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II. Dynamical and surface effects on Auger line shapes
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Auger CVV spectra of simple metals are generally believed to be well described by one-electron-
like theories in the bulk which account for matrix elements and, in some cases, also static core-hole
screening effects. We present here detailed calculations on Li, Be, Na, Mg, and Al using self-
consistent bulk wave functions and proper matrix elements. The resulting spectra differ markedly
from experiment and peak at too low energies. To explain this discrepancy we investigate effects of
the surface and dynamical effects of the sudden disappearance of the core hole in the final state. To
study core-hole effects we solve Mahan —Nozieres —De Dominicis (MND) model numerically over
the entire band. The core-hole potential and other parameters in the MND model are determined

by self-consistent calculations of the core-hole impurity. The results are compared with simpler ap-
proximations based on the final-state rule due to von Barth and Grossmann. To study surface and
mean-free-path effects we perform slab calculations for Al but use a simpler infinite-barrier model in

the remaining cases. The model reproduces the slab spectra for Al with very good accuracy. .In all

cases investigated either the effects of the surface or the effects of the core hole give important
modifications and a much improved agreement with experiment.

I. INTRODUCTION

To calculate Auger core-valence-valence (CVV) line
shapes in solids is quite a demanding problem even within
a one-electron picture. The first realistic one-electron
calculation was presented about ten years ago by Feibel-
man et al. ,

' who considered the L2 3 VV spectrum from a
silicon surface. The work of Feibelman et al. demon-
strated the importance of matrix-element effects, which
tend to select sp and pp contributions, and showed the
simpler pictures based on self-folded densities of states
to be inadequate. Later Jennison and co-workers
presented a large number of calculations based on realis-
tic wave functions and obtained a good overall agreement
with experiment. A major conclusion of Jennison and
co-workers is that neither surface nor dynamical core-
hole effects need to be invoked in order to explain Auger
CVV line shapes. However, the mean free path of the
Auger electron is of the order of only a few atomic dis-
tances at typical Auger energies of about 100 eV, and
thus one would expect effects of the surface. In addition,
model calculations by Schulman and Dow for lithium
suggest that dynamical effects may be quite important.

In this work we will reconsider the problem of calcu-
lating Auger line shapes of solids from first principles,
and as in the preceding paper, henceforth to be referred
to as I, we will confine ourselves to the Li, Be, Na, Mg,
and Al metals. We present detailed one-electron spectra
from a bulk atom calculated from self-consistent linear
muffin-tin-orbital (LMTO) wave functions ' and find,
quite unexpectedly, results which in general do not agree
well with experiment. (Here, and in the following, "one-
electron results" refers to results which account for the
Coulomb matrix elements from ground-state orbitals. )
One may perhaps argue that the LMTO method is not

accurate enough for obtaining good one-electron spectra.
However, the overall experience over the past ten years is
that the LMTO method for calculating electronic struc-
ture is capable of giving numerically accurate values for
structural energies, charge densities, cohesive energies,
etc. ' In the present case we are dealing with close-
packed or almost-close-packed systems, for which the
LMTO method is particularly well suited. We would also
like to remind the reader that in previous work by von
Barth and Czrossmann' '" the LMTO method has proven
to yield an accurate description of both main x-ray-
emission bands as well as core-hole effects in x-ray satel-
lite and Auger KLV spectra. Thus we believe our results
to be genuine and not artifacts of the numerical pro-
cedure used for solving orbital Schrodinger equations.

In general, our one-electron bulk calculations give
spectra which peak at lower Auger-electron energies than
do the corresponding experimental results. The
discrepancy can easily be removed by adjusting the
different partial wave contributions (ss, sp, pp), but in or-
der to justify such procedures one must go beyond strict
one-electron theory. To resolve the reason for the
discrepancies we will study screening and dynamical
effects from the core hole present in the initial state of the
Auger process, and effects of the surface and mean free
path. As we will show, both effects can lead to a peak
shift to higher energies and give, when combined, results
in much better agreement with experiment. Interestingly
enough, however, in each individual case studied here eE-

ther the surface effects are important or the core-hole
effects. Thus, the explanation is different in each case.

The simplest model that accounts for core-hole effects
in a dynamical way is the independent fermion model of
Mahan, Nozieres, and De Dominicis (MND). ' In this
model, one represents the system with an effective one-
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electron Hamiltonian H* in the initial core-hole state,
and a different one-electron Hamiltonian H in the final
state without a core hole. To model H and H* we per-
form self-consistent supercell calculations, as described in
I, on systems where every 16th atom is a core-hole atom,
in addition to the ground-state calculations. We choose
H and H* such that they produce one-electron spectra
which agree with our LMTO results without and with a
static core-hole, respectively. In this fitting procedure we
decompose the Auger spectrum into subchannels accord-
ing to the angular momenta and spin of the two valence
holes left behind, and do the fit in each subchannel sepa-
rately. To obtain a fully dynamical spectrum we then
solve the model numerically using the finite-1V method
pioneered by Kotani and Toyozawa. ' In a number of
previous works, ' ' ' this method has proven to rather
easily give reliable numerical results. Including p waves,
our present calculation involves eight subchannels.

As shown by von Barth and Grossmann, ' the shape of
a dynamical (subchannel) spectrum generally agrees well
with the one-electron spectrum obtained from orbitals
solved in the anal state pot-ential. This result was termed
the final-state rule. In the case of emission the final-state
potential contains no core hole. The total and partial
yields, on the other hand, are determined by the valence-
electron wave function in the initial core-hole state (see I
and references therein). In this work we will also study
approximations used by Ramaker' and Jennison which
are based on the final-state rule and yield sum rules.

