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Programming is the sweet spot, the high leverage point in a digital society. If we don’t learn
to program, we risk being programmed ourselves.
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Computers are incredibly fast, accurate and stupid. Human beings are incredibly slow,
inaccurate and brilliant. Together they are powerful beyond imagination.
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Abstract

In the last years, there has a great progress in automatic speech recognition. The chal-
lenge now it is not only recognize the semantic content in the speech but also the called
"paralinguistic" aspects of the speech, including the emotions, and the personality of the
speaker.

This research work aims in the development of a methodology for the automatic emotion
recognition from speech signals in non-controlled noise conditions. For that purpose, different
sets of acoustic, non-linear, and wavelet based features are used to characterize emotions
in different databases created for such purpose. The acoustic analysis considers a standard
feature set developed for emotion recognition from speech called OpenEAR, and a set
of spectral and noise derived measures. The non-linear analysis is based on non-linear
dynamic measures and include the correlation dimension, the largest Lyapunov exponent,
the Hurst exponent, and the Lempel Ziv complexity. Also it is proposed a set of measures
derived from parametric non-stationary analysis using time dependent ARMA models. The
wavelet based measures consider features derived from the wavelet packet transform, and
different wavelet time-frequency representations such as the bionic wavelet transform, and
the synchro-squeezed wavelet transform.

Different non-controlled noise conditions are tested considering four different scenarios:
(1) the original recordings, (2) the signals degraded by two additive noisy environments:
street and a cafeteria babble, (3) the re-captured signals in two natural noisy environments as
street and office, and (4) the recordings compressed by seven different codecs used for the
transmission through mobile, VoIP, and web based telephone channels. Also two different
speech enhancement algorithms are tested to evaluate if they are suitable to improve the
results in the classification of emotions in noisy speech signals. A classification scheme
based on the combination of Gaussian mixture models and Support vector machines is used
for the analysis.
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Chapter 1

Introduction

Speech is the most natural method of communication between humans, which has motivated
researches to consider speech as one of the main methods for interaction between humans and
machines. In the last years, there has a great progress in automatic speech recognition, which
refers to the transcription of the human speech in a sequence of words. The challenge now
is not only recognize the semantic content from speech but also the called “paralinguistic"
aspects of the speech in order to reach a natural interaction between humans and machines.
The paralinguistic aspects are related to “how" is transmitted the message, and include the
emotions, the personality, and others cognitive aspects of the speakers.

This study addresses the development of methodologies based on digital signal processing
and machine learning to the development of computational tools that can automatically
recognize the emotions of a person according to the information provided only by speech. In
the following sections are presented the motivation of this study, a survey of the state of the
art, followed by the actual issues related to emotion recognition from speech, and the main
contributions of this study.

1.1 Motivation

The interest in recognition of emotions and affect has been increased in the field of speech
and language processing over the last decade. Emotion recognition can improve the quality
of services and even the quality of life. While automatic speech recognition is a part of most
intelligent systems such as virtual assistants or mobile phones, such systems do not have
the human ability of observe and react according to the affective response of humans. The
automatic emotion recognition is essential to render speech-based systems more human-like
in order to reach out a more natural interaction. For instance, in the seventh framework
programme for information and communication technology of the European commission,
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efforts are devoted to increasing accessibility and efficiency of spoken dialogue systems by
integrating emotional and other paralinguistic cues [2].

There are a great deal of potential application that may use technologies related to
automatic emotion recognition in real scenarios. Such applications are described in the
following subsection.

1.1.1 Applications

Most of applications are motivated from a user-centric perspective, where the main objective
is to increase the quality of service or even the quality of life [2]. Technologies related
to emotion recognition from speech can be used to support for customer and emergency
call-centers, to improve tutoring systems for education, in public surveillance systems, to
detect stress of drivers, for supporting psychological treatment, and in the entertainment
sector.

Call-centers

The service provided by call-centers can be managed and optimized by evaluating the
emotional state of the callers and/or the agents. The main aim is to detect changes such as an
increase in the number of angry callers or an increase in the average stress of the agents [3].
Angry callers could also be detected in order to specially trained agents handle the situation
and calm the customer by special dialog strategies [2]. As example, the company Nemesysco
developed a technology for voice analysis for application in emergency and customer call
centers to detect and measure anger, stress and other emotions that may arise in call center
conversations [4, 5].

Tutoring systems, and virtual agents

In this case might be useful the knowledge of certainly emotions of the user including stress
or deception in order to adapt the teaching pace. As example, The European SEMAINE
project, a sensitive artificial listener (SAL) able to sustain a conversation with a human using
social interaction skills [6].

Surveillance

Several situations related to security such as crisis management, piloting, stress level detec-
tion, or vandalism surveillance, which may be aided by the analysis of “fear-type" emotions
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such as fear, anger, disgust, and desperation. In this case can be analyzed the aggressiveness
of potential aggressors, or fear in the potential victims [7].

Psychological treatment

Automatic emotion recognition might be useful in the assessment of patients under clinical
depression, which is marked by emotional disturbances consist of prolonged periods of
excessive sadness, reduced emotional expression and physical drive [8]. Recent studies show
that features related to prosody and glottal waves are useful to detect and manage major
depression disorders [9, 10].

Entertainment

Several applications could be developed in the entertainment industry based on technologies
for emotion recognition from speech. For example in on-line role playing games in order to
improve the credibility of characters and the immersion of the user [2].

1.2 State of the Art

1.2.1 Databases

One of the main problems in the automatic analysis of emotions from speech is to collect the
data necessary to train statistical classifiers. A catalog of datasets for emotion recognition
was created by the project HUMAINE [11]. The web site lists three different categories:
multi-modal datasets (audio-visual, audio and physiological data), speech only datasets, and
data formed only with facial expressions. The datasets for emotion recognition from speech
can be classified into three groups according to the type of emotion elicitation: acted, evoked,
and natural, each one with different characteristics in the recording process and the kinds of
emotion.

Acted datasets

Many of corpus available for emotion recognition consist of emotional speech produced by
professional or lay actors, based on certain emotion labels. In this case the emotional content
is more intense, as was found by Williams and Stevens in [12]. They concluded that acted
emotions tend to be more exaggerated than the real ones. The acted recordings usually are
captured with high audio quality avoiding problems in signal processing with reverberant or
noisy speech. Another advantage of the acted datasets is that a balanced distribution of all
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emotions can be guaranteed improving the performance of the classification methods. The
main disadvantage of these kind of datasets is related that the emotions under evaluation are
limited to only a few basic emotions. The actors are also influenced by stereotypes of vocal
expression in the emotions, producing that the natural expression of emotions may be missed
in some cases [13]. The most common acted datasets are described as follows.

Berlin emotional dataset [14]: It contains 534 voice recordings produced by 10 German
native speakers who acted 7 different emotions including anger, disgust, fear, happiness,
sadness, boredom, and neutral. The recordings were sampled at 16 kHz.

