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We report on calculated outer-shell photodetachment cross sections from the metastable �core�nsnp2 4Pe

states in Mg− �n=3� and Ca− �n=4� negative ions in the photon energy range �=0–10 eV. Double-ionization
thresholds for Mg II and Ca II as well as doubly excited thresholds of the residual atoms Mg I and Ca I are
located within the photon energy range considered and thus doubly and triply excited states of both Mg− and
Ca− are reached. We use a complex scaled configuration interaction �CSCI� method for the three active
electrons supplemented with a sophisticated model potential as developed by Laughlin �Phys. Scr. 45, 238
�1992�� to account for core-valence interactions. The CI calculations are based on Mg+ and Ca+ one-electron
orbitals expanded in terms of B-spline basis set. We compare our cross sections with the only calculation
available up to a photon energy 0.25 Ry ���3.4 eV� �Zeng et al., Phys. Rev. A 62, 022713 �2000�� performed
by using the R-matrix method, in which only one 4Po resonance for Mg− and two �4Po and 4Do� for Ca− were
predicted. In this work, by analyzing both the cross sections and the locations of the S-matrix poles in the
complex plane, we are able to predict six 4Po, four 4Do, and four 4So resonant states for Mg−, and three 4Po and
two 4Do resonant states in Ca−.
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I. INTRODUCTION

The study of negative atomic ions has become a center of
attention for the atomic physics community and is the subject
of several books and reviews �1–6�. Negative ions are char-
acterized in their structure and dynamics as being strongly
correlated, and their weak binding is almost entirely due to
this electron correlation. Highly excited states in negative
ions are usually described as a complicated mixing of corre-
lated configurations and consequently they should manifest
specific structures in photoionization spectra. At variance
with two-electron atomic systems, for which a long theoret-
ical experience has been accumulated through the years in
the accurate computation of doubly excited states and related
photoionization processes, three-electron atomic systems are
a present matter of study. Despite the extraordinary develop-
ment of computer technology, precise calculations for three-
electron atomic systems represent still today the cutting edge
of complete ab initio treatments, allowing for results with
spectroscopic accuracy within a few meV.

Considerable attention has been paid in the last 20 years
to discovering bound states in alkaline-earth negative ions, in
both their doublets and quartets �5�. Within the latter spin
group, �core�nsnp2 4Pe and �core�np3 4So metastable states
for Be− �n=2�, Mg− �n=3�, and Ca− �n=4� were already
predicted theoretically in the 1980s �7�. In contrast to Be−,
for which the existence of such states has been confirmed
experimentally in a definite way �8–10�, the situation has
been quite controversial for Ca− 4Pe �11–13� and impossible
for Mg− 4Pe, due probably to its very short lifetime ��1 ns�
�see �5� and references therein�. Photodetachment from the
Ca− 4Pe ground state has already been studied, both theoreti-
cally �14–17� and experimentally �13,18–20� but, surpris-

ingly, there is only one photodetachment R-matrix study for
the spin quartets available �21�. The last paper also contrib-
uted to studies of Be− and Mg− 4Pe photodetachment. Since
we already reported a comprehensive study on Be− 4Pe pho-
todetachment �22�, and we also compared with Ref. �21�, we
deal only with Mg− and Ca− in this work.

Outer-shell photodetachment in Mg− and Ca− involves ac-
tively only the three valence electrons, which implies that
computer codes developed for pure three-electron atomic
systems can be readily adapted to more complex systems
provided we separate the system into an inert core plus va-
lence electrons. This amounts to including the core-valence
interactions through model potentials in an approximate way.
Analytical model potentials and pseudopotentials are widely
used in many contexts and they have received a deal of at-
tention in atomic physics as well �23,24�, in such a way that
there is a considerable assortment of models at our disposal
to be tailored for the specific system at hand.

This work follows a series of recent papers by our group
that studied resonant structures and photodetachment in He−

�25� and in Be− �22,26� by means of a complex scaled con-
figuration interaction �CSCI� approach, which has proven to
be very successful and accurate. In the Be− case, we already
introduced the implementation of simple model potentials in
our method of solution. In the present case, Mg− and Ca−

ions are more involved to compute, even as a three-effective-
electron system, due to the size and complexity of their po-
larizable core. Although valence correlation among the three
outer electrons is properly accounted for with the configura-
tion interaction approach, we must rely on more sophisti-
cated model potentials for the core-valence interaction, like
those developed by Laughlin �27,28�. This model potential
was already applied with success to compute Ca I excited
states �29� and the Ca− 2P ground state �30�. The application
of this potential in Mg− is straightforward. In contrast, in
Ref. �29� a proposal was introduced for a modification to the*Corresponding author. sanjose@fisica.udea.edu.co
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one-electron model potential for d orbitals, that turned out to
be of the utmost importance to correctly describe Ca I terms
with a marked d character. We make use not only of this d
correction in our Ca− calculations but also of the dielectronic
polarization terms among the valence electrons. In this way,
our computation contains all the required state of the art
ingredients to compute Mg− and Ca− resonance states and
their photodetachment. In spite of that, we still face some
limitations for a precise computation in Ca−.

This paper is organized as follows. In Sec. II we introduce
our method of solution with the construction of one-electron
orbitals in terms of B-spline basis sets and the three-electron
complex scaled configuration interaction approach with their
supplementary corrections. In Sec. III we report our calcula-
tions and results for the characterization of Mg− and Ca−

resonant states within the photon energy region considered
��=0–10 eV� and their partial and total photodetachment
spectra. We end up with some conclusions. Atomic units are
used throughout unless otherwise stated.

II. THEORY

A more detailed account of our CSCI approach was pre-
sented in a previous work �25�. Major changes from this
description are due to the inclusion of a sophisticated model
potential in the solution of one-electron radial equations and
the extra corrections in the interactions among the valence
electrons, which are here described in detail. A further devel-
opment over previous descriptions consists in the implemen-
tation of exterior complex scaling to assess the appropriate
use of uniform complex scaling when such model potentials
are in use.

A. One-electron orbitals: Model potential

The three-outer-electron problem is solved by expanding
the total wave function in terms of configurations using a
basis of one-electron orbitals �nlm�r ,��= Pnl�r� /rYlm���,
which are obtained as eigenfunctions of a reduced radial
equation for Pnl�r�:

�−
1

2

�2

�r2 +
��� + 1�

2r2 −
Z

r
+ V�

model�r� − �n��Pn��r� = 0,

�1�

where Z is the nuclear charge and V�
model�r� stands for the

potential that accounts for the core-electron interaction.
These radial orbitals are then complex-rotated to enter the
three-electron CSCI, as explained below.

