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Abstract. In this work, the rheological and hyperfine properties of a magnetorheological fluid 

(MRF) under the action of a uniform external magnetic field are analysed. Powders of native 

mineral magnetite of micrometric particle size, after a pulverization process, form the solute of 

these fluids. The sizes of these samples are selected by sieving in order to obtain sizes of 

around 20µm and 45µm. The powders are characterized by means of Mössbauer spectroscopy 

to analyse their stoichiometry giving rise to a non-stoichiometric magnetite Fe2.96O4 in addition 

to a hematite component. Result of viscosity and shear stress in the low-speed regime were 

analysed using the Hershel Buckley method. In particular, the case of surface tension it 

decreases with the application of a uniform magnetic flux density, which is understood in terms 

of a phase separation due to the formation of mesoscopic structures, thus decreasing the 

cohesion force and increasing the adhesion force. 

1. Introduction

Magnetic fluids or magnetic colloids are two-phase systems formed by a liquid (carrier) and a solid 

phase (ferromagnetic or ferrimagnetic powder), which act as dynamic fluids and they can be 

controlled by an external magnetic flux density. Magnetic fluids can be classified in ferrofluids (size 

nm), magnetorheological (MRF) fluids (µm size) and composite magnetic fluids. The solid or dust 

particles are coated by a tensoactive surfactant adhered to the liquid-solid interface to mediate the 

interaction between these phases by avoiding agglomeration by electrostatic interaction. On the other 

hand, thermal agitation holds particles in suspension by steric repulsion. Magnetic fluids form a new 

class of magnetic materials whose novelty lies in the way as they behave changing their properties 

under the influence of a magnetic fields without losing the character of fluid, changing rheological 

properties such as local density, viscosity, stress and surface tension. 

Magnetic fluids are materials of paramount importance due to their potential for technological 

applications. They are used in impact (suspensions) or vibration (seismic) suspension systems [1], in 

optics for lens polishing or for improving lens capability [2], in microelectromechanical (MEMs) 

technology [3] and for mineral cleaning [4] among others. 

In particular, magnetoviscosity and shear stress properties of MRF as well as the formation of 

mesoscopic structures under an external applied magnetic field is still a subject of interest and debate 

upon which we focus our attention in this work. 

2. Experimental

Native magnetite was grinded up in a vibrating cylinder mill at 140rpm after which two set samples of 

sizes around 20µm labelled as T5 and 45µm labelled as T2 respectively, were obtained by sieving. 

http://creativecommons.org/licenses/by/3.0
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These values were then confirmed by applying statistical methods to micrographs taken by optical 

microscopy [5]. 

The magnetite powders were then covered with oleic acid and dissolved in SAE oil in percentages 

of 20%-30%-50% and 15%-22.5%-62.5% respectively. Mixtures were then mechanical stirred in a 

thermal bath at 56°C during periods of 0.5, 1, 1.5 and 2 hours. 

Sample were characterized by means of room temperature Fe57 Mössbauer spectroscopy for 

stoichiometric purposes by taking into account spectral areas of the tetrahedral (A) and octahedral (B) 

crystallographic sites of magnetite. Surface tension was characterized by measuring the surface 

breaking stress made by an aluminium ring and viscosity was measured in a BrokField 115 viscometer 

in parallel plate mode. The measurements in the viscometer were established under two different 

modes. First, by fixing the value of the magnetic flux density and varying the speed of the spindle, and 

second by fixing the speed of spindle and varying the magnetic flux density. 

3. Results and discussion 

After fitting the room temperature Mössbauer spectrum of the native sample, two components, one 

ascribed to hematite (11%) and the other one to magnetite (89%), were evidenced as can be observed 

in Figure 1. As concerns to the magnetite component, the corresponding Fe2.5+ y Fe3+ spectral areas 

allow an estimation of the degree of stoichiometry via the oxidation parameter (x) in the framework of 

a model of vacancies distributed in either tetrahedral or octahedral sites. 

 

 

 

 

Figure 1. Room temperature Fe57 Mössbauer spectrum with its respective fit. The corresponding line 

widths ( ) of tetrahedral and octahedral sites, the ratio of the spectral areas (R) and oxidation (x) 

parameters are included. 

 

To do that, we employ the following equation [6], from which the oxidation parameter x was 

extracted and where the ratio 𝑅 = A(FeB
2.5+)/A(FeA

3+), obtained from the fitting process, was used, 

 

R(ϕB, x) =
2−6x

1.06(1−(1−ϕB)x)+(6−ϕB)x
   (1) 

 

In equation (1), 𝜙𝐵 represents the fractional concentration of vacancies in B sites, which ranges 

between 0 and 1. However, as it has been already shown [6], the oxidation parameter x is practically 

insensitive to 𝜙𝐵 and differences are only noticed within a 0.8% of precision. In our case, the best 

estimate for x is 0.12 giving rise to a non-stoichiometric magnetite with formula Fe2.88O4. The effects 

of the hematite on the native sample is also reflected in the magnetic properties, more concretely, 

coercive forces and saturation values are given by: HcT2=132.75Oe, HcT5=144.5Oe, 

MsT2=81.59emu/g, MsT5=77.53emu/g [5]. 