IEMOCAP [15]: The Interactive Emotional Dyadic Motion Capture (IEMOCAP) database
is an acted, multi-modal, and multispeaker database. It contains approximately 12 hours of
audiovisual data, including video, speech recordings, motion capture of the face, and text
transcriptions. The audio files consist of 10039 recordings sampled at 16 kHz uttered by
10 English native speakers who acted 10 different emotions. The recording process consid-
ered several dyadic sessions where actors performed improvisations or scripted scenarios,
specifically selected to elicit emotional expressions. The recordings were labeled by multiple
annotators into categorical labels such as anger, happiness, sadness, and neutrality, as well as
dimensional labels such as valence and arousal.

GVEESS [16]: The Geneva Vocal Emotion Stimulus Set (GVEESS) contains emotional
speech samples of 14 different emotions uttered by 12 actors. The 14 emotions are anxiety,
disgust, happiness, hot anger, interest, cold anger, boredom, panic fear, shame, pride, sadness,
elation, contempt and desperation. A selection of 224 emotional speech samples (16 sentences
× 14 emotions) recorded at 44.1 kHz was obtained.

SAVEE [17]: The Surrey Audio-Visual Expressed Emotion (SAVEE) database consists of
recordings from 4 male actors in 7 different emotions, 480 British English utterances in total.
The sentences were chosen from the standard TIMIT corpus and phonetically-balanced for
each emotion. The data were recorded in a visual media lab with high quality audio-visual
equipment with a sampling frequency of 44.1 kHz.

GEMEP [18]: The Geneva Multimodal Emotional Portrayal (GEMEP) corpus is a multi-
modal database recorded by 10 actors (five male, five female), which record 1260 speech
samples with a sampling frequency of 44.1 kHz. The database contains recordings of 18
different emotions including among others sadness, joy, fear, and hot anger.
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SAFE [19]: The Situation Analysis in a Fictional and Emotional (SAFE) corpus consist of
400 audio-visual sequences from 8 seconds to 5 minutes extracted from 30 fiction movies.
The database contains recordings of both normal and abnormal situations. The corpus
contains four types of emotions: (1) fear-type emotions such as stress and anxiety, (2) other
negative emotions such as anger, sadness, and disgust, (3) neutral state, and (4) positive
emotions.

Evoked datasets

The induction or evocation techniques try to effectively change the emotional state of the
subject. There are several procedures to the induction of the emotions. The more commons
are: (1) the free mental generation, which may include hypnosis. (2) The guided mental
generation which include the imagination or remembering of a situation which involves
the emotion or the listening of pieces of music. (3) The presentation of emotional material
such as movies or stories where the stimulus is presented to the subject. (4) The generation
of physiological states by the administration of drugs like anti-depresants or adrenaline to
produce arousal in the subjects.

There are induction techniques designed to produce emotions from speech. For example
a difficult spelling task to elicit negative emotions [20], a mental arithmetic task to evoke
stress [21], and the Wizard of Oz scenario, where a malfunctioning system is simulated to
evoke anger [22]. There are some evoked databases for emotion recognition from speech,
which are described as follows.

enterface05 [23]: It contains 1317 audio-visual recordings with 6 emotions produced by
44 speakers, including anger, disgust, fear, happiness, sadness, and surprise. In this database
each subject was instructed to listen six successive short stories. After each story the subject
had to react to the situation by reading predefined sentences closely related to each story.
The recordings were sampled at 44.1 kHz

Semaine [24]: This database was created by the European Semaine project in order to
build a Sensitive Artificial Listener. The database includes audiovisual recordings of natural
human computer interactions. Instead of assigning an emotional label for each sentence, the
subjective evaluations correspond to continuous assessment of the emotional content in real
time (50 values per second). The dataset contains 69 recordings in English language sampled
at 48 kHz.
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Natural datasets

There are several works that have analyzed emotions from speech using natural emotion
databases. In [3] the authors use real call-center data to recognize happiness, anger, and
neutral emotions with the purpose to help call-center supervisors to monitor the calls, and to
identify agents who are not able to satisfy the customer. Another studies that consider real
world call-center speech recordings are the presented in [25, 26]. Such databases are private,
and no comparisons can be made. However, there are some natural databases available to the
study of emotions from speech.

FAU-Aibo [27]: This corpus contains 18216 recordings sampled at 16 kHz uttered by 51
kids from two German schools (26 and 25 subjects, respectively) interacting with an Aibo
pet robot. The database considers 5 different emotions (anger, emphatic, neutral, positive,
and rest). For the construction of this database, the children were led to believe that Aibo was
responding to their commands by producing a series of fixed and predetermined behaviors.
As Aibo sometimes disobeyed the commands, it induced different emotional reactions in the
children.

SUSAS [28]: The Speech under Simulated and Actual Stress (SUSAS) database is parti-
tioned into four domains, encompassing a wide variety of stresses and emotions. A total of 32
speakers (13 female, 19 male), with ages ranging from 22 to 76 were employed to generate
in excess of 16000 utterances recorded at 8 kHz. The database also contains several longer
speech files from four Apache helicopter pilots. A common highly confusable vocabulary set
of 35 aircraft communication words make up the database.

RECOLA [29]: The RECOLA database includes 7 hours of multimodal recordings of
spontaneous collaborative and affective interactions in French. The database contains audio,
video, Electrocardiography and Electro-dermal activity signals, which were continuously
and synchronously recorded from 34 participants. The signals are labeled according to the
degree of arousal, and valence.

Summary

Table 1.1 summarizes the description of each one of the databases, the Table contains the
name of database, the number of recordings, the sampling frequency, the emotions included,
and the type of dataset (acted, evoked, natural). The experiments in this study are performed
over five of the databases described: Berlin, SAVEE, enterface05, FAU-Aibo, and IEMOCAP.
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Table 1.1 Summary of databases for emotion recognition from speech

Dataset # Recordings # Speakers Fs (k Hz) Type Emotions

Berlin [14] 534 12 16 Acted

Hot anger, Boredorm
Disgust, Fear, Neutral
Happiness, Sadness

IEMOCAP [15] 10309 10 16 Acted

Hot anger, Happiness
Disgust, Fear, Neutral
Sadness, Surprise
Excitation, Frustration
Others

GVEESS [16] 224 12 44.1 Acted

Anxiety, Disgust
Happiness, Hot anger
Interest, Cold anger
Boredom, Panic, Pride
Sadness, Shame, Elation
Contempt, Desperation

SAVEE [17] 480 4 44.1 Acted
Hot anger, Happiness
Disgust, Fear, Neutral
Sadness, Surprise

GEMEP [18] 1260 10 44.1
Acted

Admiration, Amusement
Anxiety, Cold anger
Contempt, Despair, Shame
Disgust, Elation, Pride
Hot anger, Interest, Panic
Sadness, Pleasure, Relief
Surprise, Tenderness

SAFE [19] 400 30 movies - Acted Fear, Other negatives
Neutral, Positives

enterface05 [23] 1317 44 44.1 Evoked
Hot anger, Happiness
Disgust, Fear
Sadness, Surprise

Semaine [24] 69 conversation - 48 Evoked

Hot anger, Happiness
Disgust, Fear, Sadness
Amusement, Contempt

FAU-Aibo [27] 18216 51 16 Natural
Hot anger, Emphatic
Neutral, Joy
Rest

SUSAS [28] 16000 7 8 Natural Low stress, Middle stress
High stress, Neutral

RECOLA [29] 7 hours 35 - Natural Arousal degree (1-5)
Valence degree (1-5)

1.2.2 Feature Extraction

One of the main aims in recognition of emotions from speech is to find suitable features to
represent the emotional content of the speaker. Currently, the feature extraction process has
been focused on large sets of acoustic features including measures derived from prosody
(pitch, energy and the speaking rate), spectral and cepstral such as the Mel frequency cepstral
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coefficients (MFCC), and voice quality such as noise measures, jitter, and shimmer [30].
There are studies that also consider the use of non-linear measures, and features derived from
the wavelet transform to recognize emotions from speech.

