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Metric-signature topological transitions in dispersive metamaterials
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The metric signature topological transitions associated with the propagation of electromagnetic waves
in a dispersive metamaterial with frequency-dependent and anisotropic dielectric and magnetic responses
are examined in the present work. The components of the reciprocal-space metric tensor depend upon both
the electric permittivity and magnetic permeability of the metamaterial, which are taken as Drude-like dispersive
models. A thorough study of the frequency dependence of the metric tensor is presented which leads to
the possibility of topological transitions of the isofrequency surface determining the wave dynamics inside
the medium, to a diverging photonic density of states at some range of frequencies, and to the existence of large
wave vectors’ modes propagating through the metamaterial.
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I. INTRODUCTION

Condensed matter systems may provide laboratory re-
alizations of cosmological scenarios thanks to analogous
mathematical descriptions that ultimately allow us to relate
physical properties in those distinct settings [1]. Analogies in
the mathematical descriptions of different physical systems
have often been used as a tool to further our understanding.
A celebrated example is that of photonic crystals [2,3], where
much has been learned about photon dynamics by drawing on
the similarities with electron dynamics in crystalline solids.
In the case of photonic crystals, Maxwell’s equations in
periodically arranged media of different electric permittivities
(ε) and magnetic permeabilities (μ) are similar in form
to Schrödinger’s equation for electrons propagating in the
periodic potential of a crystalline solid.

A more recent example [4] draws upon the analogous form
of Maxwell’s equations in curved space-time and in a related
material medium. The electric and magnetic responses of the
medium are obtained from the gravitational metric of the
curved space-time, thus opening the possibility of testing a
host of phenomena described by general relativity in laboratory
experiments. All that is required is a reinterpretation of the
equation for electromagnetism in curved space

1√−g
∂β(

√−g Fαβ) = 4π

c
jα, (1)

as

∂βGαβ = 4π

c
J α, (2)

upon identifying Gαβ = √−g Fαβ and J α = √−g jα . Equa-
tion (2) can then be viewed as the equation for electromag-
netism in a medium in flat space, if we define Di = G0i

and Hi = 1
2εijkG

jk . We can then relate these quantities to
Ei = Fi0 and Bi = 1

2εijkFjk . The constitutive relations are
easily derived from the relation Gαβ = √−g gαμgβνFμν . Note
that the metric intervenes as (�E,�B) are defined in terms of a
covariant tensor Fαβ , whereas ( �D, �H) are defined in terms of

a contravariant tensor Gαβ . Thus, the metric determines the
electromagnetic responses in the flat space reinterpretation.

This correspondence has inspired the design of a number
of experimental settings to test the transitions associated
to metric signature changes in momentum space [5] and
topological transitions [6], the relationship between statistical
and cosmological time flow via the optical analog of a
big-bang-like event [7], Hawking radiation [8], cosmological
inflation [9], and the behavior of the vacuum in a strong
magnetic field [10].

In the present work, we concentrate on the study of
the transitions caused by signature changes in metrics in
reciprocal space. We perform a systematic analysis of the
cases that arise as we use various materials to induce such
changes. We begin with anisotropic media that experience
different signs for their electric permittivities, and go beyond
by including dispersive metamaterials in our analysis. It is
important to point out that, in practice, an isotropic left-handed
material (LHM) is still a great challenge for researchers, as the
available LHM structures are intrinsically anisotropic. A study
of a semiconductor metamaterial with anisotropic dielectric
response may be found in the work by Hoffman et al. [11],
whereas for general anisotropic metamaterials, we refer to the
studies by Krishnamoorthy et al. [6], Soukoulis et al. [12],
Wilson [13], and Zheludev [14].

Artificial metamaterials [14–16] are also known as LHMs,
due to their peculiar feature that light phase velocity travels
in such materials in the opposite direction of the group
velocity. Metamaterial structures are designed to achieve un-
usual electromagnetic properties, such as negative refraction,
superlenses, optical magnetism, and cloaking, among others.
Periodic, quasiperiodic, fractal, and disordered arrangements
of layered one-dimensional positive-index material or meta-
material stacks have been extensively studied, and also exhib-
ited unusual features, such as non-Bragg gaps, corresponding
to zero average refractive index, plasmon-polariton gaps, and
Anderson delocalization properties [17–24].

The use of artificially nanostructured metamaterials to
mimic gravitational environments will certainly add new
experimental situations to the ones already proposed in the
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literature, which have not included those materials where
both the electric and magnetic responses may be negative,
thus leading to negative refraction indices. However, we
have restricted our discussion to studying the behavior of
electromagnetic fields that experience changes in the signature
of the metric in reciprocal space associated to their dispersion
relations, and the unusual phenomena that this brings about,
such as the copious production of particles, dubbed “big
flashes,” that could also occur in Bose-Einstein condensates
or in gravitational systems.

