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We calculate by a combination of density functional theory and mixed-basis cluster expansion the structural
stability of ordered and disordered zincblende GaAs-MnAs systems. We find that the ground state of this
system is phase separating into GaAs+MnAs, even though the strain energy is negligible. The study of
short-period superlattices shows that the least-unstable superlattices are along the �111� orientation whereas the
most-unstable orientation is the �201�. The formation enthalpy of the random alloy has been calculated;
combining it with a mean-field approximation, we obtain the temperature-composition phase diagram showing
the miscibility-gap temperature below which the alloy phase separates. The stabilization energy for �100�
�Ga1−xMnxAs�1 / �GaAs�n superlattices shows that these superlattices prefer ferromagnetic order over a nonfer-
romagnetic arrangement. Remarkably, the decay of the exchange interactions with superlattice period n is
slower for the Mn dilute x=0.5 case than for x=1. This shows that as the system becomes more Mn dilute the
range of the exchange interactions increase. This reveals an exceptional property of dilute magnetic semicon-
ductors, namely that the system counter balances dilution of the magnetic ions by extending the range of
exchange interactions, hence maintaining ferromagnetism down to small concentrations of a magnetic ion.
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I. INTRODUCTION

Since the discovery1–3 that disordered substitution of Mn
ions on the cation site of III-V semiconductors produces fer-
romagnetism, numerous attempts were made at ordered
substitutions,4–12 examining both experimentally4–8 and
theoretically9–12 the possibilities that superstructures

�GaxMn1−xAs�n / �GaAs�m grown along some directions Ĝ
will offer even better magnetic properties. Here we study
theoretically the thermodynamic stability of such superlat-
tices, as well as that of ordered GanMnmAsn+m compounds
and GaxMn1−xAs random alloys, using first-principles total-
energy methods.13 Our study is based on the zincblende lat-
tice, even though pure MnAs has the NiAs structure, since,
the alloy can be grown zincblende to x�0.5.4–8 Since there
are as many as 2N possible configurations of two atom types
�Ga, Mn� substituting N fcc sites of the GaAs cation sublat-
tice, one cannot use a direct calculation of all configurations.
Yet, it is interesting to know which of the 2N configuration
has the lowest total energy �or which one is the least un-
stable�. Furthermore, we wish to identify which superlattice

parameters �n ,m ,Ĝ� provide the stablest �or least unstable�
structures.14 We thus use a Cluster Expansion �CE�
approach,15–18 in which M �2N directly calculated energies
Edirect��� are performed on M ordered atomic configurations
� of GanMnmAsn+m. The resulting set of formation enthalpies
��Hdirect���� is mapped onto a generalized Ising-like expan-
sion,

�HCE��� = J0 + �
i

JiŜi + �
ij

All pairs

JijŜiŜj + �
ijk

All 3 bodies

JijkŜiŜjŜk

+ ¯ , �1�

where Ŝi denotes if site i=1, . . . ,N is occupied by Ga �Si=
+1� or Mn �Si=−1�, and �J� are unknown interaction ener-

gies that can extend, in principle, to 2N terms, but in practice
a much smaller number of interactions are sufficient for ac-
curate description of the alloy energetics.16,17 Unlike the tra-
dition in Ising expansions for magnetism19 or alloys,20–22 we
do not feel that we can select a priori the numbers and type
of terms entering the expansion Eq. �1�. Instead, we have
developed15–17,23,24 a methodology that selects the number
and type of “many-body interaction types” �MBITs� appear-
ing in Eq. �1� according to the criteria that �HCE��� not only
fit ��Hdirect���� for M “input” structures, but that �HCE���
also predict ��Hdirect������� for many sets ���� of configu-
rations not used in the fit. The techniques required to do this
are briefly reviewed in Sec. II. Establishing the expansion
Eq. �1� in this way for GaAs/MnAs turns out to require four
pair-interactions and five many-body terms �which include
two three-body and three four-body terms�, and provides a
precision of �2 meV/cation �while the typical formation en-
thalpy �H is of the order of �25 meV/cation�. Once estab-
lished, Eq. �1� can be used almost effortlessly to scan a large
number of other configurations �in practice, �3�106 struc-
tures�, finding their energies. From such extensive structure
scans we find the following