In this subsection are described several works for recognition of emotions from speech
using acoustic, non-linear, and wavelet-based features.

Acoustic analysis

The most common measures for the analysis of emotions from speech include features derived
from the acoustic analysis. Features related to the the fundamental frequency, the energy
content, spectral features, the MFCC, perturbation measures such as jitter and shimmer, and
voice quality measures such as the harmonic to noise ratio (HNR) are commonly used for
emotion recognition from speech.

One of the main features used is the fundamental frequency (F0). In [31], 39 different
statistics derived from the F0 are analyzed to discriminate between emotional and neutral
speech. The authors use the Berlin database and implement a classifier based on the linear
discriminant analysis. The authors report an accuracy of 80.9%. The authors conclude
that gross F0 contour statistics such as mean, maximum, minimum, and range are more
emotionally prominent than features describing only the shape of the F0. In [32], 36 different
acoustic measures are used. The authors focuses on the features related to the contour of the
F0 combined with MFCC, the duration of unvoiced frames, and the speech rate to classify
the seven emotions in the Berlin database. A support vector machine (SVM) with a Gaussian
kernel is used for recognition following a 10 folds cross-validation strategy. The authors
do not indicate if those folds are speaker dependent or independent. The authors report
accuracies of up to 84.9%, and conclude that boredom presents a maximum F0 lower than
the other emotions. In [33], different features related to the contour of the F0, the first three
formant frequencies, the gains of the vocal tract, and glottal parameters were proposed.
54 features for each voiced segment are calculated to recognize the five emotions in the
FAU-Aibo database. The authors consider a hidden Markov Model (HMM) for classification
and use the validation strategy followed in the “INTERSPEECH 2009 emotional challenge"
[34]. The best result reported corresponds to an unweighted average recall (UAR) of 40.3%
considering only nine selected features formed only the based on F0, and the formants. In
[35], 16 features related to the F0, noise measures, jitter, and shimmer are used to classify
happiness, sadness, anger, and neutral state in the Berlin database. The authors perform a
gender-dependent modeling considering different GMMs for male and female speakers. The
reported accuracies are around 96% and 95% for male and female speakers, respectively.
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The authors conclude that the separation of gender before the classification of emotions is
useful to obtain better results.

Other common measures are derived from spectral, and prosody analysis. In [36], a
standard toolbox called OpenEAR was presented. Such toolkit compute 5967 measures
formed by 117 descriptors × 51 statistical functionals. The descriptors include spectral,
cepstral, and prosodic features. The authors recognize the seven emotions in Berlin, and the
six emotions in enterface05 using a SVM for classification with a 10-fold stratified cross-
validation. The authors report accuracies of up to 89.5% in Berlin, and 75.2% in enterface05
databases, but the cross-validation strategy used does not guarantee speaker independence in
the results. The presented toolkit has been used in many related works. In [37], six different
large scale acoustic feature sets are applied, the sets are based on the OpenEAR toolkit.
One of the sets corresponds to the 384 features used as baseline in the “INTERSPEECH
2009 emotion challenge" to evaluate different emotions in the speech recordings of several
databases including Berlin and enterface05. The authors use a multi-class SVM, and follow
a leave one speaker out (LOSO) cross-validation strategy to optimize the parameters of
the classifier. The reported accuracies are around 96% in Berlin, and 76% in enterface05
classifying the two levels of the arousal dimension, i.e., high and low; 80% in Berlin and
65% in enterface05 for the classification of the valence dimension, i.e., positive and negative
emotions; and 80% in Berlin, and 68% in enterface05 for the multi-class, which means
classifying a total of seven classes in Berlin and six classes in enterface05. In [38], the
author use the same subset of 384 features to model anger, sadness, happiness, and neutrality
from the IEMOCAP database, and the five emotions included in the FAU-Aibo database.
The authors propose a new classification scheme based on a hierarchical binary decision
tree which decisions on each node are taken using a SVM. The reported UAR for the two
databases, considering a speaker independent validation strategy is 58.4% in IEMOCAP and
39.9% in FAU-Aibo. In [39], the complete feature set computed using OpenEAR, formed by
6552 features was used in Berlin, and enterface05 databases. The authors propose a classifier
based on the generalized discriminant analysis based on a deep neural network, and follow
a leave one group speaker out strategy to guarantee speaker independence in the results.
The reported accuracies for Berlin database correspond to 97.4% for arousal dimension,
87.5% for valence dimension, and 81.9% for the classification of the seven emotions. For the
enterface05 database, the results are 80.8% for arousal, 79.7% for valence, and 61.1% for the
classification of the six emotions. In [40], the subset of 1582 features used as baseline in the
“2010 INTERSPEECH computational paralinguistic challenge" was used by the authors to
classify the six emotions in enterface05 database, and four classes in the FAU-Aibo database,
including emphatic, neutral, motherese, and negatives emotions. The authors propose a
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method based on least square regression (LSR) for recognition, and report an UAR of 69.3%
in enterface05 database, and 60.5% in FAU-Aibo database. In [41], the same subset of 1582
features is used to train a deep denoising autoencoder (DAE). One different DAE is created
per gender. The authors model four emotions from the IEMOCAP database and use a SVM
with a radial basis kernel function for classification. An UAR of 63.1% in the recognition
of the four emotions is reported. The same authors, in [42], use the subset of 384 features
described previously and used in [37, 38] to train a denoising autoencoder with the aim of
perform a cross corpus experiment, where the SUSAS, and the Airplane behavior corpus are
used as training sets, and the FAU-Aibo database is used for test. The authors discriminate
between negative and idle, according to the valence dimension. A SVM with linear kernel
is used as classifier, and the reported UAR is of up to 64.2%. In [43], the authors calculate
513 features related to spectral and prosodic measures using openEAR. The authors use
factor analysis to quantify the dependence of the acoustic features with traits such as the
speakers, the lexical content, and the emotions, finding that 76% of the variability of the
features is associated with the lexical content instead of the emotional content. Based on
that fact, the authors propose a lexical and speaker normalization to compensate the effects
introduced by these external factors. The IEMOCAP database is used to recognize happiness,
anger, sadness, and neutral, and a SVM is used for classification. The reported accuracies
are 55.32% without applying the proposed normalization, and 56.75%, after the lexical
normalization.