As real metamaterials are intrinsically dispersive materi-
als, the present study analyzes the influence of dispersive
electric and magnetic responses on the metric signature
change phenomenon. The metric changes correspond to
looking at different frequency ranges for light propagating
in the metamaterials. The work is organized as follows.
Section II presents the theoretical framework and numerical
results concerning nonmagnetic materials with dielectric
anisotropy, whereas Sec. III is devoted to the study of metric
signature topological transitions in dielectric and magnetic
anisotropic materials. Our conclusions are in Sec. IV.

II. NONMAGNETIC MATERIALS WITH
DIELECTRIC ANISOTROPY

In the absence of free charges and electric currents, the
Maxwell equations describing the behavior of the electromag-
netic field in a continuous medium may be written as

�k × �k × �E(�k,ω) = ω

c
�k × [

↔
μ · �H(�k,ω)] (3)

and

�k × �k × �H(�k,ω) = −ω

c
�k × [

↔
ε ·�E(�k,ω)], (4)

where
↔
μ = ↔

μ (�k,ω) and
↔
ε = ↔

ε (�k,ω) are the magnetic perme-
ability and electric permittivity tensors, respectively, associ-
ated with the material medium.

Equations (3) and (4) may be used to study the metric
signature transition in a wide variety of optical materials.
Here, we first consider the case of nonmagnetic materials with

dielectric anisotropy. In this case μ =↔
I and Eqs. (3) and (4)

lead to

[�k · �E(�k,ω)]�k − k2 �E(�k,ω) = −ω2

c2

↔
ε ·�E(�k,ω). (5)

Without loss of generality, one may assume that the tensor
↔
ε

is diagonal. Otherwise, one may always perform a coordinate
transformation to reduce

↔
ε to its diagonal form. Therefore,

↔
ε = (εij ) = (εj δij ) (6)

and [
klkl δij − kikl δlj − ω2

c2
εij

]
Ej (�k,ω) = 0. (7)

The condition for solving the above system is

det

∥∥∥∥klkl δij − kikl δlj − ω2

c2
εij

∥∥∥∥ = 0, (8)

which determines the dispersion ω = ω(�k). One may write
Eq. (8) as

ε1ε2ε3
ω2

c2

[
ω4

c4
− ω2

c2

(
k2

1 + k2
2

ε3
+ k2

1 + k2
3

ε2
+ k2

2 + k2
3

ε1

)

+
(

k2
1

ε2ε3
+ k2

2

ε1ε3
+ k2

3

ε1ε2

)
k2

]
= 0, (9)

where k2 = k2
1 + k2

2 + k2
3. Here we focus our attention in

uniaxial dielectric materials. In this case, ε1 = ε2 = ε⊥ and
ε3 = ε‖, and Eq. (9) transforms into

ε2
⊥ε‖

ω2

c2

[
k2

ε⊥
− ω2

c2

] [
k2

1

ε‖
+ k2

2

ε‖
+ k2

3

ε⊥
− ω2

c2

]
= 0, (10)

which leads to the dispersion

k2

ε⊥
= ω2

c2
(11)

corresponding to the ordinary ray, and to the dispersion relation

k2
1

ε‖
+ k2

2

ε‖
+ k2

3

ε⊥
= ω2

c2
(12)

corresponding to the extraordinary ray. For isotropic materials
one has ε⊥ = ε‖, and Eq. (12) reduces to Eq. (11).

First we analyze the case of the extraordinary ray and
suppose that both ε⊥ and ε‖ are functions of the frequency
ω. By introducing the temporal component k0 of the four-
momentum kμ as k0 = ω/c, Eq. (12) may be rewritten as

q2
1

ε‖
+ q2

2

ε‖
+ q2

3

ε⊥
= 1, (13)

where qi = ki/k0 (i = 1, 2, 3) are the three dimensionless
spatial components of the four-momentum kμ. The above
equation allows to obtain the isofrequency surface in the �k
space at a given frequency ω.

Let us now turn to Fig. 1, where we have depicted the
isofrequency surfaces for various metrics, assuming a Drude-
like electric response, i.e,

εα(ω) = ε0
α

(
1 − ω2

eα

ω2

)
, (14)

with α = ⊥, ‖. Figures 1(a), 1(b), and 1(d) where obtained
for ε0

⊥ = 1.21, ε0
‖ = 1, ωe⊥ = 2π GHz, and ωe‖ = 6π GHz, at

the frequencies ν = ω/(2π ) = 3.5 GHz, ν = 2 GHz, and ν =
0.5 GHz, respectively. Notice that εα < 0 (εα > 0) if ν < νeα

(ν > νeα), with νeα = ωeα/(2π ) and α = ⊥, ‖. Here νe⊥ = 1
GHz and νe‖ = 3 GHz are the transversal and longitudinal
plasmon frequencies, respectively, determining the frequency
ranges where ε⊥ and ε‖ are positive or negative. The results
depicted in Fig. 1(c) were obtained, at ν = 2.5 GHz, for the
same values of ε0

⊥, ε0
‖ , but by taking ωe⊥ = 6π GHz, and ωe‖ =

2π GHz. In this case the transversal and longitudinal plasmon
frequencies determining the sign of ε⊥ and ε‖, respectively,
are νe⊥ = 3 GHz and νe‖ = 1 GHz, respectively.