The one-electron radial function Pnl�r� is expanded in
terms of N B-splines of polynomial order k confined in a box
of length �0,rmax�, where rmax is the box size. The B-splines
are defined in a set of knot points distributed in a combined
linear-exponential sequence. The use of B-splines implies a
better description of diffuse wave functions that represent
loosely bound �resonances� or continuum states in terms of
relatively short expansions. A comprehensive report on the
application of B-splines in atomic and molecular physics is
available �31�.

In Be−, with a 1s2 core, polarization effects are less im-
portant and, accordingly, we used in Ref. �22� a simple
model potential that sufficed to provide rather accurate one-
electron orbitals and energies. Moving further into the series
of alkaline-earth atoms, the core becomes more complex
and, accordingly, so does the required model potential. There
is a plethora of different atomic model potentials at our dis-
posal in the literature that may be adapted specifically for
alkaline-earth systems �see, for example, Albright et al. �32�
and the review by Aymar et al. �33��. The appropriate selec-
tion depends on the atomic system itself, the type of process
under study, and the required accuracy in the computed so-
lution. In fact, effective model potentials regarded as accu-
rate to compute some properties of metastable alkaline-earth
atoms �34� are not indeed accurate when dealing with Ca−

resonant structure and its photodetachment. Previous works
on Ca− �30,35,37� and our present experience reveal that
precise computations on alkaline-earth negative ions beyond
Be− require an optimal choice of one-electron orbitals. The
most sophisticated model potential to date has been devel-
oped by Laughlin in a series of papers �27,28�, and reads

V�
model�r� = VHF

d �r� + Vpol�r� + U��r� . �2�

The direct Hartree-Fock potential VHF
d �r� has the form

VHF
d �r� = �

n�

core

2�2� + 1�	
0

�

dr�
1

r�


Pn�
core�r��
2, �3�

where r�=max�r ,r�� and the sum runs over the core wave
functions Pn�

core, which we have extracted from the tables of
Clementi and Roetti �38�. The above integral is evaluated
within the B-spline knot-sequence grid through a double
Gauss-Legendre quadrature. The polarization potential in-
cludes the dipole, �d, and quadrupole, �q, polarizabilities of
the Mg− and Ca− cores,

Vpol�r� = −
�d

2r4W6�r/rc� −
�q − 6	1

2r6 W8�r/rc� , �4�

where 	1 is the first-order dynamical correction to the dipole
polarizability �d. The role of the cutoff functions Wn�r�=1
−exp�−rn� is to eliminate the short-range behavior of the
polarization potential by suppressing its penetration into the
core region r�rc. The �-dependent potential U� is expressed
in the form

U��r� = �a0
� + a1

�r + a2
�r2�exp�− a3

�r� , �5�

where the four adjustable coefficients an
� are determined by a

least-squares fitting procedure with respect to the experimen-
tal Mg II and Ca II levels. We also choose to keep the param-
eters �d, �q, and rc fixed.

Incidentally, a local exchange potential as developed by
Furness and McCarthy �39� may be added to the model po-
tential to approximately include exchange effects between
the valence and the core electrons. In some cases, it has been
proved to be useful �32�, but in our experience, although the
energies are notably improved over the HF �direct� ones �the
exchange effect is rather important�, the orbitals start to de-
velop unwanted oscillations close to r=0 during the process
of parameter optimization of the potential U�, so that we
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avoid the use of local exchange potentials. Anyway, it is
assumed that U� partially makes up for these core-valence
exchange interactions as well as for most of the one-body
relativistic corrections, since we adjust to the experimental
energies. Two-body relativistic effects are not included ex-
plicitly in our calculation, but they were found in Ca �36,37�
to be smaller than one-body corrections, the latter being
around 7 meV.

B. The form of the complex scaling

In this work we use the uniform complex scaling �UCS�
method, where the radial electron coordinate is uniformly
complex-rotated �r→rei
� from r=0. This allows for the L2

integrability of the rotated continuum wave functions. We
first adjust the model potential V�

model when the rotation angle
is zero and then the complex rotation is applied normally. In
our previous work on Be− �22� we used the direct approach
procedure to UCS, i.e., the knot sequence for the B-splines
was defined in the real axis, and the kinetic energy T and the
pure Coulomb V terms in the Hamiltonian were computed in
the real axis and were then complex-scaled as e−2i
T and
e−i
V, respectively. Only model potentials, which are nonlin-
ear, were explicitly scaled. Instead, for the present study, we
have modified our codes to allow for the integration of ma-
trix elements in any arbitrary contour in the complex plane.
With such modification we can now also use exterior com-
plex scaling �ECS�, where the rotation takes place only be-
yond a given radial distance r0 �r→r0+ �r−r0�ei
�. When
r0=0 we recover again the UCS case. The ECS application
implies the use of basis sets of complex B-splines defined in
the ECS contour instead of real B-splines. ECS received its
full glory in more recent scattering applications, given that
this approach provides the remarkable property that exact
asymptotic scattering boundary conditions are satisfied by
the ECS wave function at r0 �see �40� and references
therein�. This property is not directly used in our computa-
tions, in which we do not look specifically at ejected elec-
trons.

Our interest in ECS was motivated instead by the nonlin-
ear form and the complexity of the model potential used in
this work. It is not proved that complex scaling has a univer-
sal application to any arbitrary potential in terms of dilatation
analycity in the complex plane, which is mathematically a
nontrivial issue. Even when a potential is formally dilatation
analytical, and thus all high-order derivatives are defined,
fast variations with respect to the radial coordinate might
cause computational problems. This happens since the nu-
merical performance is governed not only by the formal ex-
istence of higher derivatives, but also by the possibility to
represent them numerically. A way round is to avoid the
complex rotation in the region where the model potential is
effective. In fact, it has been formally proved �41� that the
complex eigenvalue spectrum of the Hamiltonian depends
only on the transformation into complex coordinates in the
asymptotic region. Since these model potentials have a short
range, it amounts to using ECS with a selected r0 outside the
effective range of the potential just to get past any potential
nonanalycities. This is one of the potential applications of

ECS, already pointed out by the pioneers �see, for instance,
Refs. �42,43��.