There are works focused on another acoustic features such as modulation spectral,
perceptual evaluation, and the combination of audio, and video information. In [44], features
derived from modulation spectral were proposed to capture both acoustic frequency, and
the temporal modulation frequency components. 82 features related to modulation spectral,
including the energy, and the centroids of sub-bands were calculated. The proposed features
are combined with 75 prosodic features to classify the seven emotions in Berlin database. The
authors use a SVM and follow a LOSO cross-validation strategy, and report an accuracy of
80.9%. In [45], 106 speech features based on F0, the energy content, duration, and MFCC are
merged with features derived from the facial expression. The seven emotions of the SAVEE
database are used for classification. The set of features are reduced using principal component
analysis (PCA) and LDA. A Gaussian classifier is used. The authors report accuracies of up
to 68.5% using only speech-based features, and 97.9% using the combination of speech, and
visual features. In [46], the information of speech signals is combined with the obtained with
the facial expression to recognize the six emotions in the enterface05 database. The speech
based features include the formant frequencies and MFCC. The authors use a neural network
for classification, and perform feature selection using ANOVA. The reported accuracy only
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for speech based features is 55%, while using the combination of speech, and video features
is 70.3%. In [47], 145 speech based features are combined with 504 video based features.
The acoustic features include both prosodic and spectral features such as F0, the energy
content, and the energy of Mel frequency filter bank outputs. The authors classify happiness,
sadness, anger, and neutral in the IEMOCAP database, and propose a classification based
on a deep neural network. The authors report accuracies of up to 66.1% considering the
combination of audio, and video features. In [48], a new set of features based on perceptual
quality measures using the perceptual evaluation of audio quality (PEAQ) standard was
proposed. The feature set was formed by 9 measures related to spectral envelope, perceptual
bandwidth, and the harmonic content. The authors use the Berlin database to perform three
different classification tasks: the classification of the seven emotions, the classification
according to the arousal dimension, and according to the valence dimension. The authors
use a SVM for classification, and report accuracies of up to 85.9% for the recognition of
the seven emotions, 95.1% to discriminate between high vs low arousal, and 95.6% for the
classification of positive vs negative valence emotions. In [49], 14 MFCC, and their first and
second derivatives are computed to characterize emotions in speech. The authors consider all
of the seven emotions included in the Berlin database and the six emotions included in the
enterface05 database. The classification is performed using a hybrid system based on Deep
Neural Networks and Hidden Markov Models (DNN-HMM). The authors randomly select
60% of the data for train, and the remaining 40% for test. Both databases contain several
voice recordings per speaker, thus as the train and test sets are formed randomly, the speaker
independence is not guaranteed. The reported accuracies are 77.9%, and 53.9% for Berlin
and enterface05, respectively. In [50], 12 MFCC and their first, and second derivatives are
used to classify the five emotions in the FAU-Aibo database. The authors propose a new
classification strategy based on a measure of distance between the emotional classes. Such
measure is calculated according to the euclidean distance between the log-likelihood obtained
from a GMM generated for the test data, and the GMM that represents each class. The
reported UAR is 44.2%. Recently, in [51], a new set of features based on a computational
model of the human auditory system is proposed. The model simulates the process from the
pinna through the auditory nerve. The features are extracted from the output of the auditory
model. The feature set consist of the mean and standard deviation of 283 modulation filtered
signals obtained as outputs of the auditory nerve model. The authors consider the seven
emotions in the Berlin database, and six emotions in the SAVEE database, and propose a
classifier based on a hierarchical binary decision tree using a SVM. The best accuracies
reported are 72.3%, and 73.8% both for Berlin, and SAVEE databases, respectively. In both
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cases, LOSO cross-validation strategy is performed to guarantee speaker independence in
the results.

Non-linear analysis

The speech production model involves some non-linear process such as the non-linear
pressure flow in glottis, and the non-linearity that occurs in the vocal fold collision [52].
These processes can not be characterized using classical measures. In order to resolve this
problem, the non-linear dynamics (NLD) analysis has been established as a mathematical
alternative for the analysis of this kind of process. The NLD analysis describes the temporal
evolution of a system through a multiple dimension space on which the speech signal is
reconstructed. The use of NLD or complexity measures from speech processing tasks
has been increased in the last years and have proved to be useful in the analysis of voice
quality, and the voice pathology detection [52–54], also have been used from speech emotion
recognition [55–57].

In [58] a new feature called smoothed non-linear energy operator (SNEO)-based ampli-
tude modulation cepstral coefficient (AMCC) is proposed to recognize emotions from speech.
The feature set is formed by 256 features to recognize the five classes in the FAU-Aibo
database. The authors consider a GMM to model the emotions, and report an UAR of 44.5%,
following a cross-validation strategy of nine folds speaker independence. In [55], features
related to non-linear dynamics are proposed to model the non-linear effects in emotional
speech. A 24-dimensional feature vector is formed by 6 descriptors × 4 statistical functions.
The descriptors include the first minimum of the mutual information, the Shannon entropy,
the correlation dimension, the correlation entropy, the Lempel-Ziv complexity, and the Hurst
exponent. The authors classify anger, fear, and neutral state in Berlin database, using a neural
network. The reported accuracy is of up to 75.4%. The authors conclude that recordings
associated with fear, and anger show more complexity than the associated with neutral state.
The reason could be refereed to that in such emotions, people tend to use more fricative
sounds, than in neutral state, these fricative sounds are more noisy and complex than the
voiced sounds.