If for a given value of the frequency ω one has ε⊥ > 0 and
ε‖ > 0, the isofrequency surface defined in the real �k space by
the equation ω(�k) = const is an ellipsoid, as one may see from
Fig. 1(a). If ε⊥ > 0 and ε‖ < 0, then the isofrequency surface
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FIG. 1. (Color online) Isofrequency surfaces, corresponding to
the extraordinary ray, for different metrics in the flat Minkowski
space-time. Panels (a), (b), and (d) were obtained for ε0

⊥ = 1.21,
ε0
‖ = 1, ωe⊥ = 2π GHz, and ωe‖ = 6π GHz [cf. Eq. (14)], at

the frequencies ν = ω/(2π ) = 3.5 GHz, ν = 2 GHz, and ν =
0.5 GHz, respectively. These cases correspond to metrics (−, + , +
,+), (−, − , − ,+), and (−, − , − ,−), respectively. In panel (c) we
chose ν = 2.5 GHz and the same values of ε0

⊥, ε0
‖ , but ωe⊥ = 6π GHz,

and ωe‖ = 2π GHz. The corresponding metric is (−, + , + ,−) in this
case.

defined in the real �k space is a two-sheeted hyperboloid,
whereas if ε⊥ < 0 and ε‖ > 0 such surface is a one-sheeted
hyperboloid [cf. Figs. 1(b) and 1(c), respectively]. Finally, if
ε⊥ < 0 and ε‖ < 0 at certain values of ω, the isofrequency
surface does not admit any representation in the real �k space,
but is an ellipsoid in the imaginary i �k space [cf. Fig. 1(d)]. The
dispersion relation for the extraordinary ray is not obtained in
this case.

By introducing the metric four-tensor with components gμν ,
Eq. (12) for the extraordinary ray may be rewritten as

gμν kμkν = 0, (15)

where

(gμν) =

⎛
⎜⎜⎝

−1 0 0 0
0 ε−1

‖ 0 0
0 0 ε−1

‖ 0
0 0 0 ε−1

⊥

⎞
⎟⎟⎠. (16)

The metric tensor (gμν) defines the metric of the �k space
determining the dispersion relation for the extraordinary ray
in the anisotropic nonmagnetic dielectric medium. As the
metric tensor is diagonal in this case, such a metric may be
denoted as [−1,sign(g11),sign(g22),sign(g33)]. The frequency
dependence of both ε‖ and ε⊥ leads to the existence of different
frequency regions of the spectrum with different metric
signatures. For instance, if ε⊥ > 0 and ε‖ > 0 for a given value
of ω, then we have the metric (−, + , + ,+) of the ordinary flat
Minkowski space [cf. Fig. 1(a)]. If ε⊥ > 0 and ε‖ < 0 then we
have the three-time metric (−, − , − ,+), whereas if ε⊥ < 0
and ε‖ > 0 then the two-time metric (−, + , + ,−) is achieved
[cf. Figs. 1(b) and 1(c), respectively]. If ε⊥ < 0 and ε‖ < 0 then
we have the four-time metric (−, − , − ,−) [cf. Fig. 1(d)]. As

FIG. 2. (Color online) Determinant g of the metric tensor (gμν)
as a function of the frequency. Panel (a) was obtained for the
set of parameters ε0

⊥ = 1.21, ε0
‖ = 1, ωe⊥ = 2π GHz, and ωe‖ =

6π GHz, whereas in panel (b) we used the same values of ε0
⊥ and

ε0
‖ , but we took ωe⊥ = 6π GHz and ωe‖ = 2π GHz. Dark-gray and

white areas in panels (a) and (b) represent the frequency regions
with metrics (−, − , − ,−) and (−, + , + ,+), respectively, whereas
the intermediate gray area in Fig. 2(a) [Fig. 2(b)] represents a
bandwidth with a metric (−, − , − ,+) [(−, + , + ,−)]. Triangles at
the horizontal axis are located at the transition (plasmon) frequencies
between different metrics. The frequency values corresponding to
full dots depicted in both panels were used to compute the results of
Fig. 1.

mentioned, no dispersion relation for the extraordinary ray is
obtained in this case, so the four-time metric is not feasible.