In practice, in computing resonance parameters and the
photodetachment spectra of Be− using ECS with r0=5 a.u.
we find indeed an identical result as we obtained with UCS
�22�. Similarly, it also happens in Mg− and Ca− with the
present model potential of Eq. �2� with very slight changes
due to the chosen r0 value. Without being rigorous, this nu-
merical equivalence shows in a phenomenological way that
the application of UCS over such effective model potentials
is appropriate. Although the UCS and ECS procedures are
formally equivalent, in practical calculations with finite ba-
sis, they show a distinct behavior due to the presence of the
extra parameter r0. In order to illustrate this point we apply
both UCS and ECS approaches to uncover resonance param-
eters in a toy one-electron model potential �44�:

V�r� = Ae−��r − a�2
+ Be−	r2

�6�

with A=5, B=8 �=0.25, 	=0.2, and a=3.5. This potential
supports two bound states plus a series of shape resonances,
as shown in Fig. 1. They are computed by solving the radial
equation with a basis set of 300 B-splines �order k=7� dis-
tributed in a linear sequence of knot points within a box of
60 a.u. Also in Fig. 1 we plot the complex eigenvalue spec-
trum for a fixed rotation angle 
=20° and varying the r0
value at which the ECS starts, including the case r0=0
�UCS�. By modifying only the parameter r0 it is clear that the
effective rotation departs from 
=20°. For r0=10 a.u., a dis-
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FIG. 1. �Color online� �a� Model potential given by Eq. �6� with
energy positions of bound and resonant states above the continuum
threshold. �b� Complex eigenvalue spectrum for this model poten-
tial computed with UCS with rotation angle 
=20° and several ECS
computations with the same rotation angle and varying r0.
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tance that is outside the range of the potential, the ECS result
slightly differs from the UCS one and the resonances are still
correctly uncovered provided the resonance widths are not
very large. In addition, for r0�0, an unpleasant effect hap-
pens to occur in the ECS approach when using finite basis
sets �see also �45��. The continuum cut splits into two
branches and the upper new branch may hide the resonant
states for large r0 values. In addition, this upper branch even-
tually returns to the real axis at a higher energy. In the case
of multichannel systems with several open thresholds, this
latter effect may interfere in the visualization of higher reso-
nances and the clear identification of the opening of succes-
sive thresholds. Fortunately, most of the resonances in Be−,
Mg−, and Ca− have small widths and lie very close to the real
axis, and thus ECS and UCS will produce basically the same
results in resonance parameters and the photoionization spec-
trum, although this may not be the general case. A comment
in passing is now pertinent. When using complex B-splines
in ECS a major problem on computing two-electron integrals
was posed and a detailed algorithm then proposed �45�. In
our approach, with the above-mentioned implementation of
integration of one- and three-electron integrals for any com-
plex contour, these bielectronic integrals may be computed
accurately with a double Gauss-Legendre quadrature in the
complex path, without requiring any special algorithm. In
conclusion, we make use of the UCS approach to avoid any
arbitrariness with r0 in ECS once we have checked that the
UCS applies safely with such model potential.

C. Three-electron system

The alkaline-earth negative ions may be described by the
three-electron Hamiltonian

H = �
i

hi
model + �

i�j

V�rij� , �7�

where the sums involve only the three outer-shell electrons
and the expression for the model Hamiltonian hmodel can be
inferred from Eq. �1�. The interaction term in Eq. �7� is

V�rij� =
1

rij
−

�d

ri
2rj

2P1�cos 
ij�W3�ri/rc�W3�rj/rc�

−
�q

ri
3rj

3P2�cos 
ij�W4�ri/rc�W4�rj/rc� , �8�

where Pn denotes a Legendre polynomial of degree n. The
second term on the right side in Eq. �8� corresponds to a
dielectronic dipole polarization potential and the third one to
a quadrupole polarization potential �46,47�, with their cutoff
functions Wn�r�, as defined above. Both of them can be eas-
ily implemented by slightly modifying the routine for the
two-electron integrals. These terms tend to reduce the bind-
ing effect and their inclusion has proven to be crucial to
obtain accurate electron affinities in Ca− �30�.

Once the U� potential is fitted, the complex rotated eigen-
functions from Eq. �1� are then used to build three-electron
configurations adapted to the total symmetries L ,S and parity
�. The matrix elements of the effective three-electron Hamil-
tonian of Eq. �7� are evaluated and the much bigger associ-

ated generalized complex symmetric eigenvalue problem is
solved. With the three-electron eigenfunctions obtained, the
photodetachment cross section as a function of the photon
energy is calculated with the expression �48�

���� =
1

2L0 + 1

4�

3

�

c
Im��

n

M �
̃0
P

̃n�2

Ẽn − E0 − ��
� , �9�

where 
̃0 denotes the initial state wave function with an

energy E0, 
̃n corresponds to the final states with complex

energy Ẽn, let them be bound, resonant, or continuum states

and P̃=�i,qri�e
i
Ci

�q� is the rotated dipolar operator in the
length form. Because of the presence of the polarizable core
the radial part in the dipolar operator is also modified
�49–51� as follows:

ri� = ri�1 −
�d

ri
3 W3�ri/rc�� . �10�

III. RESULTS AND DISCUSSION

The initial state considered for Mg− and Ca− has the form
�core�nsnp2 4Pe with n=3 for Mg− and n=4 for Ca− and the
final states after photon absorption correspond to 4Po, 4De,
and 4So symmetries. Thus, the photodetachment process for
A− �A=Mg,Ca� reads

A−��core�nsnp2 4Pe� + � → �
4Lo


A��core�n���n���� 3L̃�

+ e−����� 4Lo, �11�

where � denotes the photon and � corresponds to the energy
of the detached photoelectron. For instance, within the pho-
ton energy range considered in this work, from 0 to 10 eV,
the label n��� in Eq. �11� represents Mg I 3s and 3p orbitals
only, and n��� may reach up to n�=7 since the thresholds Mg
�core�3s7d 3D at �5.0 eV and Mg �core�3p7s 3Po at
�9.2 eV are reached. Note also that double-ionization
thresholds Mg+ 2Se and Mg+ 2Po lie within this photon en-
ergy range at �5.25 eV and �9.68 eV, respectively. Simi-
larly in Ca−, at least the double-ionization thresholds Ca+ 2Se

at �4.74 eV, Ca+ 2De at �6.4 eV, and Ca+ 2Po at �7.86 eV
are inside this region. Therefore, double photodetachment
channels should be rigorously included and in our CSCI
method they are, at variance with R-matrix methods.

