0452 0.0226 21 0 0
5 0.0452 0.0226 22 0.1385 0.0707
6 0 0 23 2.5438 1.2719
7 0 0 24 0.5031 0.2544
8 0 0 25 0.0057 0.0028
9 0.0141 0.0057 26 0.9836 0.5992
10 0.0961 0.0480 27 0.0254 0.0141
11 0.1385 0.0678 28 0.3448 0.1781
12 0.4777 0.2459 29 2.4421 1.8598
13 0.0311 0.0141 30 0.0791 0.0396
14 0.1131 0.0565 31 0.2657 0.1752
15 0.3816 0.1979 32 0.1922 0.0961
16 0.2742 0.1215 33 0.0791 0.0396
17 0.0113 0.0057 34 0.4042 0.3024

Table A2. Line data for the 34-bus distribution system.

Line R (Ω) X (Ω) Line R (Ω) X (Ω)

1–2 0.0026 0.0025 17–18 0.0078 0.0064
2–3 0.0018 0.0013 18–20 0.0004 0.0003
3–4 0.0170 0.0138 20–21 0.0053 0.0038
4–5 0.0004 0.0003 20–22 0.0071 0.0071
4–6 0.0036 0.0033 21–23 0.0007 0.0004
6–7 0.0010 0.0009 22–25 0.0004 0.0003
7–8 0.0076 0.0057 22–24 0.0007 0.0005
8–9 0.0003 0.0003 24–26 0.0105 0.0065

9–10 0.0105 0.0074 24–27 0.0037 0.0037
9–11 0.0190 0.0172 26–28 0.0004 0.0003
10–12 0.0086 0.0065 28–30 0.0005 0.0004
12–15 0.0095 0.0065 30–33 0.0037 0.0034
11–14 0.0037 0.0037 28–31 0.0070 0.0052
11–13 0.0077 0.0064 27–29 0.0014 0.0013
13–16 0.0017 0.0011 29–32 0.0038 0.0035
16–17 0.0038 0.0037 32–34 0.0047 0.0034
17–19 0.0103 0.0103 - - -
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