In addition,

g = det ‖gμν‖ = − 1

ε2
‖ ε⊥

(17)

is also a function of the frequency which may change
depending on the metric of the �k space determining the
dispersion relation. In this sense, one may note that g < 0 for
the metrics (−, + , + ,+) and (−, − , − ,+), whereas g > 0
for the metrics (−, + , + ,−) and (−, − , − ,−). We display
in Fig. 2 the determinant g of the metric tensor (gμν) as a
function of the frequency. The results displayed in Fig. 2(a)
were obtained for ε0

⊥ = 1.21, ε0
‖ = 1, ωe⊥ = 2π GHz, and

ωe‖ = 6π GHz, whereas the results depicted in Fig. 2(b) were
computed for the same values of ε0

⊥ and ε0
‖ , but for ωe⊥ =

6π GHz and ωe‖ = 2π GHz. The dark-gray and white areas in
both Figs. 2(a) and 2(b) correspond to metrics (−, − , − ,−)
and (−, + , + ,+), respectively, whereas the intermediate
gray area in Fig. 2(a) [Fig. 2(b)] corresponds to a metric
(−, − , − ,+) [(−, + , + ,−)]. The triangles at the bottom
axes of both Figs. 2(a) and 2(b) are located at the plasmon
frequencies, i.e., at the transition frequencies between different
metrics. The frequency values [ν = ω/(2π )] corresponding to
full dots depicted in Fig. 2 were used to compute the results
displayed in Fig. 1.

To explore the role played by the different metrics in the
structure of the dispersion relation, we have displayed in Fig. 3
the dispersion ν = ν(�k). The dashed and solid lines correspond
to solutions for the ordinary [cf. Eq. (11)] and extraordinary
rays [Eq. (12)], respectively, in the case of uniaxial nonmag-
netic anisotropic materials with the anisotropy axis along the z

direction. The calculations shown in Figs. 3(a) and 3(b) were
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FIG. 3. (Color online) Dispersion relation ν = ν(�k)
[ν = ω/(2π )] obtained from Eq. (11) for the ordinary ray
(dashed lines) and from Eq. (12) for the extraordinary ray (solid
lines) in the case of uniaxial nonmagnetic anisotropic materials.
Results depicted in panels (a) and (b) were obtained for the set
of parameters ε0

⊥ = 1.21, ε0
‖ = 1, ωe⊥ = 2π GHz, and ωe‖ = 6π

GHz, whereas in panels (c) and (d) we used the same values of ε0
⊥

and ε0
‖ , but we took ωe⊥ = 6π GHz and ωe‖ = 2π GHz. Dark-gray

and white areas in all panels represent the frequency regions with
the forbidden (−, − , − ,−) and normal (−, + , + ,+) metrics,
respectively. The intermediate gray area in both panels (a) and
(b) corresponds to the bandwidth with metric (−, − , − ,+), whereas
in panels (c) and (d) such intermediate gray regions correspond to
the two-time metric (−, + , + ,−). Horizontal dashed lines in panels
(a) and (c) correspond to the plasmon-frequency values at which
transitions between different metrics take place. The frequency
values corresponding to full dots depicted in panels (b) and (d) were
used to obtain the corresponding results of Fig. 1.

obtained by setting ε0
⊥ = 1.21, ε0

‖ = 1, ωe⊥ = 2π GHz, and
ωe‖ = 6π GHz in Eq. (14). The results depicted in Figs. 3(c)
and 3(d) were obtained by using the same values of ε0

⊥ and
ε0
‖ , but by taking ωe⊥ = 6π GHz and ωe‖ = 2π GHz. In all

panels of Fig. 3, the dark-gray and white areas represent
the frequency regions with the forbidden (−, − , − ,−) and
normal (−, + , + ,+) metrics, respectively. The intermediate
gray areas in both Figs. 3(a) and 3(b) correspond to the
bandwidth with the three-time metric (−, − , − ,+), whereas
in Figs. 3(c) and 3(d) such regions correspond to the two-time
metric (−, + , + ,−). The plasmon-frequency values at which
transitions between different metrics take place are represented
by horizontal dashed lines in both Figs. 3(a) and 3(c). The
frequency values corresponding to full dots shown in both
Figs. 3(b) and 3(d) were used to compute the corresponding
results of Fig. 1.

As we have chosen ε1 = ε2 = ε⊥ and ε3 = ε‖ in Eq. (6),
the present model describes a uniaxial dielectric with the
anisotropy axis along the z direction. If the wave vector �k
is perpendicular to the z axis then the vector field �D may be

decomposed into a component parallel and other perpendicular
to the anisotropy axis, which are also perpendicular to �k. In
this case Maxwell’s equations admit two uncoupled solutions
with orthogonal polarizations. The component of �D oscillating
along the z axis leads to the extraordinary ray, whereas
the perpendicular component originates the ordinary ray.
On the other hand, if the wave vector �k is parallel to the
anisotropy axis then the vector field �D only oscillates in a
plane perpendicular to z. As all the spatial directions over
such a plane are equivalent, Maxwell’s equations then admit
two degenerated solutions corresponding to the ordinary ray,
i.e., the extraordinary-ray solution in fact reduces to the
ordinary-ray solution in this case. This physical situation
may be seen in both Figs. 3(a) and 3(c), where the wave
vector �k is continuously changed in the sequence (0,0,1) →
(0,0,0) → (1,0,0) → (1,1,0). One may note from Figs. 3(a)
and 3(c) that, when the wave vector �k is perpendicular
to the z axis, one obtains a solution corresponding to the
extraordinary ray that is not observed when the wave vector �k is
parallel to the anisotropy axis. The continuity of this particular
mode at the �k = 0 (
) point is not achieved. Nevertheless,
the electromagnetic mode corresponding to the ordinary ray
exhibits a continuous behavior at the 
 point, as expected [see
the dashed lines in both Figs. 3(a) and 3(c)].