We first solve the one-electron eigenvalue problem of Eq.
�1� for the Mg+ and Ca+ ��core�n�� states with a basis set of
22 B-splines of order k=7, and a box length of 100 a.u. for
Mg+ and 60 a.u. for Ca+. Our basis of B-splines is reduced to
22 �and also the one-electron orbitals� to prevent the number
of three-electron configurations from being too large
��10 000�. This forces us to find the best representation of
both bound and continuum states in terms of a reduced but
well-tempered basis of orbitals. Orbitals expanded with B-
splines provide such an optimal representation �31�. Param-
eters for the polarization potential Vpol�r� in Eq. �4� were
taken from Ref. �27� for Mg+ and from Ref. �52� for Ca+, and
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they are included in Table I. The parameters for the potential
U��r� in Eq. �5� are obtained by adjusting our one-electron
eigenvalues with respect to the first two or three experimen-
tal values in each � symmetry �53�, in a least-squares proce-
dure. The process of minimization was performed using a
Powell’s algorithm of minimization without computing de-
rivatives �54�. Our fitted parameters for the U��r� potential
are summarized in Table I for both Mg+ and Ca+, for s, p, d,
and f orbitals. They are very similar to those reported in Ref.
�27� for Mg+. At variance, some differences appear for Ca+,
but it should be noted that the potential is optimized within a
given functional space and we are using a reduced basis set
of 22 B-splines. In fact, for a much larger B-spline basis set,
our parameters for Ca+ �more sensitive than Mg+� become
almost identical to those reported in Ref. �27� �which are
computed with large Slater-type-orbital basis sets�. Ours are
also similar to the parameters of Table II in Hansen et al.
�52�.

In Table II we show in the case of Ca+ how the one-
electron energies are systematically improved after introduc-
ing the different components of the model potential; VHF

d ,
VHF

d +Vpol, and VHF
d +Vpol+U�. Separately, we have also cal-

culated ab initio Hartree-Fock orbital energies �thus includ-
ing exchange� corrected by a polarization potential as was
done in Ref. �55� in terms of a similar B-spline basis and
they are included also in Table II for Ca+, quoted as VHF+pol,
for comparison. The polarization correction added to the
Hartree-Fock direct potential VHF

d +Vpol provides minor

TABLE I. Model potential parameters for Vpol�r� and U��r� for
s, p, d, and f orbitals in Mg+ and Ca+.

Mg+ Ca+

�d 0.48 3.254

�q 6.936

�q−6	1 0.55 0.1

rc 1.70 2.70

a0
0 −3.12735685 −2.29441787

a1
0 1.15200142 −2.52407057

a2
0 0.00000010 0.76438518

a3
0 1.60 1.69379665

a0
1 −2.19519727 −2.76669788

a1
1 0.60096237 −0.78422842

a2
1 0.00013801 0.20964694

a3
1 1.49926749 1.67437999

a0
2 −4.08776863 −0.66418362

a1
2 1.44385780 −3.00259360

a2
2 −0.00028822 0.454

a3
2 2.20216145 1.7

a0
3 −0.17342163 −2.95458852

a1
3 0.04784198 1.03975567

a2
3 0.00078181 −0.08077417

a3
3 1.40244082 1.32946388

TABLE II. Energies �in a.u.� of �core�n� states of Ca+ ion. The values are referred to the Ca2+ core energy. Experimental energies are
taken from NIST �53�.

VHF
d VHF

d +Vpol VHF+pol VHF
d +Vpol+Ul Expt.

4s −0.36912090 −0.37678134 −0.44115755 −0.43627765 −0.43627765

5s −0.17891810 −0.18089158 −0.19878977 −0.19858760 −0.19858760

6s −0.10573311 −0.10653985 −0.11419224 −0.11424670 −0.11424670

7s −0.06980039 −0.07021142 −0.07421396 −0.07425952 −0.07428465

8s −0.04947032 −0.04970860 −0.05207946 −0.05209791 −0.05217450

9s −0.03600937 −0.03619139 −0.03850457 −0.03799394 −0.03865600

4p −0.27316876 −0.27741335 −0.32486866 −0.32081963 −0.32081963

5p −0.14412748 −0.14550426 −0.16099691 −0.16023120 −0.16023120

6p −0.08929698 −0.08992417 −0.09704760 −0.09678748 −0.09678748

3d −0.24032747 −0.24773427 −0.37021958 −0.37528380 −0.37391690

4d −0.13595959 −0.13833223 −0.17569313 −0.17739220 −0.17724645

5d −0.08634585 −0.08738798 −0.10413107 −0.10517198 −0.10490701

6d −0.05943461 −0.05998538 −0.06893807 −0.06956368 −0.06939455

7d −0.04325195 −0.04358648 −0.04897722 −0.04937176 −0.04928392

8d −0.03113345 −0.03143431 −0.03652622 −0.03620150 −0.03681006

9d −0.01684593 −0.01719256 −0.02824038 −0.02311312 −0.02853735

4f −0.12510496 −0.12599387 −0.12572934 −0.12618755 −0.12618755

5f −0.08007907 −0.08056181 −0.08046160 −0.08072680 −0.08072680

6f −0.05560988 −0.05589686 −0.05584862 −0.05601465 −0.05601465

7f −0.04073983 −0.04093030 −0.04100051 −0.04101625 −0.04112010

8f −0.02908951 −0.02928189 −0.03133223 −0.03137431 −0.03145950

9f −0.01498478 −0.01522289 −0.02461846 −0.02464657 −0.02484065
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changes and one may infer from these tables that the ex-
change correction is rather important. As mentioned previ-
ously, we were tempted to add to the direct Hartree-Fock
potential a local approximation to the exchange potential.
Doing this, we obtained energies similar to the ab initio
Hartree-Fock orbital energies, but this option was finally ex-
cluded when we used U�, which is able to provide also the
exchange interaction. Despite having reasonably good
ab initio Hartree-Fock orbital energies coming from the
VHF+pol potential, we finally realize that they are not good
enough to provide correct threshold energy positions and
resonance positions when the three-electron computations
are performed, mainly for Ca−, and high-precision orbitals
obtained with the U� potential were finally required.