3

1234567890

IMRMPT IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 935 (2017) 012038  doi :10.1088/1742-6596/935/1/012038

 

 

 

 

 

 

To analyse the rheological properties, it must be stressed that the viscosity of the MRF is 

established according to the conditions of laminar flow and its value must be in principle independent 

of the method used to measure it. However, the rheological information implies using a methodology 

that depends in practice upon some variables such as the container and spindle. The corresponding 

results are shown in Figure 2 were a sweep of low shear speeds by instrumentals limitations was 

considered. 

The behaviour of the viscosity is ruled by the magnetic properties of the hydrodynamic volume of 

the magnetite, showing a special rearrangement or rotation of its magnetic moments to become aligned 

according to the magnetic flux density consistent with the Hershel-Buckley model as endorsed by the 

linear fitting shown in Figure 2. In this way, more resistance to the laminar movement is expected. 

 

 

 

 
(a)  (b) 

Figure 2. Behaviour of viscosity (a) and shear stress (b) for different values of the magnetic flux 

density and shear rate for percentages 20% of magnetite with size T2. 

 

From Figure 2, 𝜂 is the viscosity, 𝛾𝑐 shear rate, 𝜏𝑐 shear stress the slopes represent the effort 

required to move the MRF at each speed and the cut-off point indicates the limit of Newtonian 

behaviour. As is observed, slopes increase with the magnetic flux density until a critical value of the 

field of B=6.99mT, from which phase the separation occurs by gravitational and magnetic effects due 

to the formation of mesoscopic structures, so the information recorded does not belong to a uniform 

MRF. The shear stress curves are given in the Figure 3, which are in agreement with those obtained by 

J. M. Linke and S. Odenbach [7]. 

 

 

 

 
(a)  (b) 

Figure 3. Dependence of viscosity (a) and shear stress (b) with the magnetic flux density at a 

constant shear rate and for two different percentages of magnetite (15% and 20%). 

 

On the other hand, by varying the magnetic flux density and fixing the speed of the spindle at 2rpm 

we obtain the results shown in Figure 3. As can be observed, magnetoviscosity is evidenced through 
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the remarkable variations of viscosity as the magnetic flux density increases, which is attributed to the 

formation mesoscopic structures. Our results are consistent with those found by E. V. Korobko, et. al. 

[8] for shear stress and R. P. Pant, et. al. [9] for viscosity. 

The increase of viscosity and shear stress with magnetic flux density can be explained as due to the 

long-range magnetic dipole interaction between agglomerates causing a spatial rearrangement of 

solute in liquid carrier. Moreover, the magnetic dipole moment 𝜇 of the agglomerate is proportional to 

the hydrodynamic volume given by μ = VχB/μ0, where 𝑉 is the hydrodynamic volume, 𝜒 the 

magnetic susceptibility and 𝜇0 magnetic permeability [9,10]. 

Rotation and rearrangement of the magnetic dipole moments are ruled by the surface functionality 

provided by the electric character of the oleic acid layer around the aggregate; which can in turn gives 

rise to some preferred orientations of the magnetic moments and changes in surface tension 𝑇𝜎. 

The effects of surface tension allow us to consider whether the MRF can be used in cleaning native 

minerals that may be with unwanted material on the surface of others like as coal [4]. The results of 

the surface tension measurements are shown in Figure 4. 

 

 
(a) (b) 

 
(c) 

Figure 4. Behavior of surface tension as function of temperature for the liquid residue of oleic acid 

(OA) – magnetite (M) and oleic acid (OA) – oil (O) – magnetite (M) (a), and dependence with the 

magnetic flux density (b). At the bottom the formation of mesoscopic structures due to the field is 

visualized for percentage 20% of magnetite with size T5 (c). 

 

Figure 4 shows also the formation of mesoscopic columnar structures and of fibrous-type for which 

a magnetostatic interaction between them, as a consequence of the radial asymmetry and the diameters 

involved, is expected [10]. Additionally, magnetite powders are not physically bound to each other 

due steric repulsion as a consequence of the oleic acid molecules, which are coordinated and attached 

of the Fe atoms of the bi-dentate surface formed by covalent oxygen bonds. Besides, the oxidation 
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parameter favours bonding by increasing adhesion to the molecule. For concentrations of oleic acid 

higher than the approximate equivalent of two monolayers there is an appreciable steric repulsion as it 

has been reported elsewhere [10-12]. 

4. Conclusions 

Results of the rheological properties of the MRF show characteristics that are strongly dependent on 

the concentration and size of magnetite, temperature and the magnetic flux density. This MRF was 

characterized from its nature of micrometric sized aggregates and non-uniform geometry, which 

exhibit a pseudoplastic behaviour consistent with the Herschey Bulkley model. 

The study of the MRF, gives information of our understanding about how this fluid reacts under 

certain circumstances or how to control some reaction, as it would be the case of damping systems by 

effects of instability by an applied field; or in transport systems where magneto-viscosity play an 

importance role. 

It can be established also that the effective surface of the magnetic powders increases with size 

reduction allowing a better colloidal stability by lowering the gravitational energy 𝐸𝑔 = ∆𝜌𝑉𝑇5𝑔𝐿 as 

compared to the thermal one 𝐸𝑇 = 𝑘𝑇 [10]. 

Finally, in MRF, its knowledge about the rheological behaviour under an applied magnetic flux 

density is currently incomplete and models of constitutive equations have not been provided still in 

general form [13]. 
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