If the wave vector �k is neither perpendicular nor parallel
to the z axis, then it is not possible to separate the spatial
components of �k parallel and perpendicular to the anisotropy
axis in Eq. (12). In this case, depending on the behavior of the
dielectric tensor as a function of the frequency, it is possible
to obtain more than one solution from Eq. (12) corresponding
to the extraordinary ray. For the Drude-like dielectric response
considered here [cf. Eq. (14)], we have obtained two different
modes for the extraordinary ray, apart from the electromagnetic
mode corresponding to the ordinary ray. Numerical results are
displayed in Figs. 3(b) and 3(d), where the wave vector �k varies
according to the sequence (0,0,0) → (1,1,1) → (1,0,1) →
(0,0,0) to guarantee the obliqueness of �k with respect to the
anisotropy axis. It is apparent from Figs. 3(b) and 3(d) that
one of the extraordinary subbands lies in the region of the
metric (−, + , + ,+), where the isofrequency surface is an
ellipsoid [cf. Fig. 1(a)]. One then may refer to this subband
as an ellipsoidal subband. Particularly, for the Drude-like
dielectric response considered here, the hyperbolic dispersion
occurs only for the three-time (−, − , − ,+) and two-time
(−, + , + ,−) metrics [cf. Figs. 1(b) and 1(c), respectively].
Therefore, such kinds of dispersions may only be exhibited by
the so-called hyperbolic subband labeled in both Figs. 3(b) and
3(d). One may note that the hyperbolic subbands are bounded
by the two plasmon frequencies associated with ε‖ and ε⊥. In
other words, the metric transitions occur at the ωe‖ and ωe⊥
plasmon frequencies [cf. Eq. (17) and Figs. 2 and 3].

III. DIELECTRIC AND MAGNETIC
ANISOTROPIC MATERIALS

We now consider a material with both dielectric and
magnetic anisotropy, and suppose that the electric permittivity
and magnetic permeability tensors are both diagonal, with
components εi and μi (i = 1, 2, 3), respectively. In this

033202-4



METRIC-SIGNATURE TOPOLOGICAL TRANSITIONS IN . . . PHYSICAL REVIEW E 89, 033202 (2014)

case,

�k × �E(�k,ω) = ω

c

↔
μ · �H(�k,ω), (18a)

�k × �H(�k,ω) = −ω

c

↔
ε ·�E(�k,ω). (18b)

The set of Eqs. (18) may be written in matrix form as
⎛
⎜⎜⎜⎜⎜⎝

0 −k3 k2 −ω
c
μ1 0 0

k3 0 −k1 0 −ω
c
μ2 0

−k2 k1 0 0 0 −ω
c
μ3

ω
c
ε1 0 0 0 −k3 k2

0 ω
c
ε2 0 k3 0 −k1

0 0 ω
c
ε3 −k2 k1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

E1

E2

E3

H1

H2

H3

⎞
⎟⎟⎟⎟⎟⎠

= 0.

(19)

The condition to solve the above system is

det

∥∥∥∥∥∥∥∥∥∥∥

0 −k3 k2 −ω
c
μ1 0 0

k3 0 −k1 0 −ω
c
μ2 0

−k2 k1 0 0 0 −ω
c
μ3

ω
c
ε1 0 0 0 −k3 k2

0 ω
c
ε2 0 k3 0 −k1

0 0 ω
c
ε3 −k2 k1 0

∥∥∥∥∥∥∥∥∥∥∥
= 0,

(20)

which leads to

ε1ε2ε3μ1μ2μ3
ω2

c2

{
ω4

c4
− ω2

c2

[
1

ε3

(
k2

1

μ2
+ k2

2

μ1

)

+ 1

ε2

(
k2

1

μ3
+ k2

3

μ1

)
+ 1

ε1

(
k2

2

μ3
+ k2

3

μ2

)]

+
(

k2
1

ε2ε3
+ k2

2

ε1ε3
+ k2

3

ε1ε2

)(
k2

1

μ2μ3
+ k2

2

μ1μ3
+ k2

3

μ1μ2

)}

= 0. (21)

If we take ε1 = ε2 = ε⊥, ε3 = ε‖, μ1 = μ2 = μ⊥, and μ3 =
μ‖, then Eq. (21) becomes

ε2
⊥ε‖μ2

⊥μ‖
ω2

c2

[
1

μ⊥

(
k2

1

ε‖
+ k2

2

ε‖
+ k2

3

ε⊥

)
− ω2

c2

]