To estimate the surface and mean-free-path effects we
perform self-consistent slab calculations in the case of Al.
We use these slab results to justify a simpler surface mod-
el which we use for the remaining systems. In the
simplified model we extend an idea by Gadzuk' and
represent a valence orbital near the surface by a Bloch
wave specularly reflected in a surface plane about one
atomic radius outside the outermost nuclei. This corre-
sponds to an infinite-barrier model (IBM) where the
secondary reflected rays have been neglected. The IBM
is clearly a somewhat crude model for the surface-
electronic structure, but, owing to the broad selection
rules imposed by Auger matrix elements, we do not ex-
pect an Auger spectrum to probe the finer details in the
local electronic structure near the surface.

By and large the present work relies heavily on
effective one-electron models. The one-electron picture
has proven to be quite successful for interpreting photo-
emission and other spectra which mainly involve one-
hole final states. In Auger emission, on the other hand,
the final states involve two valence holes initially localized
on the same atomic site, and as a consequence of hole-
hole interactions one might expect important deviations
from an independent fermion description even for a sim-
ple metal. As is well known, such interactions play an
important role in narrow d bands, ' but our results do not

I

indicate this to be the case for s- and p-like bands. A
second aspect neglected in the effective one-electron mod-
els used here is the coupling between the primary core-
hole creation process and the subsequent Auger emission.
Ho~ever, as we have shown in the preceding paper, the
core-hole lifetimes encountered here are long enough for
the shakeup cloud of plasmons and particle-hole pairs
created in the primary step to diffuse away completely be-
fore the reemission event, leaving a completely relaxed
core hole behind. ' ' Thus we can with confidence take
the initial state of the Auger process as the fully relaxed
hole state. A more important aspect left out in our work
is the effect of collective excitations, i.e., the plasrnon sa-
tellites. These satellites are both of intrinsic and extrinsic
origin ' and are often quite strong. To fully account for
these effects a dynamical theory of interacting rather
than noninteracting valence electrons is required. Al-
though the principles for such a theory are more or less
known, a realistic quantitative description of plasmon sa-
tellites in Auger spectra has yet to come. In the absence
of such a description experimentalists usually deconvo-
lute away the plasmon-loss effects, assuming that they
enter in the same way as in x-ray photoemission spectra,
in order to obtain an underlying "one-electron" spec-
trum. Although such a procedure is quite useful in many
respects and the best one can do at present, it must be
remembered that those parts of an experimental deconvo-
luted spectrum which overlap with strong loss satellites
must be regarded with some skepticism.

II. THE NO-LOSS AUGER CURRENT
FROM A SURFACE

A. General

The one-electron expressions used for the bulk spectra
are given in I and need not be repeated. To obtain the
no-loss Auger current coming through the surface we
should, according to general photoemission theory, take
the final Auger orbital P„as a time-reversed LEED
(low-energy electron diff'raction) orbital solved in the po-
tential

V,s = Vc+X,(s„)
inside the solid. In Eq. (I) Vc is the total Coulomb po-
tential and X, (c.„) the (time-reversed) one-electron self-

energy or optical potential at the Auger energy c„. In
what follows we make the usual approximation and re-
place X by U„+iy /2, where U„, is the Hohenberg-
Kohn-Sham ground-state potential and where the con-
stant damping y is taken from electron-gas calculations
or deduced from experimental mean free paths. Refer-
ring specifically to one-electron theory, we can write the
angle-resolved Auger current in direction n from a
specific site j as

D (s„,n)=2~+ ([(kl. ~u~cg„) ]
—(kl~u~g„c )* (kl ~u~cP„) )Do(e„)5(s&+e&—e~ —s, ),

k, l

where Do(s)=(2s)' /8~ is the state density per spin in vacuum. &Regarding notations and units, see I.) Before
proceeding we note that the time-reversed LEED states enter because we here count only a subclass of final states corre-
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sponding to no-energy losses and a given emission angle, and that they are thus not to be used for calculating lifetimes
which involve all possible decay events.

In the present calculation we adopt the simplest possible approximation for p„and take it as a plane wave of the ap-
propriate direction in vacuum, and a properly damped linear augmented plane wave (LAPW) inside the solid with the
behavior

P„(r)=exp[ik~ R —(AZ /cos8)]pi'$1 (c„,n, ~r —R ~)Yj ((r—R )/~r —R ~)

L~
(3)

inside the muffin tin or atomic sphere at site j. [As in paper I, we shall use the atomic-sphere approximation (ASA).] In
Eq. (3) 2i, =y/k„ is the inverse mean free path, L ~ is short for the Auger-electron angular momentum labels, and 0 is
the emission angle. We have chosen our coordinate system so as to have the surface along the plane z =0. To proceed
we approximate the valence orbitals by muffin-tin or ASA orbitals,

P&(r)=exp(ik~~ Rj) pi'CI Yi((r —R )/~r —R.~)P t(c, ~r —R )
L

(4)

D (c„,n) =2m. g e
J

(k~~ is the momentum parallel to the surface), do a multipole expansion of the Coulomb matrix elements as in I, keep
only the central cell part, and form the Auger intensity according to Eq. (2). In the presence of a surface the sum over
magnetic sublabels (m) can no longer be performed analytically. Averaging over the core-hole magnetic and spin sub-
levels and summing the contribution from all atomic layers we obtain an expression of the form

f dc f dc'Do(c~ )5(c+c' —c, —cz )

where

FjIt (c)=pi' 'Cjr (C"1.)*5(c—cj, )
k

F , (c)F , .(c').
c L&,L1~2,L2

X [2Q*(L„L', L2, cc, ),
'

—Q*(L„L2,L', , c', c)]Qj(L„L„L2,c,c'), (5)

is a (nondiagonal) state-density function for one spin in the unit cell at Rj, and where

.I„Qj(L„L',L, c,c')= g i "ct,(L,L, )cI,(L„,L')R&(col, cJ'1', c,PI (c„,n))5 +

contains the matrix elements. [Here p is the Fermi level,
c (t,L'L) a Gaunt coefficient defined as in Ref. 24, and R&
a Slater integral defined as in I.] Equation (5) can easily
be generalized to a more realistic treatment of the final
Auger orbital and gives then the general one-electron re-
sult for Auger emission from a surface in terms of
muffin-tin or ASA wave functions. The results above
closely resemble the linear combination of atomic orbitals
(LCAO) expressions obtained earlier by Feibelman et al. '

B. Modeling wave functions near a surface

In the case of Al we model an ideal (100) surface by
self-consistent calculations on a repeated slab with 13 Al
layers separated by five vacuum layers. We use the

I

LMTO method with wave-function reconstruction as de-
scribed in I, and calculate the orbitals, which include d
waves, for 78 k points in the irreducible surface wedge.