�i� The GaAs-MnAs zincblende system is phase sepa-
rating, i.e., �H����0 for all � at T=0. Thus, the ground
state is GaAs+MnAs, or infinite-period �MnAs�� / �GaAs��

superlattices.
�ii� Although ordinary isovalent lattice-mismatched

zincblende superlattices such as �InAs�n / �GaAs�m or
�GaP�n / �InP�m also have a phase-separating ground-state,25

zincblende �MnAs� / �GaAs� is different: In the former, isova-
lent lattice-mismatched case �H�x��0 largely because of
the strain needed to bring the constituent binary components
into a common lattice.26 When strain is the cause of phase-
separation, the order of long-period superlattice energies
is27,28

�100� 	 �110� 	 �201� 	 �111� . �2�
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In contrast, owing to the close match of the lattice param-
eters of zincblende GaAs and MnAs, here �H�x��0 due to
unfavorable chemical interactions, leading to a different or-
der of stability, viz. Eq. �3� below.

�iii� Restricting ourself to short-period superlattices
we find that the least-unstable ones correspond to the �111�
orientation. The order of stability in the long-period limit is

�111� 	 �100� 	 �110� 	 �201� . �3�

�iv� We calculate �H�x� of the random Ga1−xMnxAs
alloy, finding that

�HR�x� = 
1x�1 − x� + 
2x2�1 − x� + 
3x3�1 − x�¯ �4�

is a good approximation to the first-principles result, with

1=293 meV, 
2=−390 meV, and 
3=239 meV. The for-
mation enthalpy of the random alloy has been calculated;
combining it with a mean-field approximation, we obtain
the temperature-composition phase diagram, showing the
miscibility-gap temperature below which the alloy phase
separates.

�v� The calculation of EFM−EAFM vs n for
�Ga1−xMnxAs�1 / �GaAs�n superlattices along the direction
�100� with x=0.5,1 and n=1,2 , . . . ,6 shows that these su-
perlattices prefer a ferromagnetic order. The exchange inter-
actions decay with superlattice period n more strongly for
x=1 than x=0.5. Thus, in the dilute superlattices the ex-
change interaction becomes long range. This reveals an ex-
ceptional property of dilute magnetic semiconductors,
namely that the system counterbalances dilution of the mag-
netic ions by extending the range of exchange interactions
�not to be confused with the chemical interactions �J��, hence
maintaining ferromagnetism down to small concentrations of
a magnetic ion.

II. METHOD OF ESTABLISHING THE CLUSTER
EXPANSION

We expand17 �H̃direct=�Hdirect−Eref by �H̃CE, where

�H̃CE = �HCE − Eref = J0 + �2x − 1�J1 + �
pairs

JpairDpair�̄pair���

+ �
MBITs

JMBDMB�̄MB��� . �5�

The first sum includes symmetry equivalent pairs and the
second sum includes many-body interaction types �MBITs�
f . The interaction parameters Jf are unknown energies that
are found by a fitting procedure. Df is the number of inter-

actions belonging to the interaction type f per site, and �̄ f is
space-averaged spin products over the sites that make up the
MBIT f . As a reference energy Eref, we use the constituent
strain �CS� energy17 �ECS, representing the strain energy as-
sociated with deforming the constituent solids A and B to
their structure within the compound. Subtracting this term
before the expansion accelerates the convergence and fixes
the shortcoming of simpler expansions,18 which predict the
formation enthalpies of long-period superlattices going to
zero in the long-period limit. Although Eq. �5� contain, in
principle, 2N interaction parameters, the energetics of the
bonding is usually determined by fewer interactions. Then,
we can truncate the expansion Eq. �5�, and find a finite set of
interaction parameters �J� that provide an accurate mapping
of the energetics of the system. These Jf are obtained from a
set of formation enthalpies �Hdirect���=�HGGA��� calcu-
lated by first-principle total energy using Density Functional
Theory �DFT� in the generalized gradient approximation
�GGA�. We use an iterative scheme �see Fig. 1� to find the
Jf’s as follows:

We build the CE not only on the ability to fit energies, but
on its ability to predict energies of structures that were not
fitted.29 To do so, we divide the set of NM input structures
into two groups: One used to fit �“fitting set”� and one used
to test predictions �“prediction set”�. There are NP prediction
subsets made of NV structures. The selection of MBITs is
based on a cross-validation �CV� score,30 specifically the
leave-many-out CV technique,23 where the CV score is the
average prediction error over the different NP prediction sub-
sets:

Scv =
1

NPNV
�

i

NP

�
pred. set i

��H̃GGA
�i� − �H̃CE�2. �6�

Finding the pair interactions: We cast pair interaction in
reciprocal space,

�
pairs

JpairDpair�̄pair = �
k

Jpair�k��S�k,���2, �7�

where the structure factor S�k ,��= �1/N��l
NSl���eik·Rl is a

lattice Fourier transform of spin-occupation variables and the
sum extends on wave vectors k for which S�k ,�� is nonzero.
To ensure that only those pair interactions that improve the
fit of �HCE to �HGGA enter, we add a Lagrange multiplier to
our least-squares fit, which requires “maximum smoothness”
to J�k�, the Fourier transform of the real space Jpair. This is
obtained by minimizing

FIG. 1. Schematic flow chart of the procedure used to establish
the cluster expansion.
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�
��pred. set

��H̃GGA − �H̃CE�2 +
t

�
�
k

J�k��− �k
2�/2J�k�

= �
��pred. set

��H̃GGA − �H̃CE�2 +
N

2�
�
pair

Rpair
 DpairJpair

2 ,

�8�

where the first term is the usual least square and the second
term allows a “t−” constrained fit that enforces the spatial
decay of Jpair in terms of pair distance Rpair, with t being a
Lagrangian multiplier and � being a normalization
constant.17

Finding many-body interactions: We first define a large
set O�102� of MBITs that contain three-body, four-body,
five-body, and six-body figures. This set includes many more
terms than we eventually use. The choice of an optimal small
MBIT combination from the large set, it is done by the Ge-
neric Algorithm24 �GA�. The GA starts from initial trial com-
binations �genomes� of a fixed number of many-body figures.
Each genome is represented by a string that contains one or
zero �genes� depending on if the MBIT is or is not included
in Eq. �8�. The GA works in an iterative fashion: From the
initial trial generation of genomes, by means of mating, we
generate a new generation of trial genomes. This new gen-
eration contains newly generated children genomes that re-
place those parent genomes that produced a poor �high� CV
score in the previous generation. These new genomes are
then mated again and allowed to mutate in order to get the
next generation of trial genomes, and so on. The genomes
that produce the best CV score are kept during the next gen-
erations and are replaced gradually by better genomes. We
say that GA has found a candidate CE when a genome with
the best CV scores has not been replaced by a better one after
a certain number nlockout of generations, in which case that
genome is prohibited from appearing again �“locked-out”�
and a new set of genomes is randomly generated to continue
the GA search. This helps GA find the true global minimum
and avoid spending too much time trying to escape local
minima.31

The two steps above pertain to one set of input structures
�the “internal loop” in Fig. 1�. As Fig. 1 shows, once we have
a CE we need to examine its ground state structures, and if
some of them were not in the “input set,” we need to calcu-

late their GGA energy �H̃GGA and add them as input and

continue with the “outer loop.” In practice, for GaAs
-MnAs, we find only two ground states �isolated MnAs and
GaAs�, so there are no additional outer loop iterations. In-
stead, to ensure that the cluster expansion obtained after a
single outer loop iteration accurately predicts the energies of
arbitrary �Ga, Mn�As structures, we construct a set of other
structures, never used in the fit, and use them for pure pre-
dictions.