Ca+, Ca, and Ca− are complicated atomic systems that are
hard to compute accurately. It has already been pointed out
that Ca I states with a pronounced 3d character in the con-
figurations require an extra treatment. The 3d orbital has an
appreciable overlap with the core, so that the interaction
3d-core cannot be fully described with a core model poten-
tial. Furthermore, this core-valence interaction is term depen-
dent in Ca �56�. To partially cure this problem, configurations
containing d orbitals are improved by using a particular U�=2
potential �29,52�, which allows to reproduce the series nd 2D
in Ca+ with the supplementary constraint of matching the
experimental value for the 3d2 3F term in Ca I �which has
been measured without ambiguity�. Of course, it is expected
that a U�=2 potential optimized for such a Ca I term does not
provide perfect agreement for nd 2D in Ca+ and for other
Ca I terms containing d orbitals. In this sense, this choice is
an approximation, but it improves things a lot. Then, for Ca+,
we have used the parameters for U�=2 given in Ref. �52� and
quoted in Table I for d orbitals. This d correction turns out to
be crucial also for multiply excited states in Ca−.

For each three-electron L, S, and � symmetry, we build
three-electron n�n���n���-type configurations from the pre-
vious set of optimized s, p, d, and f orbitals, excluding 1s,
2s, and 2p core orbitals in Mg− and 1s, 2s, 2p, 3s, and 3p in
Ca−. The type and number of configurations used for 4Pe,
4Po, 4Do, and 4So symmetries are included in Table III. The
maximum number of configurations is always kept less than
10 000 to fit our computational resources. It is worth noting
that the CSCI Hamiltonian matrix is dense and complex-
symmetric and we are required to compute the whole set of
eigenvalues and eigenfunctions to introduce them into the
photodetachment cross section formula Eq. �9�. Note also
that for Ca− the number of configurations is reduced com-
pared to Mg− since the number of one-electron orbitals is the
same in both cases but the M-shell orbitals 3s and 3p are
excluded from the CI expansion in the Ca− ion.

With this selection of configurations �including continuum
orbitals�, the Mg and Ca target states �all target thresholds
listed in Table IV and Table VI� should be appropriately
represented, along with the scattering channels. For example,
the Mg �core�3sn�p 3Po and Mg �core�3pn�s 3Po thresholds
plus �s, �p, or �d escaping electrons, are accounted for with
spp-type configurations from the 4Pe symmetry, and ssp and
spd from the 4Po symmetry, and spd from the 4Do. We must
remark that in our method the Mg I and Ca I threshold ener-
gies are obtained directly from the complex scaling diago-
nalization of the Mg− or Ca− problem. In other approaches,
like the R-matrix method, the Mg I or Ca I target states are
calculated previously as accurately as possible and afterward
the channels Mg �or Ca�+��n�� are explicitly constructed. If
not accurate enough, diagonal elements in the Hamiltonian
matrix may be adjusted to reproduce the target experimental
energies.

The initial state Mg− �core�3s3p2 4Pe is computed
with 9283 configurations and the energy obtained is

TABLE III. �1�2�3 type and number of configurations used to calculate resonances and photodetachment of Mg− and Ca−4Pe.
�1�2�3-type configurations are indicated as n1 ,n2 ,n3�1�2�3, and N is the number of configurations for every �1�2�3 type of configuration. ni

represents the number for the highest orbital included for the angular momentum �i.

4Pe N 4Po N 4Do N 4So N

Mg−

17,17,18spp 2040 17,17,18ssp 2040 17,14,18spd 3510 18,18,18ppp 969

15,17,18sdd 1989 17,18,14spd 3584 17,18,13sdf 3510 17,18,18pdd 2736

15,17,18sf f 1989 12,17,18sdf 3060 7,18,17ppp 1186 17,18,18pf f 2736

4,17,18ppd 1566 2,12,17ppp 310 14,18,4ppf 1092 14,18,18ddf 2898

3,17,18pdf 1224 2,12,17ppf 170

1,17,18ddd 475 2,12,17ddp 210

Total 9283 9374 9298 9339

Ca−

17,18,18spp 1904 17,17,18ssp 1456 17,16,18spd 3528 18,18,18ppp 816

15,17,18sdd 1836 17,18,17spd 3825 17,18,14sdf 3528 18,18,18pdd 2736

15,17,18sf f 1836 13,17,18sdf 3060 8,17,18ppp 1024 18,18,18pf f 2736

6,17,18ppd 1872 4,12,17ppp 491 14,18,5ppf 1200 15,18,18ddf 2970

4,17,18pdf 1224 3,12,17ppf 153

1,17,18ddd 475 3,12,17ddp 210

Total 9147 9195 9280 9258
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E=−0.747 476 947 a.u. with respect to the Mg2+ core energy.
For Mg− only the dipole correction to the 1 /r12 interaction is
included. We check the quality of our three-electron compu-
tation with our estimation of the electron affinities �EAs� of
Mg I for its excited states. The EA for Mg 3s3p 3Po, i.e.,
E�Mg 3s3p 3Po�−E�Mg− 3s3p2 4Pe�, is obtained in our
three-electron calculation by extrapolating the lowest-energy
continuum cut �Mg 3s3p 3Po plus an escaping electron p
within the total symmetry 4Pe� to the real axis, so that the
electron excess energy is exactly zero. Our value for the EA
�Mg 3s3p 3Po� is then 364 meV, to be compared with the
theoretical values 367 meV �57� �with a relativistic HF-CI
method�, 379 meV �58� �with a multiconfiguration HF
�MCHF� method� , and 393.0 meV �21� �with a CI+R-matrix
method�. Note that we use the conversion factor 1 a.u.
=27.211 383 44�M� / �M +me�=27.210 781 8 eV for Mg and
all previous theoretical values have been then adapted. Simi-
larly, our EA for the Mg 3p2 3Pe, E�Mg 3p2 3P�
−E�Mg− 3p3 4Pe�, is 545 meV, close to other theoretical val-
ues: 542 �57�, 552 �58�, and 541 meV �59�. The last work
employs a three-electron B-spline CI result for Mg− and a
separate two-electron B-spline CI result for Mg, with a core
model potential developed by Aymar �33�, less accurate than
the one reported by Laughlin �27�. Unfortunately, experi-
ments have not been successful in reporting EA values in Mg
�60�. We compare some of our theoretical thresholds with
experimental ones from the NIST database �53� in Table IV,
taking our EA as reference. Our Mg I threshold positions are
in good accordance with the NIST values below the Mg+

�2Se� threshold. We follow the labels given by NIST below
the Mg+ �2Se� limit, but we were unable to identify labels
above the first double continuum threshold, either in theory
or experiment.