In the remaining cases we use an infinite-barrier model
and represent an orbital (Pt, ) close to the surface by a
Bloch wave ($1, ) specularly reffected in a surface plane,
i.e., we take

t =2 '
(QI —Ritjj ) .

Now, with a suitable choice of relative phases of Bloch
waves for different k we have TQI, =PT& for point-
symmetry operations T and for nondegenerate k points.
Using. this property it is not difficult to see that the
muffin-tin amplitudes BI in

@t,(r)=exp(ik R, ) gi'BI Yt((r —R )/[r —Rj()gt(c, (r —R, ()
L

transform as YI*(k) under point-symmetry operations. It now readily follows that the approximation in Eq. (8) corre-
sponds to choosing the muffin-tin amplitudes C t in Pt, as [cf. Eq. (4)]

ik Z.
Z J

Ck —e ~k[i ( l)m+1 z j]
21/2



3506 C.-O. ALMBLADH AND A. L. MORALES 39

for lattices where the reAection R is an allowed point-group operation. This gives now a state-density function I of the
form

( )
& g $(s E )

I —I'Bk(Bk )+[1 ( 1) +! '" j][1 ( 1) '+j'e ' j]
BZ

The local projected density of states (PDOS) is given by

(9)

Djj(E)=g Fjll (E) .
m

In our derivation we considered only nondegenerate k points but, since we in Eq. (9) sum over all bands, degenerate
as well as nondegenerate, one can show that this restricting assumption is actually not needed.

Far inside the solid, terms which involve the oscillatory terms involving exp(+i2k, Z )g.ive no contribution, and
F~IL. properly reduces to its bulk form

F 11.(E)=—,
' +6(E—Ek)i [BL(B~,) +BI "(Bl",")*]=+5(E—sk)i Bl (Bl" )*,

BZ BZ

which, as discussed in I, reduces to

1

2l +1 D( ( E )5LI

for s and p electrons. Closer to the surface the state den-
sity begins to deviate from the bulk behavior but, as we
will show in Sec. IV, appreciable deviations occur only in
the first atomic layer.

In the IBM, Eq. (8), charge neutrality of a surface atom
is not guaranteed. Choosing the surface plane one
muffin-tin radius outside the outermost nuclei, we obtain
for Al a charge depletion of about 0.1 electrons per atom.
We think this is not unreasonable and that it can be con-
sidered as a crude modeling of the dipole layer, which is
formed by a small fraction of electrons being transferred
into an exponentially decaying density profile outside the
surface. For the monovalent metals this choice of surface
plane gives a larger depletion, about 0.3 electrons, which
is unacceptably large in comparison with the number of
valence electrons. By choosing the plane 1 Wigner-Seitz
radius outside the outermost nuclei we obtain a more sa-
tisfactory depletion of about 0.1 electrons. The shape of
the local projected density of states (PDOS) as well as the
shape of the Auger spectrum for an atom at the surface is
almost unchanged by this modification, but too much
charge depletion makes the Auger current from the first
sublayer too small.

In order to evaluate the IBM state-density function
F Ll.(E), we use LMTO wave functions for the ground
state, obtained as described in I, and use a sufficient num-
ber of k points to converge up to the third sublayer. The
fourth and the following sublayers we take as bulk layers.
For the cubic metals we use about 1000 k points in the ir-
reducible wedge and obtain the contributions from the
remaining wedges by the appropriate symmetry transfor-
mations. For the hcp metals we use a similar method
with about 2000 points in» of the first Brillouin zone.

III. DYNAMICAL CORE-HOLE EFFECTS

A. The MND independent fermion model

In the Mahan —Nozieres —De Dominicis' (MND) mod-
el one represents the valence-electron system by different

I

one-electron Hamiltonians in the initial core-hole and in
the final no-hole states. We here denote these Hamiltoni-
ans by H' and H, respectively. As is well known, this
model can be solved analytically very close to the emis-
sion or absorption edge and gives for metals a singular
edge behavior which has given rise to much controversy
in the past. ' More importantly, the model can be
solved also away from the edge by numerical
means. ' ' ' ' Away from threshold the MND model
lacks formal justification, but when used with proper pa-
rameters (one-electron eigenvalues, core-hole potentials,
etc. ) obtained from realistic calculations the model has
nevertheless been shown to give a good description of x-
ray-emission and -absorption bands in most simple met-
als. ' "" In view of this it is not unreasonable to assume
that useful insight can be gained by applying the MND
model to the case of Auger CVVemission.

The MND singularity is of the form

D(s)- ir. —s, i

close to the edge c=c,. The exponents a for different
kinds of spectra [x-ray photoemission spectroscopy
(XPS), x-ray absorption, etc.] can all be expressed in a
common set of Fermi-surface phase shifts of the core-
hole potential. For the case of Auger CVV emission the
exponents are negative (see Ref. 29, Table VI), but in gen-
eral the leading edge is steeper than it would be in one-
electron theory (in the latter case a= —1). These effects
would move the peak in the spectra to higher energies.
On the other hand, the MND model also gives a broaden-
ing away from the edge originating from particle-hole
shakeup, which tends to move the peak to lower energies.
Thus, it is difficult to say anything definite without expli-
cit numerical solutions over the entire spectral range.