×
[

1

ε⊥

(
k2

1

μ‖
+ k2

2

μ‖
+ k2

3

μ⊥

)
− ω2

c2

]
= 0. (22)

The two possible dispersion relations are

1

μ⊥

(
k2

1

ε‖
+ k2

2

ε‖
+ k2

3

ε⊥

)
− ω2

c2
= 0 (23)

and

1

ε⊥

(
k2

1

μ‖
+ k2

2

μ‖
+ k2

3

μ⊥

)
− ω2

c2
= 0, (24)

with the corresponding metric tensors

(
g(1)

μν

) =

⎛
⎜⎜⎝

−1 0 0 0
0 (μ⊥ ε‖)−1 0 0
0 0 (μ⊥ ε‖)−1 0
0 0 0 (μ⊥ ε⊥)−1

⎞
⎟⎟⎠

(25)

TABLE I. Parameters used for the Drude-like electric and
magnetic responses.

α ε0
α ωeα/(2π ) (GHz) μ0

α ωmα/(2π ) (GHz)

⊥ 1.21 1.00 1.00 2.00
‖ 1.00 3.00 1.21 4.00

and

(
g(2)

μν

) =

⎛
⎜⎜⎝

−1 0 0 0
0 (ε⊥ μ‖)−1 0 0
0 0 (ε⊥ μ‖)−1 0
0 0 0 (ε⊥ μ⊥)−1

⎞
⎟⎟⎠,

(26)

respectively. The determinants of (g(1)
μν) and (g(2)

μν) are

g(1) = − 1

μ3
⊥ε2

‖ε⊥
(27)

and

g(2) = − 1

ε3
⊥μ2

‖μ⊥
, (28)

respectively.
Here we consider Drude-like electric and magnetic re-

sponses for the metamaterial, i.e.,

εα(ω) = ε0
α

(
1 − ω2

eα

ω2

)
(29)

and

μα(ω) = μ0
α

(
1 − ω2

mα

ω2

)
, (30)

with α =⊥ , ‖. Notice that the sign of both εα and μα change
at their corresponding plasmon frequencies. Therefore, such
plasmon frequencies determine the set of frequency subbands
with different associated metrics. In what follows, the param-
eters used in the calculations are given in Table I. Figure 4
then displays the calculated values for g(1) and g(2) in the case
of a material with both dielectric and magnetic anisotropy. Of
course, the determinants g(1) and g(2) of the metric tensors are
functions of the frequency and diverge [see Eqs. (27) and (28)]
at the corresponding metric signature transitions, which occur
at the νeα and νmα electric and magnetic plasmon frequencies.
Notice that the white and gray areas in all panels of Fig. 4
correspond to the normal Minkowski metric (−, + , + ,+)
and three-time metric (−, − , − ,+), respectively, whereas the
dark-gray area in Fig. 4(a) [Fig. 4(b)] corresponds to the metric
(−, + , + ,−) [(−, − , − ,−)].

We have obtained the ν = ν(�k) dispersion and results are
given in Figs. 5 and 6, with the calculations performed by
solving Eqs. (23) and (24), respectively, with Drude-like
electric and magnetic responses and parameters listed in
Table I. As the studied material has dispersive electric and
magnetic responses, the results for the ν = ν(�k) dispersion
are much richer, as detailed in Figs. 5(c), 5(d), 6(c), and 6(d),
which display the calculated results in the neighborhood of
the electric and magnetic plasmon frequencies (see Table I).
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FIG. 4. Determinants (a) g(1) and (b) g(2) of the metric tensor (g(1)
μν)

and (g(2)
μν), respectively, as functions of the frequency. Parameters

for evaluating the Drude-like electric permittivity and magnetic
permeability are given in Table I. White and gray areas in all
panels correspond to the normal Minkowski metric (−, + , + ,+) and
three-time metric (−, − , − ,+), respectively. Dark-gray area in panel
(a) [(b)] corresponds to the metric (−, + , + ,−) [(−, − , − ,−)].
Triangles at the bottom axes are located at the transition (plasmon)
frequencies between different metrics.

One may note from Figs. 5(a), 5(c), 6(a), and 6(c) that, if
the wave vector �k is paralell to the z axis (the anysotropy
axis of both

↔
ε and

↔
μ), then one may obtain, due to the

Drude-like dielectric and magnetic responses considered here,
two different solutions from Eq. (23) which are also solutions

FIG. 5. Dispersion relation ν = ν(�k) [ν = ω/(2π )] obtained
from Eq. (23). Results were obtained by using the set of parameters
displayed in Table I. Panels (c) and (d) show a zoom of the
band structures depicted in panels (a) and (b), respectively, in the
neighborhood of the electric and magnetic plasmon frequencies.
White and gray areas correspond to the normal Minkowski metric
(−, + , + ,+) and three-time metric (−, − , − ,+), respectively,
whereas dark-gray area corresponds to the metric (−, + , + ,−).
Horizontal dashed lines in panels (c) and (d) correspond to the
plasmon-frequency values at which transitions between different
metrics take place.