Wavelet analysis

There exist several works related to the use of the wavelet packet transform (WPT) for
emotion recognition in speech. The wavelet analysis allows a multi-resolution analysis of
time, frequency, and energy.
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In [59], the log-energy and features derived from the Teager Energy Operator (TEO)
are calculated on 14 bands of the sixth level of the WPT considering the Daubachies10
wavelet function to characterize seven different emotions in a local indian database that
contains recordings of speech in five different languages. The authors consider a GMM
for classification and report accuracies of up to 94% considering the log-energy based
features, and 99% using the TEO-based features. The results are compared to the obtained
using MFCC, which are around to 88%. In [60] the authors consider the energy content
on decomposed bands from WPT to discriminate between anger, neutral, and happiness.
The authors decompose the signal into four bands using two levels of the WPT and use a
Haar mother function. The study considers recordings of a database in Marathi language.
The classification is performed with a threshold that is set according to the amplitude of
the coefficients. The authors report accuracies of 85%, 65%, and 80% for the recognition
of anger, happiness, and neutral speech, respectively. In [61], a set of measures based on
wavelet decompositions calculated on specific frequency bands is proposed. The wavelet
perceptual packets are considered to model the wavelet transform according to the Bark scale.
A total of 17 critical bands are obtained from the 3rd, 4th, and 5th levels of the WPT. The
auto correlation envelope area associated with each wavelet coefficient is calculated. Six of
the seven emotions of the Berlin database are classified. The classification system consists of
two stages, the first one is a HMM and the second one is a neural network that is trained with
the posterior probabilities obtained from the HMM. The authors report accuracies of 68.8%
for the first stage and 91.8% for the second stage. In [62], a new type of features based on
the energy entropy calculated on selected bands from WPT obtained from speech and glottal
signals is proposed. The authors recognize the seven emotions in the Berlin database, using a
GMM for classification and report accuracies of up to 54%. Recently, in [56] a new set of
features which combines the NLD analysis, and the wavelet decomposition is proposed to
recognize different emotions and to detect stress in speech. The feature set is formed with the
Hurst exponent (HE) obtained from the detail coefficients of the discrete wavelet transform
(DWT) in the first five levels. The authors model the seven classes of the Berlin database and
use a GMM-based classifier. The reported accuracy is 68.1%. In [63], a new set of features
based on WPT is proposed. The authors calculate minimum, maximum, mean, median, and
standard deviation from all coefficients of the fifth level of the WPT, using the Daubachies2
wavelet function. The seven emotions of Berlin database are classified, using a multi-class
SVM. An accuracy of 60% is obtained using only the first 8 wavelet coefficients instead of
the 32 of the fifth level. The authors conclude that the low frequency coefficients are the
most important to recognize emotions from speech signals. In [64], a new feature extraction
approach based on WPT is proposed, adapting the concept of the conventional MFCC to the
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wavelet domain. The authors called Coiflet wavelet packet cepstral coefficients (WPCC).
The authors consider only six emotions of the Berlin database for the experiments, excluding
disgust, and use a SVM as classifier. The authors also compare different wavelet mother
functions, and obtain the best results considering the Coiflet3 wavelet, reporting an accuracy
of up to 81.1%.

Summary

Tables 1.2, 1.3, 1.4, 1.5, and 1.6 contain the more relevant works, and the methodologies eval-
uated in the described datasets for emotion recognition from speech: the Berlin, enterface05,
FAU-Aibo, IEMOCAP, and SAVEE. The tables include the reference of the work, the number
and the description of the features used, the main result obtained, and the classification task
evaluated.

Table 1.2 Results reported in Berlin database

Source # Feat. Description Result task
[31] 39 F0 80.9% neutral vs emotional
[32] 36 F0, MFCC, formants 84.9% 7 classes
[35] 16 F0, jitter, shimmer 95% anger, sadness

HNR happiness, neutral
[36] 5967 OpenEAR, 89.5% 7 classes
[37] 384 OpenEAR subset 80.0% 7 classes

2009 INTERSPEECH 96.0% arousal dimension
challenge 80.0% valence dimension

[39] 6552 OpenEAR, 81.9% 7 classes
97.4% arousal dimension
87.5% valence dimension

[44] 157 Modulation spectral 80.9% 7 classes
and Prosody

[48] 9 Perceptual evaluation 85.9% 7 classes
of audio quality 95.1% arousal dimension

94.3% valence dimension
[49] 42 MFCC 77.9% 7 classes

derivatives
[51] 566 Auditory model 72.3% 7 classes

[55] 24 non-linear 75.4% neutral, fear
dynamics anger

[61] 17 WPP 91.8% 6 classes
[62] 120 WPT energy-entropy 54% 7-classes
[56] 12 Hurts exponent 68.1% 7-classes

in DWT
[63] 120 statistics from 60.0% 7 classes

WPT, and ∆

[64] 36 WPCC 81.1% 6 classes
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Table 1.3 Results reported in enterface05

Source # Feat. Description Result task
[36] 5967 OpenEAR, 75.2% 6 classes
[37] 384 OpenEAR subset 68.0% 6 classes

2009 INTERSPEECH 76.0% arousal dimension
challenge 65.0% valence dimension

[39] 6552 OpenEAR 61.1% 6 classes
80.8% arousal dimension
79.7% valence dimension

[40] 1582 OpenEAR subset 69.3% 6 classes
2010 INTERSPEECH
challenge

[46] 80 MFCC, formants 55.0% 6 classes
[49] 42 MFCC 53.9% 6 classes

derivatives

Table 1.4 Results reported in FAU-Aibo database

Source # Feat. Description Result task
[33] 9 F0, Formants 40.3% 5 classes
[38] 384 OpenEAR subset 39.9% 5 classes

2009 INTERSPEECH
challenge

[40] 1582 OpenEAR subset 60.5% 4 classes: Emphatic,
2010 INTERSPEECH Neutral, Motherese,
challenge Negatives

[42] 384 OpenEAR subset 64.2% valence dimension
2009 INTERSPEECH
challenge

[50] 36 MFCC 44.2% 5 classes
derivatives

[58] 256 SNEO based AMCC 44.5% 5 classes

For the Berlin dataset, the reported results for the classification of the seven emotions
range from 60% to 89%, using different kinds of features and classification strategies, note
that the best results are those which contains more features such as [36]. For the case of
the detection of high vs low arousal, the results reported are around to 96%, and for the
discrimination between positive and negative valence emotions, the results range from 80%
to 94%.

For the case of enterface05, the highest result for the classification of the six emotions is
of up to 75%, the results range from 53% to 75%. As in Berlin, the highest results consider a
large set of acoustic features related to F0, the energy content, duration, MFCC, and voice
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Table 1.5 Results reported in IEMOCAP database

Source # Feat. Description Result task
[38] 384 OpenEAR subset 56.3% Angry, Happy

INTERSPEECH 2009 Sad, Neutral
challenge

[43] 513 OpenEAR 56.7% Angry, Happy
Sad, Neutral

[41] 1582 OpenEAR subset, 63.1% Angry, Happy
INTERSPEECH 2010 Sad, Neutral
challenge

[47] 685 audio 66.1% Angry, Happy
and video Sad, Neutral

Table 1.6 Results reported in SAVEE

Source # Feat. Description Result task
[45] 106 Acoustics 68.5% 7 classes

[51] 566 Auditory model 73.8% 7 classes

quality measures. For the 2-class recognition experiments, the results obtained for arousal
dimension range from 76% to 80%, and for valence dimension range from 75% to 79%.

For the case of FAU-Aibo, the results reported range from 39.4% to 44.5% for the
classification of the five emotions. For the discrimination between idle and negatives emotions
the results are around to 64.0%. The work proposed in [40] report the highest result for the
multi-class problem, but only consider four of the five emotions.

Besides the IEMOCAP database contains ten different emotions, the main works which
use this database only consider four of them: anger, happiness, sadness, and neutral state
because most of the recordings are labeled with these emotions. For this case, the highest
results are reported in [47], but it consider both speech, and video-based features. The
highest result that consider only speech-based features is the proposed in [41], which report
an accuracy of up to 63.1%.

For the SAVEE database, there are few works that consider such database, the highest
result reported is 73.8%, for the classification of the seven emotions.
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1.2.3 Evaluation in non-controlled noise conditions

There are relatively few studies that consider the influence of noise and telephone channels
in the recognition of emotions from speech, but currently this aspect has gained the attention
of the research community. There are two different approaches for the evaluation of the non-
controlled noise conditions. The first one consider addition of different kinds of noise to the
conventional databases. The second one consider the evaluation of the speech signals recorded
in non-controlled noise conditions scenarios such as customer service, and emergency call
centers.