The singular-edge behavior was under intense discus-
sion during the 1970s. The picture that has emerged is
that the effect is no doubt present and that there is
reasonable agreement between theory and experiment in
most simple metals (for a recent review, see Ref. 29). In
Li, however, there seems to be a conflict between compa-
tibility relations imposed by MND theory and
inelastic-electron-scattering experiments. In these ex-
periments the expected enhancement of the s-wave part
near the edge was far too small and in fact not possible to
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detect. In view of these results it would not be surprising
if the MND model overemphasizes the edge enhance-
ment also for the Li Auger spectrum.

As has been shown by Langreth, ' the MND model
can actually be considered as an approximation of a more
accurate treatment where the valence-electron interparti-
cle interaction is kept. On the basis of these ideas it has
been verified that the interaction between the valence
electrons does not alter the edge behavior. In other
words, it is still given by Fermi-surface phase shifts
which fulfill a generalized Friedel sum rule. Similar re-
sults are obtained if band-structure effects are also incor-
porated in the theory. Thus, the compatibility relations
remain valid, and so the problem with the Li data. In all
of these generalizations the core hole is considered struc-
tureless. In reality it has a spin which can change its
direction, and in the case of Li the spin-dependent cou-
pling to the valence electrons has been calculated and
shown to be large. Thus, in order to better understand
the lithium core spectra, one probably has to solve a dy-
namic Kondo-like spin problem, and it is not at all clear
that asymptotic solutions near the edge are sufficient.
The progress made so far is limited, and for further dis-
cussions the reader is referred to Ref. 29.

B. The final-state rule

11' o

I g.
(1~ I')

(12)

The final-state rule for spectral shapes was originally
formulated for x-ray spectra by von Barth and Gross-
man. ' They studied MND models with a variety of
different potentials and parameters and compared the re-
sulting dynamical spectra with the corresponding one-
electron results obtained with and without a core hole.
In all cases investigated they found a systematic agree-
ment in shape between the dynamical spectra and the
one-electron results obtained with the final-state poten-
tial. In the case of emission this potential contains no
core hole. von Barth and Grossmann also found a sys-
tematic agreement between experimental x-ray-emission
spectra and one-electron ground-state results. Spectra
calculated with a static core hole, on the other hand,
showed strong s resonances which are not seen experi-
mentally. Thus the final-state rule has direct experimen-
tal support as well.

As opposed to x-ray spectra, Auger CVV spectra in-
volve many subchannels of comparable intensities. The
final-state rule explained above pertains to each subchan-
nel line shape DII (E), but the subchannel yields I &&. obey
an initial-state rule and are determined by the valence
wave function in the completely relaxed initial state (see I
and references therein). This rule is obeyed by the MND
model but follows from far more general assumptions.
Combining these two results we are led to an approxima-
tion for Auger spectra used by Ramaker' in which we
superimpose subchannel intensities without core-hole
effects with weights determined by the initial-state rule
for emission yields. Thus,

where the superscripts o and e refer to one-electron re-
sults without and with a static core hole, respectively.

More refined final-state approximations have also been
developed in which the final-state one-electron line
shapes are augmented with the appropriate MND singu-
larity factors. ' In this way one obtains a more faithful
representation of the dynamical MND results. In this
work, however, we want to compare our fully dynamical
treatment with an alternative scheme that relies less
directly on MND theory, and for this reason we choose
the simpler form in Eq. (12).

C. The finite-N method

The simple physical idea behind the finite-1V method
for solving the MND equations is that local spectral
properties of an infinite fermion system can be well simu-
lated by a system containing a finite but large number of
fermions. Practical experience as well as comparisons
with results by other means have shown that about 100
particles per lmo subchannel is more than sufticient in
order to obtain a good representation of the N ~ ~ re-
sults.

Now, since the MND model is inherently an
independent-electron model, all results can be expressed
in Slater determinants. Furthermore, the different chan-
nels are assumed not to interact with each other, which
allows us to write H and H* as

H =g HI, H "=g HI' .
L L

(13)

[In this section L is short for angular momentum (lm)
and spin (o ) labels, and quantities connected with the
core-hole Hamiltonian will be denoted by an asterisk
(e ).] Owing to this property the transition amplitudes
(s

~ T~ e ) of a spectral density factorize into matrix ele-
ments from each L channel separately (s labels the possi-
ble final states). A passive channel L, whose electrons are
not involved in the transition operator T, gives a mere
overlap (N, s~N')I between initial and final states with
N electrons, whereas an active channel L' gives matrix
elements involving one ((N —i, s~cI k ~N*)1 ~ ) or two
((N —2, s~cI kct k. ~N" )1.) electron operators cr k of the
no-hole Hamiltonian H~ . As a consequence of this, we
obtain the complete spectrum

D( )=Eg ((s~T~e))'5(E E, —e)—(14)

from a passive channel L. In the MND model the initial
hole state ~N' )I is made up of the N lowest orbitals (P )

of the core-hole Hamiltonian HI*. Similarly, all final
states ~N, s )I can be taken as Slater determinants involv-
ing N orbitals (P ) of the no-hole Hamiltonian HI .

by convoluting recoil spectra [A&(E)] from the passive
channels with one-electron spectra [B&(c,)] and possibly
two-electron spectra from the active channels.