Our CSCI method implicitly includes all contributions
coming from partial channels because of the way we con-

struct the three-electron configurations �see Table III�. For
instance, for Mg− 4Po symmetry, the ssp and spd configura-
tions allow us to account for channels �3s3p 3Po+ ��s ,�d��,
�3s4s 3S+�p�, �3s4p 3Po+ ��s ,�d��, �3s3d 3D+�p�, and so
on. Unfortunately, complex scaling cannot separate contribu-
tions to cross sections and widths associated with individual
channels within a given total angular symmetry. We provide
instead the whole contribution to the cross section coming
from each final angular symmetry, which we call here partial
cross sections. In Fig. 2 we plot the partial photodetachment
cross sections to the final states 4Po, 4Do, and 4So with pho-
ton energy from 0 to 10 eV. We have been able to identify
up to 14 resonant states, six 4Po, four 4Do, and four 4So, at
variance with the only previous R-matrix computation �21�,
which reported only the first 4Po resonance. Our resonance
parameters �positions, widths, and Fano q parameters� are
summarized in Table V. The q shape parameter is obtained
with CSCI following the same procedure given in Ref. �25�.
Not all resonances produce noticeable features in the photo-
detachment spectra. We clarify the true resonant nature of the
peaks by exploring the behavior of the eigenvalues in the
complex plane. Those eigenvalues unaffected after different
rotation angles are assigned to S-matrix poles. Therefore
each resonance Rn quoted in the photodetachment spectrum
in Fig. 2 has its counterpart in the complex plane, as indi-
cated in Fig. 3.

TABLE IV. Thresholds of the Mg− system. The experimental
values are taken from NIST �53� relative to our theoretical EA value
0.364 08 eV. Energies are then given in eV and relative to the
Mg−��core�3s3p2 4Pe� initial state.

State Expt. This work Ref. �21�

Mg��core�3s3p 3Po� 0.36408 0.36408 0.393

Mg��core�3s4s 3S� 2.75778 2.75880 2.824

Mg��core�3s4p 3Po� 3.58233 3.59324 3.597

Mg��core�3s3d 3D� 3.59587 3.61775 3.624

Mg��core�3s5s 3S� 4.08133 4.10479

Mg��core�3s4d 3D� 4.36894 4.36452

Mg��core�3s5p 3Po� 4.37628 4.38018

Mg��core�3s4f 3Fo� 4.42901 4.42360

Mg��core�3p2 3P� 4.82289 4.81984

Limit Mg II�2Se� 5.29619

Mg �core Thres I� 8.00589 8.03452

Mg �core Thres II� 8.79945

Mg �core Thres III� 9.15049

Limit Mg II�2Po� 9.71861
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FIG. 2. �Color online� Calculated partial photodetachment cross
section to Mg− 4Po, 4Do, and 4So final symmetries from the meta-
stable Mg− �core�3s3p2 4Pe state. �Black� solid line, our CSCI re-
sult with a rotation angle 
=15°; �red� dashed line, R-matrix result
by Zeng et al. �21�. The vertical �blue� thick lines indicate our Mg I
thresholds �core�n�n��� 3L� quoted in Table IV; the vertical long
thick dotted lines indicate the positions of the Mg II double-
ionization thresholds 2Se and 2Po, enclosing a region of triply ex-
cited states. Resonance positions are labeled as Rn and the arrows
point to the maximum cross sections of the CSCI calculation.
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In Fig. 2 we have also included R-matrix results up to the
limit 0.25 Ry ��3.4 eV� as published in Ref. �21�. For the
nonresonant background cross section, our 4Po and 4Do re-
sults agree in general �except just above the Mg 3s3p 3Po

threshold� with the R-matrix result. The only resonance re-
ported in Ref. �21�, 4Po at 0.2 Ry ��2.7 eV�, compares with
our 4Po R1 resonance at 2.75 eV. Minor differences in posi-
tions are due to the different accuracy in the computations of
Mg I thresholds. Above the first Mg+ threshold at �5.25 eV,
R-matrix methods cannot be applied since two electrons are
ejected. Indeed, additional R-matrix strong peaks appearing
at �5.25 eV �Mg+ threshold� along with others at higher
photon energies are only artifacts in the R-matrix computa-
tion �61�. Conversely, in our CSCI approach, double-
ionization continua are included and well described and this
allows us to report the cross section between the first and the
second double-ionization thresholds. This means that triply
excited states are reached by photon absorption and they de-
cay generally into autoionizing doubly excited states of Mg I.
The symmetry 4So, not calculated in Ref. �21�, is responsible
for the major features between Mg+ 2Se and Mg+ 2Po thresh-
olds, and the cross section is dominated by the Feshbach
resonance 4So, R1.

At this point, although some calculations for doubly ex-
cited states in Mg are available �62,63�, we were not able to
clearly identify the labels corresponding to the Mg thresh-
olds �doubly excited states� appearing in the complex energy
plane for 4So symmetry, and only the energy positions are
indicated. In Fig. 6 below we plot our Mg− total photode-
tachment cross section and compared to the R-matrix result.
In conclusion, apart from a slight difference in the back-

TABLE V. Mg−4Po, 4Do, and 4So resonance parameters in the photon energy region 0–10 eV. Er is the
binding energy in a.u. relative to the ground state of the Mg2+ core, while the position in eV is relative to the
Mg−��core�3s3p2 4Pe� initial state.