In a mixed-basis cluster expansion, one normally sub-
tracts from �HGGA the reference energy Eref, being the con-
stituent strain �CS� energy. The latter is designed to cancel
the singularity in17 J�k→0�. The key quantity in the calcu-
lation of the CS energy is the direction-dependent energy of
infinite period A� /B� superlattices,

�ECS��� = �
k

��1 − x��EA
epi�k̂,a�� + x�EB

epi�k̂,a��	�S�k,���2,

�9�

where

�Ei
epi�k̂,a�� = Ei

epi�k̂,a�� − Ei
epi�k̂,ai

eq� �10�

is the epitaxial deformation energy of pure i�A,B, that is,

the energy of pure i placed on a k̂ substrate with the lattice
constant a�=a��x� being the equilibrium lattice constant of

the A� /B� superlattice along k̂. We found that in the case of
�MnAs� / �GaAs� superlattices, the CS energy is less than
1 meV/cation. Since �ECS�����HGGA���, we will neglect
it.

More details about the method can be found in Refs.
15–17, 23, and 24.

III. RESULTS

A. The cluster expansion

The directly calculated energies of our input structures are
shown in Table II: The structures are the GaAs and MnAs in
the zincblende crystal structure, simple GanMnmAsn+m super-
lattices along the principal directions, and one zincblende
supercell. To determine pair interactions of Eq. �1�, we use
the − t optimization of Eq. �8�. The result is given in Fig. 2.
The optimal values that optimize Eq. �8� are four pair inter-
actions constrained by t=2 and =3. The determination of

TABLE I. Directly calculated GGA formation enthalpies �meV/cation� and cluster expansion �CE� values
for structures not used in the fit �pure predictions�. Supercells are built on the zincblende simple cubic
conventional cell and the face center cubic primitive cell are denoted by sc and fcc, respectively. SQS-14
denotes a special quasirandom structure that mimics the random alloy.

Formula Ga31Mn1 Ga26Mn1 Ga30Mn2 Ga56Mn2 Ga5Mn1 Ga6Mn2

xMn 0.03125 0.037 0.0625 0.125 0.167 0.25

Supercell 2�2�2 3�3�3 2�2�2 sc 4�4�4 �100� SQS-14

sc fcc 1NN 2NN 3NN 4NN fcc

Direct 9.78 10.02 14.08 19.10 16.76 15.44 27.45 23.44 42.04

CE 9.07 10.77 16.03 18.39 17.34 16.65 29.04 22.16 41.32
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many-body interactions is done via a genetic algorithm. The
evolution of SCV of Eq. �6� with the number of generations is
given in Fig. 3. Each point in this figure denotes a different
many-body combination out of the pool of 57, which gives
� 57

5
�=4 187 106 possible of such combinations. GA finds the

optimal five-body combination with a minimum of SCV
=1.98 meV after 1310 generations. We run GA for 1690
more generations, to ensure that no better combinations of

MBITs are found. The final interactions �J� of Eq. �1� that fit
best the GGA values and, at the same time, best predict the
energies of structures not used in the fit �viz. Eq. �6�	 are
shown in Fig. 4. The first nearest-neighbor pair interaction is
attractive �−28.47 meV�, thus favoring the association of
similar atoms, and is approximately 23 times larger than the
remaining three repulsive pair interactions �second, third,
and fourth nearest neighbors�. The three-body interactions
are repulsive and their magnitudes are approximately two
and six times smaller than the attractive first nearest-
neighbor pair interaction. The four-body interactions are all
attractive and, on average, six times smaller than the first
pair interaction.

B. Prediction ability

We test the CE in five cases.
�a� The quality of the fit is shown in Table II via the

numbers in parentheses, which give the CE-predicted �HCE.
The fitting error Sfit is defined by

Sfit =
��=1
��H̃GGA��� − �H̃CE����2

NM
. �11�

For NM =19 input structures �17 in Table II plus GaAs and
MnAs�, Sfit=0.97 meV/cation. The maximum fitting error
is 2.9 meV/cation, which is found for the �1 structure.