Consider, e.g. , the recoil spectrum

&1(s)=g I (N, s lN* ~1 I'5(E, (I,N) E(l, N, s) s)——
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Keeping N finite, the required overlaps can be done nu-
merically and, as has been shown in detail by previous
workers, ' they can all be expressed in the inverse of the
N XN overlap matrix

where the energy levels and electron operator refer to the
no-hole Hamiltonian HL. In the ground state we identify
the central-cell local DOS for the subchannel in question
with the quantity

s„=&y, Il/, & (16) D((E)=(2/+1) g I &N —i, slcL N &LI

involving the N lowest orbitals of HL and HL. For in-
stance, the overlap &N, slN* & with a final state having a
particle (p) above and a hole (i) below the Fermi level is
given by det(S) gk & p ll/k &Sk,. '. The energy of this final
state is simply EI„E„+—E(/, N), where E(/, N) is the N
electron ground-state energy and c1 is a one-electron ei-
genvalue of the no-hole Hamiltonian HL. Multipair exci-
tations can be handled in an analogous way, but it is gen-
erally found that one only needs to include up to double-
pair excitations to satisfactorily exhaust the sum rule

A1 E dE= N, sN* L =1

X 5(E (N) —cE.—(N —l, s) ) (20)

and the number of l electrons in the central cell with nI,
where

nt= DI c. dc. . (21)

We then choose the occupied part of uI such that D1 and
n I agree with our corresponding LMTO ground-state re-
sults in the bulk.

We next turn to the question how to represent the
core-hole potential in the Hamiltonian

for N approximately 100.
An active channel involving the annihilation of a

valence electron with the operator

1
HL HL + — g Vkk cLkczk, .I

N0

We take Vkk as a separable potential,

(22)

CM Mk CLk
k

(17) Vkk' Vl~l(Elk )~l(Elk')I (23)

can be handled by a similar method. ' ' (The electron
operators I cI, I refer to the no-hole Hamiltonian, and M,
is a matrix element for the one-electron process in ques-
tion. ) The spectral profile is now

and choose V1 and the unoccupied part of the local state
density so as to have (i) the Fermi-surface phase shift 5&

equal to a prescribed value, and (ii) the number of / elec-
trons in the central cell,

B((E)=g I&N —l, s cMIN*&l I nI*= f D&*(e)dc. , (24)

X5(E„(/,N) E(/, N —l,—s) —e) . (18)

Using the expansion theorem for determinants, one can
show' that the required overlaps &N —l, slcMIN*& can
be obtained by the same procedure as above applied to
the overlap matrix

equal to the number of l electrons in the central cell with
a core hole present according to our LMTO results.
Here

D,*(e)=(2/+1) y I &N l*,sic, IN* —
&g I'

X 5(E (/, N* ) 8 E(/, N ——1 *,s—) )

(25)

&yMlfi& . &XMll/~&

where yM =gk Mk(t k.
In principle, we encounter in the Auger problem

(/m o. ) channels where two electrons are annihilated. Our
LMTO calculations show, however, that these intrachan-
nel parts are several orders of magnitude smaller than the
remaining interchannel parts, and they can thus safely be
neglected.

D. Choice of model parameters

In each L subchannel we represent the actual system
by a model system with N fermions in a Hilbert space
with N0 levels. We model the local density of states
(DOS) using a local orbital

1
CI — 01 61k CLk

0 k

T=g T„c c
V~ V

(26)

With no loss of generality we can assume T ~ to be an-
tisymmetric in the one-electron labels v and v'. As men-
tioned above, the intrachannel part of the Auger current

gives the model simulation of the local DOS in the pres-
ence of a static core-hole. It has been convincingly
demonstrated' that the resulting dynamical spectra are
almost independent of the functional form of the core-
hole potential as long as the above constraints are
satisfied. The form of the global state density D0, which
determines the separation of energy levels of a given
channel, is also of little consequence for the dynamical re-
sults. We have here chosen D0 as a semielliptic DOS
containing N0 levels, with N0 approximately 200.

In order to model the matrix elements we assume that
the Auger process can be satisfactorily described by a
transition operator T which annihilates two electrons out
of the relaxed ground state, i.e.,
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is completely negligible, and thus we can assume that v
and v' refer to different lmo channels. In order to show
that the Auger spectrum can be expressed in convolu-
tions of zero- and one-electron spectral densities, we
decompose the spectra in parallel (p) and antiparallel (a)
spin components. We make a corresponding decomposi-
tion of T

piete spectrum to energy space we apply a small Gaussian
broadening exp( —b, t ). We finally adjust the constants

so as to exactly reproduce the correct subchannel
yields I I'I.

As a check of our procedure we performed MND cal-
culations with zero potential and recovered the ground-
state LMTO results with good accuracy.

where we model the antisymmetric and symmetric func-
tions T and T, by simple separable functions of the or-
bital labels a and a'. The d-electron contribution to the
spectra is small and will not be considered. For the
remaining contributions we take

T, (a, a' ) = [(2l + 1)(2l'+ 1)]

X A f&' ui(cik )Mi(cik )ui (ci k )Mi (ci k ),
except for the parallel-spin part for the case l = l' = 1

where a somewhat more complicated ansatz is needed in
order to obtain the required symmetry:

T (lmk, lm'k')= Aii'& g (10~1m, lm')ui(cik)
m, m'

XMi(clk )u i(clk )Mi(cik )

(Here ( 10~ lm, lm') is a Clebsch-Gordan coefficient. )

To determine the matrix element parameters 2 and M
above, we require the model to correctly reproduce the
LMTO ground-state results in the bulk when the core-
hole effects are left out. An easy calculation shows that
the model in this case gives the decomposed Auger spec-
trum

Df("(cg )=2' 1 dc I dc'Di(c)Di(c')( Ati, ')i

XM,'(c)M,', (c')g(c+ c' —c„),
and thus we determine the model parameters by fitting
the properly symmetrized effective matrix element

—,'( APi ) [Mi (c)Mi (c')+Mi (c')Mi (c)]

to the corresponding quantity obtained from the LMTO
calculation [cf. I, Eqs. (24) —(26)]. The LMTO matrix ele-
ments are slowly varying functions of c, and c' and are
quite easy to fit.

With these prescriptions the calculation of a dynamical
spectrum reduces to calculating recoil spectra [ A i ( c ) ]
and one-electron emission spectra [Bi(c)]by the finite-lV
method in each channel separately as described in the
preceding subsection. The complete decomposed spec-
trum is then formed by convoluting together all eight
channels. This step we do in time space. Thus, e.g. , the
time-space representation of the sp contribution is

D, (r)=[(A; )~+(Ai,')2]A, (r)A,'(r)B, (r)B (r) .