According to the first approach, in [65] the authors consider the Berlin database, and
white noise addition in a range from -10 to 20 dB to evaluate the effect of emotion recognition
under noise conditions. The authors consider a large set of features formed by 4000 measures
based on statistical functions calculated from the contours of intonation, intensity, formants,
HNR, and MFCC. The classification process is performed using a SVM with a polynomial
kernel, and a cross-validation strategy based on 10 folds stratified. The reported accuracy
is 86.7% for the noise-free recordings, while for the noisy signals, the accuracy ranges
from 67.2% to 83.4%. Other kind of noise is considered in [66], where the authors evaluate
the effect of the acoustic in-car noise conditions for recognition of emotions from speech.
Recordings of Berlin database are used for the addition of the noise produced by different
vehicles considering both convertibles, and non-convertibles. The authors consider a set of
features formed by 1400 measures related to energy, duration, and perturbation measures.
A classifier based on a SVM with linear kernel, using the LOSO cross validation strategy
is proposed. The reported accuracy for the noise-free speech signals is 74.9%, while for
the noisy signals the results range from 65.6% to 74.5%, depending on the kind of vehicle,
the speed, and the contact surface. In [67], a database recorded in a car environment is
considered to discriminate between positives, negatives, and neutral state. Also the Berlin
database is considered and degraded with different kinds of noise such as Gaussian, parking
lot, highway, and city street with different SNR levels from 5 to 15 dB. A speech enhancement
algorithm based on an adaptive threshold from the wavelet transform is considered. The
authors calculate a 1054-dimensional feature vector using several measures including MFCC,
F0, and intensity. The classification is performed using a SVM w following a 10-folds
cross-validation strategy. The obtained accuracy considering the original acoustic conditions
is 84% for Berlin database, and 88.1% for the in-car environment database. For the case
of the noisy signals, the accuracy ranges from 16.8% to 37% depending on the kind of the
added noise. For the evaluation of speech enhancement, the accuracy ranges from 37.5%
to 63%. In [68] the authors use the Berlin database to detect anger from speech. A model
of telephone channel based on the adaptive multi-rate (AMR) codec, and additive noise is
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used to simulate non-controlled noise conditions. The authors use features derived from
MFCC, RASTA filters, and linear prediction coefficients (LPC), and use a GMM-based
classifier. The authors report an accuracy of 90.1% for the noise-free conditions, while in
the non-controlled noise conditions, the accuracy ranges from 77.4% to 88.2% depending
on the kind of noise. Recently, in [69] the authors use the Berlin database to classify the
arousal dimension, and the valence dimension. The authors consider signals filtered by
telephone channels, and contaminated by different kinds of noise such as car, factory, and
babble with SNR=0 dB, and use features related to MFCC, and the log-energy filtered by an
auto-regressive (AR) model. The authors perform the classification using GMMs. For the
classification of arousal dimension, the authors report accuracies of 93.3% in the noise-free
recordings, while in non-controlled noise conditions the accuracy ranges from 79.8% to
91.8%. For the classification of valence dimension, the authors obtain accuracies of 80.0%
in the noise-free conditions, while in non-controlled noise conditions the accuracy ranges
from 60.0% to 74.8%.

There are also some studies that consider real world scenarios such as call centers. In [70]
the authors consider a corpus recorded in a medical emergency call center to discriminate
between positive and negative emotions. The feature extraction is performed with measures
derived from the F0, the energy content, duration, spectral analysis, disfluency and non-
linguistic event features. The authors report accuracies of up to 83.5%, using a classifier
based on a logistic model tree. In [3] the authors use real call-center data to recognize
happiness, anger, and neutral emotions in a real call center database using acoustic features
related to the energy content and F0. The authors report accuracies of 57.1% for happiness,
60.0% for anger, and 50% for neutral emotion, using a GMM-based classifier. In [26] the
authors discriminate between positive, negative and neutral emotional speech in a real-world
corpus collected from a complaint call center. A 374-dimensional feature vector derived from
acoustic measures such as MFCC, the F0, formants, and the energy content is considered.
The classification is performed using a SVM with a radial basis kernel. The authors report a
F1 Score of 0.54, which is a measure of accuracy that takes into account the precision and
the recall.

Table 1.7 summarizes the results of related works for automatic emotion recognition
in non-controlled noise conditions. It consider both the studies that use the conventional
databases with additive noise and phone channels, and the studies focused on the analysis in
real-world scenarios.
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Table 1.7 Results of the evaluation of non-controlled noise conditions

Source Features Conditions Result Task
[65] acoustics Clean Berlin DB 86.7% 7-classes

white noise SNR from -10 to 20 dB 67.2% to 83.4%
[66] acoustics Clean Berlin DB 74.9% 7-classes

Car noise at different speed, and surfaces 65.6% to 74.5%
[67] acoustics Clean Berlin DB 84.01% 7-classes

Different street noise 16.8% to 37%
Speech enhancement 37.5% to 63%

[68] MFCC, energy Clean Berlin DB 90.1% anger vs others
environment noise+telephone channel 77.4% to 88.2%

[69] MFCC, energy Clean Berlin DB 93.3% Arousal dimension
environment noise+telephone channel 79.8% to 91.8%
Clean Berlin DB 80.0% Valence dimension
environment noise+telephone channel 60.0% to 74.8%

[70] acoustics emergency call center database 83.49% Valence dimension
[3] acoustics customer service call center database 57.1% happy, anger, neutral

[26] acoustics customer service call center database 54% pos, neg, neutral

1.3 Problems and issues

According to the comprehensive revision of the literature presented here, there are still several
issues related to the emotion recognition from speech that need to be addressed. More feature
sets might be proposed and evaluated. Also the effect produced by other non-controlled noise
conditions needs to be studied bearing in mind the use of speech enhancement techniques to
improve the quality of the noisy speech signals.

1.4 Contribution

This study presents a contribution to solve the current issues for emotion recognition from
speech.

Different feature sets are proposed and used for the feature extraction of the emotional
content from speech. Five different approaches for feature extraction are proposed including
features related to acoustic, non-linear, and wavelet-based measures: (1) conventional acous-
tic features derived from MFCCs, energy, duration, and the F0. (2) Features derived from
the NLD analysis including the correlation dimension, the largest Lyapunov exponent, the
Hurst exponent, the Lempel-Ziv complexity, and entropy measures. (3) Features computed
from the time dependent auto-regressive moving average (TARMA) models to model the
non stationary process related to the emotions from the speech signals. (4) Different features
extracted from the WPT in different decomposition levels. (5) Features derived from three
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time-frequency representations based on the wavelet transform such as the traditional repre-
sentation of the continuous wavelet transform (CWT), the bionic wavelet transform (BWT),
and the synchro-squeezed wavelet transform (SSWT). All the approaches for feature extrac-
tion are compared to the standard feature set used in the “2009 INTERSPEECH emotional
challenge" formed by 384 acoustic features.