�b� The quality of “pure predictions” is shown in
FIG. 2. Cross-validation score as a function of number of pairs

npair and t and  parameters �see Eq. �8�	.

TABLE II. Directly calculated GGA formation enthalpies �meV/cation� for the input structures used to construct the cluster-expansion.
In parentheses we give the fitted values given by CE. We have used in the GGA calculation a cutoff energy=300 eV, and k-point grid of
10�10�10.
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Table I. The prediction error Spred. is defined by

Spred. =
��=1
��H̃GGA��� − �H̃CE����2

NV
, �12�

for the NV=9 predicted structures in Table I, with lattice
constant ā=5.750 25 Å, the Spred.=1.34 meV/cation. The
structure with the highest prediction error is the simple

cubic 64 atoms supercell, where the two Mn atoms are
first nearest neighbors, being 1.95 meV/cation.

�c� To further test our CE, we constructed a com-
plex structure, calculated its energy via the CE, and then
compared it with a direct GGA calculation on this structure.
The structure selected was Ga56Mn8As64 with randomly
placed Mn atoms in a 4�4�4 supercell and lattice constant
ā=5.750 25 Å. We obtained �HCE=29.04 meV, �HGGA
=27.45 meV.

�d� Another test is given by a special quasirandom
structure32 �SQS�. We have used Ga6Mn2As8 SQS-14, which
is formally a �GaAs�6�MnAs�2 �301� superlattice, with lattice

constant ā=5.750 25 Å. For this structure, the values of �̄pair
for the first and third pair are exactly equal to the corre-
sponding value in a perfectly random Ga0.75Mn0.25As alloy.
To do so we first calculated the energy of a random alloy by
analytically averaging on �HCE���,

�Hrand�x� = ��HCE���� . �13�

We compare this result to direct GGA using the SQS. We
obtain �HCE=41.32 meV, �HGGA=40.04 meV.

�e� This CE has been constructed for concentrations
x�0.5, but we have tested it for zincblende Ga1−xMnxAs
structures at higher concentrations x, specifically for the case
of the superlattices �GaAs�1 / �MnAs�3 along the �100� and
�110� orientations �Z3 and Y3, respectively�. For Z3 we ob-
tain �HCE=22.33 meV, �HGGA=23.00 meV. In the case of
Y3 we get �HCE=30.00 meV, �HGGA=32.04 meV.

The comparisons �a�– �e� show that our CE is accurate to
approximately 2 meV, even for structures not used in the fit,
and even for the structures beyond the concentration range
for which the CE was constructed.

C. The random alloy

The dashed line in Fig. 5 gives the mixing enthalpy of the
random Ga1−xMnxAs alloy calculated from Eq. �13�. Note its
asymmetry with respect to x=0.5 due to odd-body interac-
tions. We can fit Eq. �4� with 
1=293 meV, 
2=
−390 meV, and 
3=239 meV. We calculate the spinodal
line from Eq. �4� using the mean field approximation for the
free energy of mixing33 Ga1−xMnxAs

�G�x� = 
1x�1 − x� + 
2x2�1 − x� + 
3x3�1 − x�

+ kBT�x ln�x� + �1 − x�ln�1 − x�	 , �14�

where kB is the Boltzmann constant. The �2 �G�x� /�x2 spin-
odal line is shown in Fig. 6. We see strong asymmetry in the
T vs x spinodal line having two humps, implying a nontrivial
phase diagram. Also, this asymmetry reflects the fact that Mn
substitution in GaAs is energetically more costly than Ga
substitution in zincblende MnAs. The miscibility-gap tem-
perature at the maximum of the spinodal line is TMG
=1348 K at x=0.204. The typical growth temperature2,5 of
random Ga1−xMnxAs alloys are between 200 to 400 K, thus
well inside the immiscible region, demonstrating that cur-
rently grown samples are well outside equilibrium.