FIG. 6. As in Fig. 5, but for results obtained from Eq. (24).
White and gray areas correspond to the normal Minkowski metric
(−, + , + ,+) and three-time metric (−, − , − ,+), respectively,
whereas dark-gray area corresponds to the metric (−, − , − ,−).

of Eq. (24). If the wave vector �k is neither perpendicular nor
parallel to the z axis, then the nonseparability of the spatial
components of �k, together with the Drude-like dielectric and
magnetic responses, lead to three different modes obtained
from Eq. (23) and three other different solutions coming from
Eq. (24) [cf. Figs. 5(b), 5(d), 6(b), and 6(d)]. As in the case
of nonmagnetic materials discussed in the previous section,
the frequency dependence of the components of

↔
ε and

↔
μ

determines the number of subbands which may be obtained by
solving Eqs. (23) and (24).

Let us now calculate the photonic density of states (DOS)
which is connected with the band structure of the photonic
crystal. The DOS is defined as the number of photonic states
per unit of frequency and volume, i.e.,

ρ(ω) = 1

V
∑

�k
δ[ω − ω(�k)], (31)

where V is the system volume or, alternatively,

ρ(ω) = 1

(2π )3

∫
�

1

|∇�k[ω − ω(�k)]| dσ, (32)

where � is the isofrequency surface obtained from the
dispersion at a given value of the wave frequency. In Fig. 7
the DOS is depicted as a function of the incoming wave
frequency. Figures 7(a) and 7(b) were obtained for the
particular dispersion ω = ω(�k) determined by the metric
tensors (g(1)

μν) and (g(2)
μν), respectively. As expected, we find

that the DOS diverges in the frequency regions corresponding
to the hyperbolic metamaterial metrics (−, − , − ,+) and
(−, + , + ,−), opening up the possibility of bulk propagating
modes with unbound wave vectors in contrast with a vacuum
[25].
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FIG. 7. (Color online) Photonic density of states as a function of
the wave frequency, corresponding to metric tensors (a) (g(1)

μν) and
(b) (g(2)

μν ). Parameters for evaluating the Drude-like electric permittiv-
ity and magnetic permeability are given in Table I. White and gray
areas at the top of both panels correspond to the normal Minkowski
metric (−, + , + ,+) and three-time metric (−, − , − ,+), respec-
tively. Dark-gray area at the top of panel (a) [(b)] corresponds to the
metric (−, + , + ,−) [(−, − , − ,−)], whereas vertical dashed lines
correspond to the plasmon frequencies at which transitions between
different metrics take place.

For the Drude-like electric and magnetic responses consid-
ered in the present study, the DOS corresponding to the modes
obtained from Eq. (23) does not vanish in the frequency axis.
Therefore, there is no complete frequency gaps appearing in
the corresponding band structure. In other words, it is possible
to observe small frequency gaps for some particular directions
of �k (cf. solid lines in Fig. 5), but it is also possible to find other
directions of the wave vector for which such gaps do not exist.
In contrast, the DOS corresponding to the modes obtained from
Eq. (24) vanishes in the region with metric (−, − , − ,−). As
a consequence, a complete frequency gap is expected to occur
in this frequency range, i.e., the frequency bandwidth with
metric (−, − , − ,−) corresponds to a frequency gap for every
possible direction of the wave vector.

IV. CONCLUSION

The metric signature topological transitions, with
frequency-dependent and anisotropic dielectric and magnetic
responses, are examined in the present work. The components

of the reciprocal-space metric tensor depend upon both the
electric permittivity and magnetic permeability of the meta-
material, which are taken as Drude-like dispersive models. A
thorough study is presented of the frequency dependence of
the metric tensor which leads to the possibility of topological
transitions of the isofrequency surface determining the wave
dynamics inside the medium, to a diverging photonic density of
states at some range of frequencies, and to the existence of large
wave vectors modes propagating through the metamaterial.

In summary, metric signature topological transitions as-
sociated with the propagation of electromagnetic waves in
a dispersive metamaterial have been theoretically analyzed
assuming Drude-type electric and magnetic responses. As
the photonic DOS is related to the volume enclosed by the
corresponding isofrequency surface, we have found infinite
DOS in the case of the hyperbolic isofrequency surface within
the lossless effective medium limit. One might conjecture that
the inclusion of loss should limit these infinite values of �k to
the more realistic case of very large but finite �k. This phase
transition is characterized by the existence of eletromagnetic
states with wave vectors extremely large compared to the
allowed wave vectors in a vacuum, enhancing light-matter
interactions and quantum related phenomena such as sponta-
neous emission. We conclude, therefore, that the dispersive
nature of the metamaterial offers a myriad of possibilities
to explore. By an appropriate change of the wave frequency
it is possible to tune a specific reciprocal-space metric and
study a wide variety of physical phenomena associated to the
various isosurfaces. In the case of hyperbolic metamaterials
(−, − , − ,+), for instance, exotic and remarkable properties
such as no diffraction limit and large �k propagating modes
have been reported in the literature [26,27]. On the other
hand, for the particular (−, − , − ,−) metric a complete band
gap is found. In this way, we do hope the present study
will contribute to further investigations on the realization of
metamaterial-based new photonic devices.