Resonance Er �a.u.� −� /2 �a.u.� Position �eV� Width �meV� q

4Po

R1 −0.6463148 −1.367�10−4 2.7527 7.44 31.9

R2 −0.6185508 −1.088�10−4 3.5082 5.92 −4.77

R3 −0.6154984 −2.527�10−4 3.5912 13.75 −5.06

R4 −0.5972059 −1.376�10−3 4.0889 2.43 0.053

R5 −0.5904219 −5.600�10−4 4.2735 30.48 −0.036

R6 −0.5882176 −2.142�10−4 4.3336 11.66 −0.021
4Do

R1 −0.6158453 −1.232�10−4 3.5818 6.70 −6.29

R2 −0.6155770 −1.823�10−4 3.5891 9.92 −59.9

R3 −0.5888939 −4.142�10−4 4.3151 22.54 −0.116

R4 −0.5872205 −1.223�10−5 4.3607 6.66 −0.380
4So

R1 −0.4596686 −4.480�10−4 7.8315 24.38 0.694

R2 −0.4297287 −6.147�10−4 8.6461 33.45 −0.891

R3 −0.4247147 −1.188�10−4 8.7826 6.47 −0.377

R4 −0.4156619 −4.139�10−4 9.0289 22.52 4.925
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FIG. 3. �Color online� Complex eigenvalue spectrum of Mg−

4Po, 4Do, and 4So symmetries for different values of the rotation
angles from 
=10° to 20°. The eigenvalues fall into the lower half
of the complex plane with an angle 2
. The eigenvalues accumu-
lated at fixed points—not affected by the complex rotation—show a
resonance behavior and they are labeled as Rn. �Blue� vertical lines
indicate the position of our Mg I thresholds �core�nln�l� 3L� in-
cluded in Table IV.
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ground from 0.5 to 1.5 eV we confirm the R-matrix result
published up to 3.4 eV. The most noticeable features in the
photodetachment spectra are now revealed from 0 to 10 eV
and any potential future experiment should be able to locate
a strong peak at �2.7 eV, several overlapping peaks at
�3.6 eV, and a noticeable signature from a triply excited
state that comes from the 4So symmetry at �7.8 eV.

The initial state Ca− �core�4s4p2 4Pe, first predicted as a
bound metastable state by Bunge �7�, is computed with 9147
configurations with a corresponding energy E=−0.614 86
9176 a.u. with respect to the Ca2+ core energy. Again, in
order to assess our computation we obtain an EA for Ca I

4s4p 3Po state through the energy difference E�Ca 4s4p 3Po�
−E�Ca− 4s4p2 4Pe�. Here we use a conversion factor for Ca
1 a.u.=27.211 011 0 eV. The threshold energy for Ca
4s4p 3Po may be obtained from different symmetries �for
instance 4Pe or 4Po� by extrapolating the continuum cuts to
the zero axis. We get 515.68 meV from 4Pe and 517.58 meV
from 4Po, so that our method has an uncertainty of �2 meV.
This values may be compared to 515.8 meV �37�, obtained
by separately computing Ca 4s4p 3Po and Ca− 4s4p2 4Pe

with a two- and a three-electron code, respectively, based on
B-splines and including the dielectronic polarization poten-
tial. We use basically an identical method �but complex-
rotated� and a rather good comparison is expected, although
we stress again that with our method it is more demanding to
obtain the Ca threshold energies since they are obtained at
the same three-electron run. Since other precise computa-
tions �namely, 517�10 meV with a MCHF calculation from
�37� and 512 meV from �64�� also agree with our value, it
seems that the theoretical binding energy of Ca− 4Pe is by
now a settled matter. The EA reported by Zeng et al. �21� is
559.5 meV, close to the value when dielectronic core polar-
ization terms are excluded. At the time of publication of Ref.
�37�, the experimental binding energy available �11� was
555�5. Later on, Kristensen et al. �13� introduced a new
state-selective depletion spectroscopy that allowed measure-
ment of the binding energy with high accuracy, providing an
EA value of 521.84 eV, thus supporting the most sophisti-
cated calculations.

In Ca−, our CSCI Ca I thresholds are compared with ex-
perimental ones from the NIST database �53� in Table VI,
using the experimental EA of Ref. �13�. Our Ca threshold
positions becomes systematically shifted upward
�0.1–0.2 eV in energy. In the R-matrix computation for Ca−

�21�, Ca thresholds were obtained more accurately by using
optimized HF orbitals in fitting the energy levels of atomic
Ca and then supplemented with 3p core excitations to par-
tially account for core-valence correlations. We expect a loss
of accuracy in our Ca thresholds due to the high number of
three-electron configurations required, in contrast with a di-
rect Ca two-electron CI computation. Unfortunately we
could not afford larger CI expansions with our computational
resources.

In Ca−, the set of configurations given in Table III allows
for the description of the different partial channels within the
photon energy region considered. For example, the lowest
ionization channels within the final 4Po symmetry, namely,
�4s4p 3Po+ ��s ,�d�� are accounted for with ssp and spd con-
figurations, channels �3d4s 3D+ ��p ,�f�� with spd and sdf

configurations, channels �4s5s 3S+ ��p�� with the ssp ones,
and �3d4p 3Fo+ ��d�� with the ddp ones. A similar analysis
may be performed for the ionization channels in 4Do and 4So

final symmetries. The partial photodetachment cross sections
to the final states 4Po, 4Do, and 4So as a function of the
photon energy are given in Fig. 4. Three different results are
displayed. Our most accurate result is obtained with the use
of the model potential in Eq. �2� and the dielectronic inter-
action from Eq. �8� and applying complex scaling �calcula-
tion type A�. We compare with the R-matrix result from Ref.
�21� and also with the result we obtain by using Ca+ Hartree-
Fock orbitals �plus a polarization potential� whose orbital
energies are given in Table II in the column labeled VHF+pol
�called hereafter calculation type B�. In the latter type B
calculation we do not include any dielectronic polarization
correction or any extra special treatment for the d orbitals.

A pronounced broad 4Po Feshbach resonance �denoted R1
in Fig. 4� is located slightly below the Ca I 3d4s 3D thresh-
old, and also two small sharp Feshbach resonances �R2 and
R3� just below the Ca I 4s5s 3S and the Ca I 3d4p 3Fo thresh-
olds, respectively. Both of our CSCI calculations �types A
and B� uncover these three resonance peaks but they differ
noticeably in the positions, in fact, due to the distinct Ca
threshold positions resulting from the two calculations. Our
calculation type A produces a much better matching with the
experimental Ca I thresholds and gets closer to the R-matrix
result for the R1 resonance as well. It happens similarly with
the other 4Po R2 and R3 resonances. The corrections for the
Ca I thresholds in the 4Po symmetry are better illustrated by
inspecting the complex eigenvalue spectrum in Fig. 5. The
vertical lines in Fig. 5 in the region Im�E��0 indicate Ca I

thresholds for our two different CSCI calculations. The upper
ones �in blue� correspond to the calculation type B �HF� and
the lower ones �in black� show how these threshold positions

TABLE VI. Thresholds of the Ca− system. The experimental
values are taken from NIST �53�. Energies are given in eV and
relative to the Ca−��core�4s4p2 4Pe� initial state.