To do the Fourier transformation to time space we fit the
finite-X result with a smooth function times the appropri-
ate singularity factor, and transform the fit by a Gaussian
integration procedure due to von Barth which treats the
singular part exactly. When transforming back the com-

IV. RESULTS

A. One-electron spectra from bulk atoms

We have obtained our Auger spectra in the bulk ac-
cording to the theory given in I [cf. I, Eqs. (24) —(26)] and
from self-consistent orbitals in the no-hole ground state.
As we described in I, two different ways of approximating
the final Auger orbitals have been used, namely (a)
matching a proper solution inside the cell to free waves
outside, and (b) approximating the Auger orbital by one
single LAPW. As a measure of the error we are making
in the different approximations we may, as discussed in I,
Sec. III B, in the first method, (a) use the violation of the
norm inside the central cell of the equivalent scattering
state built of the spherical waves in question, and in the
second method, (b) use the norm of that part (P) of the
wave function which is not a proper solution inside the
cell. Now for the L2 3 spectra we showed that the error
involved when using the LAPW method was small for
those partial waves which give important contributions
to the Auger current, and we also showed that the
spherical-wave method gives a rather small ( —15%)
violation of the norm condition. Thus we expect both
methods to work well in these cases, and we also find that
they give almost identical line shapes. This gives us some
confidence in using the spherical-wave approximation for
the K spectra, where the norm violation is still of the
same order but where the error involved in the single
LAPW approximation is larger. This is further support-
ed by a recent calculation by Miiller and Wilkins, who
find that the PDOS from the simple spherical-wave
method is in quite reasonable agreement with suitably
broadened full LAPW results at energies of the order
50—100 eV. Thus we use the first approximation (a) for
the case of Li, Be, and Mg EVVspectra.

Our one-electron results are given and compared with
experiment in Fig. 1 and decomposed into contributions
from valence states of different angular momenta and
spin in Fig. 2. We see that our pure one-electron results
differ markedly from experiment and peak at too low en-
ergies. The different partial-wave contributions (ss, sp, pp)
peak at rather different energies, and consequently the re-
sults are rather sensitive to errors in the matrix elements.
It is thus appropriate to discuss whether the differences
could be an artifact of our numerical methods used for
the valence states. We believe this not the case. The
LMTO method has been rather successfully applied to al-
most all kinds of solids (for reviews, see Ref. 8). In all
cases investigated the main source of error has been the
local approximation to exchange and correlation, not the
LMTO method. In this work we have, in addition, im-
proved the accuracy of the orbitals as discussed in I, Sec.
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V. Further, approximations similar to ours have been
used for calculating KLV spectra of Na, " and have been
found to be in good agreement with experimental
data. ' The different partial-wave contributions peak
at different energies also for KI.V spectra, but their
theoretical description is much simpler. In a KI V pro-
cess there is a core vacancy also in the final state, and
consequently there are no dynamic core-hole effects in
this case. Furthermore, the surface is not expected to
play a major role, due to the longer mean free path. We
have used our relaxed impurity orbitals to calculate the

KLV spectra also for Mg and Al (Ref. 41) and have ob-
tained a - rather similar agreement with experiment.
There are no reasons why our approximations should
give larger errors for CVV spectra. In view of this we be-
lieve that the differences between our one-electron bulk
results and experiment are inherent to the one-electron
and bulk approximations.

Unfortunately, our one-electron results do not agree as
well with those by Jennison and co-workers. For the
case of Mg these workers" employ partly semiempirical
matrix elements, but their results for Li and Be from
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ground-state orbitals should be directly comparable to
ours, but peak at higher Auger-electron energies. Jen-
nison et al. use linear combinations of s and p Slater-type
orbitals, which could possibly be argued to give a greater
variational degree of freedom in the outer part of the
Wigner-Seitz cell, but in the case of Be they do not carry
their calculation to self-consistency. However, according
to our experience the resulting spectra are not too sensi-
tive to finer details in the valence-electron structure. For
instance, we shall see in the following that IBM and slab
calculations give almost indistinguishable spectra for an
Al(100) surface despite noticeable differences in the densi-

ty of states near the surface. We think instead that their
different treatment of the Auger orbital might explain the
differences. In I we argue that these orbitals, to a first ap-
proximation, should be solved in the same fully screened
potential as is used for the other electrons. We have also
solved the Auger orbitals in the fully screened hole poten-
tial of the initial state and obtained only minor
differences, but Jennison et aI. use a model with a
Coulombic potential corresponding to a doubly charged
ion in free space. The Coulombic tail may change the
central-cell amplitudes of the different I components of
the Auger-electron orbitals compared to the solutions ob-
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tained from a screened potential. This in turn leads to
different weights I

&I
of the valence-electron channels.

Which model is actually the most appropriate one has, at
the present stage, to be judged a posteriori when correc-
tions from the surface and from the core hole have been
added to the one-electron bulk results.

B. Core-hole e8'eats

According to the final-state rule, Eq. (12), the proper
subchannel weights are those obtained with a static core
hole. As is seen in paper I, Table IV, however, the rela-
tive weights I

I&
/I for the third-row elements are almost

unchanged when the orbitals are allowed to relax in the
core-hole potential. Thus, this approximation does not
improve the agreement with experiment in these cases.
For the second-row metals, on the other hand, we see
that the relative weights of the sp and pp channels in-
crease when the effect of the core hole is introduced,
which leads to a peak shift to higher energy and a much
improved agreement with experiment (Fig. 1). For the
case of Li, however, the peak still falls slightly below the
correct position. We notice that the screening charge in
Be has mainly p character (see paper I, Table III),
whereas Jennison et al. on the basis of a semiempirical
theory argue that the core-hole screening mainly involves
s electrons and that the screening leads to a peak shift to
lower energies.