ACKNOWLEDGMENTS

E. R.-G. wishes to thank the warm hospitality of the Institute
of Physics of the Universidade Estadual de Campinas, where
part of this work was performed. We are grateful to the
Scientific Colombian Agency CODI–University of Antioquia
and Brazilian Agencies CNPq, FAPESP (Proc. 2012/51691-0),
and FAEPEX-UNICAMP, for partial financial support.

[1] T. W. B. Kibble and G. R. Picket, Phil. Trans. R. Soc. 366, 2793
(2008).

[2] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[3] S. John, Phys. Rev. Lett. 58, 2486 (1987).
[4] U. Leonhardt and T. G. Philbin, New J. Phys. 8, 247 (2006).
[5] I. I. Smolyaninov and E. E. Narimanov, Phys. Rev. Lett. 105,

067402 (2010).
[6] H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov,

I. Kretzschmar, and V. M. Menon, Science 336, 205 (2012).
[7] I. I. Smolyaninov and Y. J. Hung, J. Opt. Soc. Am. B 28, 1591

(2011).

[8] I. I. Smolyaninov, E. Hwang, and E. E. Narimanov, Phys. Rev.
B 85, 235122 (2012).

[9] I. I. Smolyaninov, Y.-J. Hung, and E. Hwang, Phys. Lett. A 376,
2575 (2012).

[10] I. I. Smolyaninov, Phys. Rev. D 85, 114013 (2012).
[11] A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz,

D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco,
and C. Gmachl, Nat. Mater. 6, 946 (2007).

[12] C. M. Soukoulis, S. Linden, and M. Wegener, Science 315, 47
(2007).

[13] M. Wilson, Phys. Today 60(2), 19 (2007).

033202-7

http://dx.doi.org/10.1098/rsta.2008.0098
http://dx.doi.org/10.1098/rsta.2008.0098
http://dx.doi.org/10.1098/rsta.2008.0098
http://dx.doi.org/10.1098/rsta.2008.0098
http://dx.doi.org/10.1103/PhysRevLett.58.2059
http://dx.doi.org/10.1103/PhysRevLett.58.2059
http://dx.doi.org/10.1103/PhysRevLett.58.2059
http://dx.doi.org/10.1103/PhysRevLett.58.2059
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/10.1088/1367-2630/8/10/247
http://dx.doi.org/10.1088/1367-2630/8/10/247
http://dx.doi.org/10.1088/1367-2630/8/10/247
http://dx.doi.org/10.1088/1367-2630/8/10/247
http://dx.doi.org/10.1103/PhysRevLett.105.067402
http://dx.doi.org/10.1103/PhysRevLett.105.067402
http://dx.doi.org/10.1103/PhysRevLett.105.067402
http://dx.doi.org/10.1103/PhysRevLett.105.067402
http://dx.doi.org/10.1126/science.1219171
http://dx.doi.org/10.1126/science.1219171
http://dx.doi.org/10.1126/science.1219171
http://dx.doi.org/10.1126/science.1219171
http://dx.doi.org/10.1364/JOSAB.28.001591
http://dx.doi.org/10.1364/JOSAB.28.001591
http://dx.doi.org/10.1364/JOSAB.28.001591
http://dx.doi.org/10.1364/JOSAB.28.001591
http://dx.doi.org/10.1103/PhysRevB.85.235122
http://dx.doi.org/10.1103/PhysRevB.85.235122
http://dx.doi.org/10.1103/PhysRevB.85.235122
http://dx.doi.org/10.1103/PhysRevB.85.235122
http://dx.doi.org/10.1016/j.physleta.2012.07.010
http://dx.doi.org/10.1016/j.physleta.2012.07.010
http://dx.doi.org/10.1016/j.physleta.2012.07.010
http://dx.doi.org/10.1016/j.physleta.2012.07.010
http://dx.doi.org/10.1103/PhysRevD.85.114013
http://dx.doi.org/10.1103/PhysRevD.85.114013
http://dx.doi.org/10.1103/PhysRevD.85.114013
http://dx.doi.org/10.1103/PhysRevD.85.114013
http://dx.doi.org/10.1038/nmat2033
http://dx.doi.org/10.1038/nmat2033
http://dx.doi.org/10.1038/nmat2033
http://dx.doi.org/10.1038/nmat2033
http://dx.doi.org/10.1126/science.1136481
http://dx.doi.org/10.1126/science.1136481
http://dx.doi.org/10.1126/science.1136481
http://dx.doi.org/10.1126/science.1136481
http://dx.doi.org/10.1063/1.2711624
http://dx.doi.org/10.1063/1.2711624
http://dx.doi.org/10.1063/1.2711624
http://dx.doi.org/10.1063/1.2711624
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