For the evaluation of non controlled noise conditions, different environments are evaluated
considering both the effect of background noise and the compression of telephony codecs.
To evaluate the effect of background noise, the databases used in this study are degraded by
different kinds of additive noise such as street noise and cafeteria babble. Other experiment
performed consist in the reproduction, and posterior re-capture of the databases in noisy
conditions in order to obtain a more natural acoustic scenario. In both cases, the effect of
two different speech enhancement algorithms are used to improve the quality of the noisy
signals, and the performance of the classification.

For the case of the evaluation of the compression of the speech, the databases are coded
by the different state-of-art codecs for speech compression such as the adaptive multi-rate
(AMR), the global system for mobile communications (GSM), the SILK codec used by
Skype, different models of VoIP codecs, and Opus which is used for WebRTC frameworks.

1.5 Structure of this Study

This work is divided into 7 chapters, chapter 2 contains the description about the main
concepts and definitions related to speech and emotions, the chapter describes the speech
production process, and gives a definition about What is emotion, also provides a review about
the main psychological models of emotions. Finally, describes the relationship between
emotions and the speech signals, according to some physiological aspects. Chapter 3
contains the description about the main feature estimation approaches used in this work. The
chapter defines the acoustic analysis, the non-linear dynamics concepts, the parametric non-
stationary analysis using TARMA models, and the wavelet analysis. Chapter 4 describes the
non-controlled noise conditions evaluated in this study. It contains two scenarios: evaluation
of background noise such as street noise, and cafeteria babble; and evaluation of telephony
codecs used both in mobile communications, and in VoIP networks. Chapter 5 defines the
methodology evaluated in this study. It contains the description about the classification
tasks evaluated in each one of the databases, all the feature sets used, and how are evaluated
the non-controlled noise conditions. Chapter 6 shows and discuss the results obtained in
this study, using all the features sets proposed. The results of the evaluation of the feature
extraction approaches in the non-controlled noise conditions are also discussed. Finally
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Chapter 7 provides the conclusions derived from this study, the main contribution to the state
of art in the speech emotion recognition problem, and the open questions and issues to be
addressed in future work.





Chapter 2

Speech and Emotions

In order to develop suitable methodologies for automatic recognition of emotions from
speech, it is important to review important issues given by the physiological aspects, and
answer important questions such as what the emotions are, and how are related to the speech.

This chapter describes the main concepts and definitions about emotions and speech.
First is described the main aspects related to speech, voice production, and emotions. Then
are explained the principal theories for modeling emotions, and how could be classified.
Finally, the relations between emotions and speech is described.

2.1 Terminology

2.1.1 Speech Signals and Speech Production Process

Most of features for speech processing tasks such as emotion recognition from speech are
based on the human speech production process. For this case the speech production system
could be divided into four complementary sub-systems: the respiratory system, the source
model, the vocal tract, and the radiation model [71].

The lungs in the respiratory system generate an airflow, which is pressed through the
glottis. If the vocal chords are tensed, a quasi-periodic excitation signal with a fixed period is
produced. Otherwise, a white noise-like signal is generated. Thus, in the respiratory system
could be produced both voiced or unvoiced signals that are passed to vocal tract, which act as
filter and gives certain properties to the signal to articulate different tones. The vocal tract are
formed by the pharynx, the nasal cavity, and the oral cavity. The vocal tract can be modeled
as a series of tubes with similar length but different areas [72]. Finally, the signals filtered by
the vocal tract are emitted through the radiation model of the mouth, and the nose. Figure 2.1
summarizes the structure of the speech production process.
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Fig. 2.1 Model of speech production process

2.1.2 Emotions

In psychological research the emotions reflect short term states, usually related and bound
to a specific event or action [73]. The emotions reflect the reaction of a human to a specific
experience. The theory presented by Scherer in [13] conclude that emotions are the result
of the evaluation of events causing specific reactions [71]. The emotions produce organic
changes in human body and may affect the facial expression, the speech, and another bio-
markers such as the breathing, the heart rate, and the electro-dermal activity.

2.2 Models of Emotion

According to several studies performed in psychology, there have been created many theories
about models of emotions in humans. Each one of them capturing and explaining some
aspects of the complex phenomenon “emotion" [27]. The most common theories for emotion
modeling are described as follows.

2.2.1 Discrete models

These models suggest the existence of primarily discrete emotions such as anger, fear,
disgust sadness, surprise and happiness, and the rest of emotions could be considered as
a combination of these basic emotions. The primarily emotions are mainly distinguished
by their specific stimulus conditions and their corresponding physiological response. In
general, the number of basic emotions varies between six and 14 [27]. Particularly, Ekman
propose the existence of six basic emotions according to facial expressions, the emotions
include happiness, sadness, fear, disgust, anger and surprise. This set of emotions is called
the “Big-Six" [74].
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2.2.2 Uni-dimensional models

This model consider a single dimension to discriminate the emotions. This dimension could
be the “activation" related to the arousal level of the emotion, or the “valence" dimension,
related to the subjective feeling of pleasantness or unpleasantness of the subject.

For the case of the activation dimension, the major difference between emotions is the
degree of arousal from very low to very high. For example emotions such as sadness and
happiness can be discriminated according to this dimension because the low arousal of
sadness and the high arousal of happiness. Emotions such as happiness and anger are not
discriminated according to this dimension because both of them are high arousal emotions.
For the case of the “valence" dimension, the most important difference between the emotions
is the degree of pleasantness, which ranges from negative or disagreeable feelings to positive
or agreeable. In this way, positive emotions such as happiness and calm can be differentiated
from negative emotions such as sadness and anger [75].

2.2.3 Multi-dimensional models

In this model the emotional state can be represented as coordinates in a multidimensional
space. In 1954, Schlosberg in [76] shows the relevance of two dimensions called “valence"
and “arousal", which create a plane where the emotions are represented. Cowie in [77] call
this two-dimensional space “activation-evaluation" plane highlighting that this representation
describes the emotional states in an easier and more treatable way, than using several discrete
emotions, and it is specially attractive to the research oriented to affective computing [77, 78].
Figure 2.2 shows an example of this plane to represent the different emotions.

In related works has been found that the recognition of emotions in the arousal plane
provides better results than the recognition in the valence plane [44]. This fact motivates
further research in characterization in order to improve the performance in the recognition of
emotions in the valence dimension.

2.2.4 Fear-type Emotions

In the last years the interest of the research community in automatic emotion recognition
from speech for security applications have increased and have been focused on the detection
of “fear-type" emotions such as anxiety, fear, anger, disgust, desperation and those reflecting
that the life or the human integrity are at risk [7, 79, 80].

Fear-type emotions appear in abnormal situations, specially in unplanned events where
human life could be threatened. In these situations could be detected the hot anger in a
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Fig. 2.2 Two dimensional representation of emotions in arousal-valence plane

potential aggressor or the fear in a potential victim. Even more complex emotional states
could also be detected ranging from worry to panic [7].