FIG. 3. �Color online� Cross-validation �CV� score, Eq. �6�, his-
tory versus number of generations. The CV is minimized in 1310
generations.

FIG. 4. �Color online� Pair and many-body interactions energies
for the converged cluster expansion of the GaAs-MnAs system. The
geometry of the converged many-body figures is shown on the
bottom.
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D. T=0 ground state structures from exhaustive search

Having demonstrated a stable converged CE, we now
evaluate from the CE the energies of all GanMnmAsn+m com-
pounds up to N=n+m�20 cations/cell. This is an exhaus-
tive search of this space, which includes �3�106 ordered
compounds. Figure 5 shows the results, where each circle
denotes a different structure and the dashed line denotes the
random alloy. We see that the ground state line �the horizon-
tal line in Fig. 5� corresponds to phase separation into
GaAs+MnAs.

E. Superlattices

It is interesting to examine which of the structures of Fig.
5 is the least unstable. We therefore use the CE to calculate
the energies of short-period superlattices �SLs�. The results

are shown in Fig. 7. For long periods, we see the order of
stability given by Eq. �3�. This reflects the order of interfacial

energies I�Ĝ�, since �Hn,m�Ĝ�→2I�Ĝ� / �n+m� for long pe-

riods. Calculated I�Ĝ� from �n+m��Hn,m�Ĝ� are shown in

Fig. 8. We see that there is a critical value mc such that I�Ĝ�
becomes constant for longer periods m�mc. The critical val-
ues are mc=3 for the �111�, mc=4 for the �100�, mc=5 for the
�110�, and mc=6 for the �201� orientation. The calculated
interfacial energies for �MnAs�1 / �GaAs�m are I�111�
=111 meV, I�100�=133 meV, I�110�=202 meV and I�201�
=256 meV, giving

I�111� 	 I�100� 	 I�110� 	 I�201� . �15�

FIG. 5. �Color online� 220 ground state structures up to 20
cations/unit cell. The dashed line is the mixing enthalpy of the
random alloy.

FIG. 6. Calculated spinodal line of GaxMn1−xAs using mean-
field approximation. The miscibility-gap temperature at the maxi-
mum of the spinodal line is TMG=1348 K at x=0.204; below this
temperature the alloy phase separates.

FIG. 8. �Color online� The interfacial energy versus superlattice
period of �MnAs�n / �GaAs�m along the �100�, �110�, and �111� ori-
entations. The �a� n=1, �b� n=2, and �c� n=m. Open circles,
squares, and diamonds are GGA values for �100�, �110�, and �111�,
respectively.

FIG. 7. �Color online� The formation enthalpy/cation versus the
superlattice period of �MnAs�1 / �GaAs�m along the �100�, �110�,
�111�, and �201� orientations. Open circles, squares, diamonds, and
triangles are direct GGA values for �100�, �110�, �111�, and �201�,
respectively. The random alloy is denoted by a dashed line.
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Comparing the formation enthalpies of �MnAs�1 / �GaAs�m

SLs to the bulk random alloy of the same composition �Fig.
7�, we find that SLs along �100� and �111� orientation are
lower in energy than the random alloy when the thickness of
the GaAs spacer between MnAs layers is m�2. This is also
so for the �110� orientation when m�7 and for the �201�
orientation when m�11. Thus, once formed, these superlat-
tices will not disorder at low T. Further, we calculate the
formation enthalpies of alloy SL �GaxMn1−xAs�1 / �GaAs�m

with x=0.5,0.25 and m=1, . . . ,8, along the orientations
�100�, �111�, �201�. The results are shown in Fig. 9. We

observe that Eq. �3� still holds and, as expected, the
decrease of intralayer Mn concentration tends to lower the
energy. When these alloy SLs are compared to the random
alloy, we observe that the formation enthalpies of
�Ga0.5Mn0.5As�1 / �GaAs�m SLs are lower than the random al-
loy when n�2 for the �100� and �111� orientations and n
�11 for the �201� orientation. The formation enthalpy of the
random alloy and the �Ga0.75Mn0.25As�1 / �GaAs�n SLs are
comparable.