The weakness of static core-hole screening effect for
the third-row metals may seem surprising in view of the
rather strong effects seen in the corresponding KL V spec-
tra. ' These spectra have an anomalous shape, first ex-
plained by von Barth and Grossmann, and show a pro-
nounced distortion of the s DOS near the core hole. Be-
cause of the 1arge s-wave distortion it has sometimes been
assumed that core holes in these materials are screened
mainly by s electrons. However, we here obtain p-wave
screening charges which are comparable or larger than
the s-wave parts, as did von Barth and Grossmann. "
The orbitals nevertheless describe the KLV spectra and
the s DOS distortion rather well.

%'e now turn to our fully dynamical calculations.
Among the model parameters the ground-state transition
densities of states, the local occupancies with and without
a core hole, and the subchannel yields with a core hole
present are uniquely determined by our LMTO calcula-
tions (cf. paper I, Tables III and IV). In addition, we also
need estimates of the Fermi-surface phase shifts of the
hole potential. Experimental and theoretical estimates
span a wide range, particularly for Li and Na. Our
values (Table I) represent a compromise, and they are
rather close to those obtained by Almbladh and von
Barth, except for Na, where we choose a smaller s-wave
phase shift. Our phase shifts are also rather close to
those which correspond to our core-hole screening

charges. The values for Be are to be regarded as sem-
iempirical and are chosen to be compatible with the ob-
served small x-ray-photoemission-spectroscopy (XPS)
asymmetry. In Be the strong band-structure effects and
the noncubic symmetry almost certainly lead to
modifications of both the Friedel sum rule and the
MND exponents. "

Our results are shown in Fig. 1, and decomposed spec-
tra for Li and Na are shown in Fig. 3. In both Na and Li
the peak moves to higher energies, and for Li the leading
edge is actually too steep (Fig. 1). For lower energies our
Li spectrum is broader than the experimental one. It
must be remembered, however, that the experimental
data are processed in such a way that the very intense
plasmon satellite just below the maximum has been
deconvoluted away. Looking at unprocessed data by
Jackson et al. it seems clear that reliable experimental
information on an underlying no-loss spectrum is quite
difficult to obtain below the leading edge. In addition, a
decon volution takes away the particle-hole shakeup
losses which, in fact, are included in our dynamical spec-
tra.

In the case of Na there are no undifferentiated spectra
availab1e in such a form that they readily allow detailed
comparison. For the XVV spectrum of Mg the dynami-
cal effects improve the agreement with experiment, al-
though the leading edge is not steep enough (Fig. 1). For
the remaining cases the MND calculations mainly give
an overall broadening, due to particle shakeup, without
changing the peak position. Thus we see (Fig. 1) that the
bulk results for Mg L2 3 and Al differ considerably from
experiment also when dynamical core-hole effects are
included. A possible explanation of the remaining
discrepancy could possibly be that the hole-hole interac-
tions left out in the MND model play an important role,
but in general it has been found that hole-hole interac-
tions tend to shift the intensity to lower energies. '

The effects of the core hole enter in two fundamentally
different ways in Auger CVV spectra. They may redistri-
bute the relative intensities among the subchannels, and
they may cause a change in shape of individual subchan-
nel spectra. As regards the initial-state rule for subchan-
nel yields, it really does not rely on the MND model.
Further, our impurity calculations should give quite reli-
able predictions of the relative weights (I II /I „) and
thus of the first effect. The second effect, on the other
hand, relies in our calculations directly on a specific mod-
el. When the weights and screening charges are kept
fixed, a dynamical MND spectrum depends essentially
only on the Fermi-surface phase shifts (5&) of the core-
hole potential. As mentioned above these phase shifts are
not accurately known even for simple metals. For the
case of Li one encounters difficulties when trying to
reconcile the XPS exponent with results of inelastic elec-
tron scattering which show no trace of s-wave enhance-

TABLE I. Phase shifts used in the MND ca1culations.

5,
bp

Li

0.620
0.312

Be

0.032
0.106

0.719
0.292

Mg 1s

0.460
0.375

Mg 2p

0.458
0.369

A1

0.398
0.384
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ment (Sec. III A). Our calculations suggest that the
MND model overestimates the dynamical effects also for
the Li Auger spectrum. Calculations with a second set of
phase shifts (5, =0.498, 5 =0.351) gave rather similar
results (Fig. 4), which supports the view that the problem
with too strong dynamical effects in Li is. inherent to the
MND model itself.

As far as Na is concerned, both x-ray-emission and -ab-
sorption spectra no doubt show strong singularity effects,
although they may be difficult to fit with a common set of
phase shifts as required by the MND model. To test the
sensitivity of the spectrum with regard to the parameters
we have also for Na performed calculations with an alter-
native set of phase shifts (5, =0.43, 5 =0.38). The
change in the resulting dynamical spectrum is, however,
hardly visible on the scale of Fig. 3. We believe the
dynamical effects predicted by our MND calculations to
be genuine, although their exact size may not be the
correct one. We note that there are no significant redis-
tributions among subchannels in the case of Na and that
the entire effect is truly dynamical.

Dynamical calculations of core-hole effects have been
presented earlier by Schulman and Dow. Their results

for the change in shape of subchannel spectra is in quali-
tative agreement with ours. However, since Schulman
and Dow did not have access to spectra computed with
impurity wave functions they were unable to predict the
effect of intensity redistributions among the subchannels.

C. Surface effects

We now finally turn to the surface effects. Our calcula-
tions model (100) surfaces for the cubic metals and a sur-,
face perpendicular to the c axis for the hcp metals. In
Fig. 5 we show the projected state densities for the first
two layers and the bulk from our slab and IBM calcula-
tions. The number of s and p electrons in the different
layers are given in Table II. We notice that the state den-
sities from the IBM are not very far from those obtained
from the slab calculation, but the number of p electrons
in the first layer is somewhat overestimated. The result-
ing Auger spectra, however, are closer and, in fact, al-
most indistinguishable from each other. In view of this
very good agreement it is reasonable to assume that the
IBM does not introduce any serious errors for the other
systems considered here. We see in Fig. 5 that only the
first layer differs markedly from bulk behavior, the main
effect being a transfer of DOS to higher energies. This
effect is quite pronounced for Be, Mg, and Al. For Na,
we obtain an intensity shift upwards for the s electrons
but a shift to lower energies for the p electrons.