State Expt. This work Ref. �21�

Ca��core�4s4p 3Po� 0.52184 0.51568 0.5595

Ca��core�3d4s 3D� 1.15336 1.27949 1.176

Ca��core�4s5s 3S� 2.53986 2.57085 2.529

Ca��core�3d4p 3Fo� 3.07196 3.20696 3.092

Ca��core�4s5p 3Po� 3.16297 3.26573

Ca��core�4s4d 3D� 3.31032 3.37520

Ca��core�3d4p 3Do� 3.36968 3.46954 3.470

Ca��core�4p2 3P� 3.43697 3.50906 3.485

Ca��core�3d2 3F� 4.02201 4.11308

Ca��core�3d2 3P� 4.64895 4.70628

Limit Ca II�2S1/2e� 4.74262

Ca��core�3d5p 3Do� 5.04498 5.11020

Limit Ca II�2D3/2� 6.43503

Limit Ca II�2D5/2� 6.44255

Limit Ca II�2P1/2� 7.86597
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become corrected in the calculation type A �model potential�.
It is the joint correction for Ca 4s4p 3Po and Ca 3d4s 3D
thresholds that improves the position of the R1 resonance
with respect to the Ca I 4s4p 3Po threshold. It should be kept
in mind that the energy for the initial 4Pe state is also differ-
ent in the A and B calculations. We then conclude that the
corrections included in the type A calculation are indeed very
important to produce a correct photodetachment spectrum.
Our 4Po result of type A now compares quite well with the

R-matrix result up to �3.2 eV. Additionally, 4Po R2 and R3
resonances were not predicted by the R-matrix computation,
which shows instead only a small bump at �2.6 eV corre-
sponding to the opening of the threshold.

We can now proceed with a similar analysis for the 4Do

final symmetry. Unfortunately, our calculation for the final
4Do symmetry is not as good as for the other symmetries and
eventually it should require many more configurations. This
is reflected in Fig. 5, in comparing the positions of the first

TABLE VII. Ca−4Po, 4Do, and 4So resonance parameters in the photon energy region 0–10 eV. Er is the
binding energy in a.u. relative to the ground state of Ca2+ core, while the position in eV is relative to the
Ca−��core�4s4p2 4Pe� state.

Resonance Er �a.u.� −� /2 �a.u.� Position �eV� Width �meV� q

4Po

R1 −0.5681385 −5.029�10−3 1.2716 273.7 −8.95

R2 −0.5211942 −2.332�10−4 2.5490 12.69 −10.5

R3 −0.4978136 −8.085�10−6 3.1852 0.4399 −3.71
4Do

R1 −0.56814 −6.205�10−4 1.272 33.77 −4.34

R2 −0.49462 −9.269�10−4 3.272 50.44 −1.41
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two Ca I thresholds 4s4p and 3d4s in both 4Po and 4Do sym-
metries. They are clearly misaligned with respect to each
other, even with the calculation type A. Since the Ca− 4Pe

initial state energy is the same, our option is to shift our 4Do

photodetachment spectrum �types A and B� to fit the first Ca I

4s4p 3Po threshold. Then the position of the first 4Do R1
strong Feshbach resonance should be located almost exactly
at the same position as our first 4Po, at 1.2716 eV. Including
this shift, one may appreciate in Fig. 4 that the 4Do R1 reso-
nance in the HF calculation type B is wrongly located at a
higher energy �1.5 eV, indicating again the necessity for the
corrections provided by the model potential and the dielec-
tronic polarization interaction. A second small 4Do R2 reso-
nance is found between the 4s5p 3Po and the 4s4d 3D thresh-
olds at �3.27 eV.

At variance with Mg−, the 4So symmetry barely shows
specific peaks in the photodetachment spectra, which is in
principle quite unexpected. The small features are indeed due
to threshold openings, since the complex eigenvalue spec-
trum does not show any signature of poles. It seems that the
more complex nature of the Ca− ion washes out any trace of
triply excited states and probably this is a trend in heavier
alkaline-earth negative ions. Our Ca− resonance parameters
�positions, widths, and q parameters� for the quartets are
summarized in Table VII. Note that in this table the reso-
nance positions for 4Do were corrected according to our

thresholds for the 4Po symmetry quoted in Table VI.
Finally, in Fig. 6 we plot our Ca− total photodetachment

cross section. Our comparison with the R-matrix result up to
�3.2 eV is good. In contrast to Mg−, and surprisingly to us,
we add little to the known R-matrix result, which already
gives the main noticeable structures in the total spectrum. At
least, our study of Ca− reveals how important it is to intro-
duce high-level corrections due to the presence of a complex
polarizable core in order to achieve accurate results in its
photoionization spectra.

IV. CONCLUSION

A complex scaled configuration interaction approach,
based on the use of B-spline basis sets combined with a
sophisticated core model potential �mono- and dielectronic
polarization effects� has been used to compute the photode-
tachment cross sections of 4Pe states of Mg− and Ca− nega-
tive ions. Our CSCI results confirm and notably extend the
R-matrix results given in Ref. �21�. Up to 14 resonances are
reported in Mg− and five in Ca−. Mg− is still a quite unex-
plored ion due to its elusive stability and Ca− has a very
confusing experimental history as mentioned in the Introduc-
tion. We hope our results can stimulate new high-precision
measurements on the photodetachment of these negative ions
to be carried out, at least in the energy region where reso-
nances are now predicted.

This paper sheds light on the presence or absence of reso-
nant doubly and triply excited states in Mg− and Ca− ions,
and it provides important theoretical input into the photode-
tachment of these two controversial negative ions. In spite of
using the best state of the art tools to compute the photode-
tachment of Ca−, this ion still reveals itself as one of the most
complicate systems to compute with spectroscopic accuracy.
To go beyond Ca− in the alkaline-earth series would require
explicit relativistic corrections in our approach. Our method-
ology also could be suitable to explore the photodynamics of
triply excited states subject to strong ultrashort laser pulses
by implementing a time-dependent propagation, either within
the complex scaling scheme or with a time-dependent
Feshbach-like approach. Steps along those directions are un-
der our present consideration.
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