F. Electronic structure and magnetism of superlattices

Having established the chemical energetics of superlat-
tices, we next turn to study their magnetic properties. Figure
10 shows the energy difference EAFM−EFM for two series of
SLs: One with concentrated Mn in the layer, i.e.

FIG. 9. �Color online� The formation enthalpy/cation
versus superlattice period of �Ga0.5Mn0.5As�1 / �GaAs�m and
�Ga0.75Mn0.25As�1 / �GaAs�m along the �100�, �111�, and �201�
orientations. The random alloy is denoted by a dashed line and
a dotted-dashed line at the same compositions that
�Ga0.5Mn0.5As�1 / �GaAs�m and �Ga0.75Mn0.25As�1 / �GaAs�m,
respectively.

FIG. 10. Ferromagnetic stabilization energy of
�GaxMn1−xAs�1 / �GaAs�m superlattices with a different intralayer
Mn concentration.

FIG. 11. �Color online� Total
density of states for
�MnAs�1 / �GaAs�m superlattices
along the �100�, �110�, �111�, and
�201� orientations. The Fermi
level is denoted by a vertical dot-
ted line.
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�MnAs�1 / �GaAs�n, and one with more dilute Mn, i.e.
�Mn0.5Ga0.5As�1 / �GaAs�n. Interestingly, while the FM stabi-
lization energy decreases with increasing the interlayer sepa-
ration n, the decrease is much slower for the dilute SL. Thus,
as we dilute Mn, the exchange interactions become longer
range. This reveals an exceptional property of dilute mag-
netic semiconductors, namely that the system counterbal-
ances dilution of the magnetic ions by extending the range of
exchange interactions, hence maintaining ferromagnetism
down to small concentrations of magnetic ion.

Figure 11 gives the total density of states �DOS� of the
ferromagnetic short-period SLs. It is observed that all these
SLs are half-metals, and the total magnetic moment per Mn
atom is 4�B. The DOS shape is similar for the �100�, �110�,
and �111� orientations. As the SL period increases from
�GaAs�2�MnAs�1 to �GaAs�4�MnAs�1, the Fermi level moves
toward the highest occupied state of the minority spin band.
But along the �201� orientation the Fermi level shifts upward
and then downward when the SL period is increased. Also,
for the �201� orientation, the spin-up channel behaves differ-
ently from the the other three orientations: At higher energies
above the Fermi level a bandgap larger than 0.3 eV takes
place, which is increasing in value if the SL period is in-
creased. We can also see that the spin-down bandgap �Eg�
decreases with increasing the SL period for the �100�, �110�,
and �111� orientations, but the gap increases for SL with the
�201� orientation. Furthermore, the Mn 3d states exchange
splitting ��x� of these short-period SLs follows Eq. �3�,

where �x for the �201� SLs are, on average, 0.5 eV larger
than �xfor the �111� SLs.

IV. SUMMARY

It is found that the ground state of the GaAs-MnAs sys-
tem is phase separating into GaAs+MnAs. The formation
enthalpy of short-period superlattices follows the order
�111�	 �100�	 �110�	 �201�, which implies that short-
period superlattices along the �111� orientation are energeti-
cally more favorable thermodynamically. Note, however, that
in vapor phase growth the control is kinetic, so all SLs are, in
principle, growable. It is also found that the formation en-
thalpy of the random alloy becomes higher compared to su-
perlattices in the dilute limit and therefore these superlattices
will not disorder at low temperature. The calculated misci-
bility gap temperature is located at concentration x�0.2. The
stabilization energy for �100� �Ga1−xMnxAs�1 / �GaAs�n su-
perlattices shows that these superlattices prefer ferromag-
netic order over a nonferromagnetic arrangement. The decay
of the exchange interactions with superlattice period n is
slower for the Mn dilute x=0.5 case than for x=1. This
shows that as the system becomes more Mn-dilute the range
of the exchange interactions increase.
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