Our results for the Auger spectra at normal emission
(Fig. 6) and for mean free paths given in Table III show a
noticeable shift of the intensity maximum for the cases of
Mg Ip 3 and Al as compared to the bulk case. For the
monovalent metals Li and Na we have found that the sur-
face gives no important effects despite changes in the lo-
cal densities of states (cf. Fig. 1). For Mg and Al our
(one-electron) results with the surface efFects included
agree quite well with experiment (see Fig. 1). For Al the
MND effects only give a broadening, while for Mg we no-
tice a small MND effect that would further improve the
agreement. We have also computed spectra correspond-
ing to an emission angle of 60' relative to the surface nor-
mal and found only minor changes of the line shapes.

The intrinsic intensity without the damping effects in-
cluded gives, as discussed at length in I, a measure of the
core-hole lifetime widths. In angle-resolved photoemis-
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sion spectra a surface-enhanced core-level broadening has
been observed which sometimes has been attributed to a
decreased core-hole lifetime. Our results here show no
noticeable difference in intrinsic yields from bulk atoms
and surface atoms, which seems to rule out this explana-
tion.

All surface results were produced with the LAPW ap-
proximation for the Auger orbital. For the K spectra this
approximation is not quantitative but probably good
enough for obtaining general trends. Through compar-
ison with the corresponding approximation in the bulk,
we find that the surface effects are unimportant in the K
spectra of Li, Be, and Mg.

V. CONCLUSIONS
In this paper we have presented one-electron calcula-

tions of Auger spectra in the bulk. We are quite con-
vinced that these results are numerically accurate, but
nevertheless they do not agree with experiment. To ex-
plain this discrepancy we have studied effects connected
with the core hole in the initial state and effects connect-
ed with the surface and finite Auger-electron mean free
path.

In the final-state approximation for core-hole-induced
features one superimposes subchannel line shapes ob-
tained with the final-state potential with weights obtained
from the initial core-hole state. The reason for not

TABLE II. Number of electrons in the first three layers from the surface model (IBM) and from slab
calculations.

Layer 1

Li

0.5
0.36

Be

0.62
1.24

Na

0.62
0.27

Mg 2p

0.80
0.89

IBM

1.00
1.34

Al
Slab

1.24
1.20

Layer 2

Layer 3

0.5
0.49

0.51
0.46

0.63
1.26

0.62
1.26

0.61
0.37

0.62
0.35

0.91
0.95

0.86
0.94

1.12
1.44

1.11
1.46

1.13
1.54

1.11
1.46

Bulk 0.52
0.48

0.63
1.25

0.64
0.36

0.88
0.94

1.11
1.48
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changing the subchannel line shapes is partly based on
empirical findings for x-ray spectra, and partly based on
studies of the MND model. The reason for including
core-hole screening in the weights is based on a model-
independent sum rule. This approximation almost entire-
ly removes the discrepancies between theory and experi-
ment for the cases of Li and Be. The relative weights for
the third-row metals, on the other hand, are almost un-
changed upon introducing the core-hole effects, and thus
the discrepancy here remains.

To study the dynamical effects on the partial line
shapes we have performed fully dynamical calculations
based on the MND model and with parameters chosen so
as to reproduce our static self-consistent results as accu-
rately as possible. For most cases we have found these
dynamical effects to mainly produce an overall broaden-
ing due to particle-hole shakeup. For the monovalent
metals Li and Na the partial contributions change in
shape so as to move the intensity of the total spectrum to
higher energies. We have also shown that the dynamical
effects are insensitive to the precise values of the Fermi-
surface phase shifts when all other model parameters
(core-hole screening charges, etc.) are kept fixed. In the
case of Li the dynamical part of the core-hole effects ac-
tually moves the theoretical curve away from experiment
as compared to the final-state approximation. We have
argued that we here encounter similar problems with the
validity of the MND model as have been indicated by in-

elastic electron-scattering experiments. In the case of Na
the MND collective effects are clearly present in soft-x-
ray —emission (SXE) and soft-x-ray —absorption (SXA)
spectra as well as in XPS spectra, although the consisten-
cy between the x-ray-emission and -absorption spectra
may not be fully satisfactory. In view of this we believe
that the dynamical peak shift we obtain for Na is a
genuine effect, although its magnitude may be uncertain.
However, there are no experiments available at present
which allow for a detailed comparison.

We have obtained no evidence that the core-hole
effects are important for the L2 3 spectra of Mg and Al.
In order to explain these spectra we have studied the
effects of the surface and performed self-consistent slab
calculations for an Al(100) surface. The slab spectra
agree very well with the corresponding results from a
much simpler infinite-barrier model, which we use for the
remaining systems. Our spectra from Mg(100) and
Al(100) surfaces agree very well with experiment. How-
ever, our treatment of the ejected Auger electron is still
rather crude, and this close agreement may therefore be
somewhat fortuitous. We nevertheless believe our results
for the bulk and at the surface taken as a whole rather
convincingly demonstrate the importance of surface
effects in the L2 3 VV spectra of Mg and Al. To map out
these effects in a more accurate way, a full multiple-
scattering treatment of the outgoing Auger electron
would be required.

0
TABLE III. Mean free paths (A) estimated from various experimental (Ref. 48) and theoretical

sources (Refs. 49 and 50). The value 9 A for Be is taken from Ref. 51.

Li Be Na

3.5

Mg Is

17

Mg 2p

3.5

Al
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