The recognition of fear-type emotions from speech have been considered in several
applications: detection of stress in drivers [81], where the speech signals from 15 drivers
were considered to classify three levels of stress with an accuracy of up to 88.2%. In real
emergency call-centers [70] to detect anxiety, stress, relief, annoyance, and others both for
users and agents with and accuracy of up to 83%. In public surveillance systems [7] to
discriminate between emotions related with fear and neutral state with an accuracy close to
70%.

2.3 Emotions from Speech

There are various physiological changes associated with emotions that affect different aspects
of speech, producing effects on the breathing, phonation, articulation, and prosody. Several
works have been focused on finding the vocal signs of emotion [16]. In general, the arousal
dimension might affect measures related to effort such as the intensity, the mean voice pitch,
and the speech rate. The tremor associated with fear and anger would be expected to produce
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oscillations in pitch. Also it has been suggested that unpleasantness is related to stress of the
vocal tract walls, altering the spectral balance.

According to physiological studies performed by Williams and Stevens in [82], the
sympathetic nervous system is aroused with emotions related to anger, happiness, and fear,
which induces an increase in the sub-glottal pressure, a dryness of the mouth, and occasional
muscle tremor. These aspects produces louder and faster speech, which is characterized
by strong high frequency energy, a higher average pitch, and a wider pitch range. On the
other hand the low arousal emotions such as sadness and boredom affect the parasympathetic
nervous system, producing speech characterized by slow rate, low pitch, and with little high
frequency energy.

Other studies suggest that the emotional content in speech is related to the voice quality
[1]. However, there is an ambiguity and subjectivity in the description of voice quality terms
such as tense, harsh, and breathy. Several studies debate whether tense voice is associated
with anger, joy, and fear; lax voice is related to sadness, and breathy voice is associated with
both anger and happiness, while sadness is associated with a resonant voice quality [48].

Table 2.1 summarizes the relationship between emotions and the speech parameters. Note
that the more affected speech parameters according to the emotional content are related to
the F0, and the energy content. The relation of those parameters with the emotional content
is described as follows.

Table 2.1 Emotions and speech parameters, from [1]

Feature Anger Happiness Sadness Fear Disgust

Rate
Slightly Faster or Slightly Much Very much
faster slower slower faster faster

F0
Very much Much Slightly Very much Very much
higher higher lower higher lower

F0 Range
Much wider Much wider Slightly Much Slightly

narrower wider wider

Energy content
Higher Higher Lower Normal Lower

Voice Breathy Breathy Resonant Irregular Grumble
Quality chest blaring tone voicing chest tone

F0 Changes
Abrupt smooth, upward Downward Normal Wide, downward
on stressed inflections inflections inflections

Articulation
Tense Normal Slurring Precise Normal
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Emotions in the F0

The contour of the F0 has been found as a great marker to differentiate emotions from speech.
In [83] was shown that the neutral speech produces a narrower F0 range than the emotional
speech. The F0 for angry speech has also a high median, wide range, and high rate of change
[84] than the others emotions. The vowels of angry speech exhibit the highest F0, and have
downward slopes relative to the neutral speech and other emotions [13]. The F0 for fear has
a high median, wide range, and a moderate rate of change [84].

For the case of low arousal emotions such as sadness or disgust, it has been found that the
F0 exhibits a lower mean and a narrower range for sadness; and a low median, wide range,
and lower rate of change for disgust [84, 85].

Figure 2.3 shows an example about the difference in the F0 contour produced by the
emotions. Figure contains the F0 contour of angry, and neutral speech recordings of the
Berlin database. The recordings are uttered by the same speaker, who pronounces the same
sentence in the two emotional states. Note that the F0 values are higher for anger than for
neutral speech. Also can be observed a difference in the range of the F0, for anger the F0

ranges from 140 to 300 Hz, while for neutral speech ranges from 100 to 160 Hz.
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Fig. 2.3 F0 contour for angry (left) and Neutral speech (right)

Emotions in the energy content

The energy content of the speech signal is the another marker more affected according to
the emotion of the speaker. In [85] was found that angry speech exhibits a higher energy
envelope than the others emotions. A similar result was reported for happiness; while sadness
is associated with a decreased energy [13]. These characteristics agree with the reported in
the models of emotions: the high arousal emotions such as anger and happiness generally
exhibit higher energy than the observed in low arousal emotions.



Chapter 3

Features for Emotion Recognition from
Speech

One of the main objectives in speech processing tasks such as automatic emotion recognition
is to find suitable features to represent the emotional state of the speaker. In section 1.2
an overview of the current characterization approaches was presented. In this chapter a
description of the proposed feature extraction methods is provided.

The first step to find the adequate features is the pre-processing of the speech signal which
includes among others the normalization, segmentation, and noise reduction techniques. Then
the feature extraction process is performed. Five different approaches for characterization of
speech signals are proposed: (1) the conventional acoustic analysis used to represent both
the speech production process or the human auditory system, (2) the nonlinear analysis to
represent the complexity and the long term dependence of time series, (3) the non-stationary
analysis provided by parametric representations such as time dependent ARMA models,
(4) the features derived from wavelet transform which enables to analyze the signals in a
time-frequency multi-resolution perspective, and (5) different time-frequency representations
derived from the wavelet transform.

3.1 Pre-processing

This stage consider different methods applied on the speech signal before the feature extrac-
tion process. The main objective of pre-processing is to conditioning, normalize, remove
perturbation caused by the recording conditions, and segment the speech signals. In this stage
the speech enhancement (SE) algorithms are used to remove the background noise, and the
segmentation into voiced and unvoiced segments is performed to analyze the representation
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capability of those segments separately. The SE algorithms are explained with details in
appendix A, and the segmentation procedure is explained as follows.

3.1.1 Segmentation

This pre-processing step allows to separate the speech signal into different segments and
remove non-relevant information such as silence parts. One of the main segmentation
procedures for speech processing tasks is the voiced-unvoiced segmentation. This separation
has proven to be useful in the recognition of emotions in speech and other paralinguistic
aspects [7, 32].

Voiced-Unvoiced Segmentation

The speech signals is formed by two kind of frames: The voiced segments, which are
produced by the vocal folds vibration in a quasi-periodic way due to the glottis closure, and
the unvoiced segments, which are produced by turbulent air flow at constriction, or by the
release or closure in the vocal tract.

Figure 3.1 shows the temporal view of the voiced and unvoiced segments. Note the
oscillatory behavior of the voiced segment, and the similarity between the unvoiced segment
with noise.
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Fig. 3.1 Voiced segment (left). Unvoiced segment (right)

One of the main methods for voiced-unvoiced segmentation is based on the presence or
not of the fundamental frequency of speech (F0) in short time frames. The more used method
for the estimation of F0 is the based on auto-correlation function of speech signal [86]. The
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auto-correlation of the speech signal x[n] is expressed according to Equation 3.1. N is the
length of analyzed frame.

rx[n] =
N

∑
k=0

x[k]x[n− k] (3.1)

Then, the normalized auto-correlation is calculated using Equation 3.2. Where rw[n]
corresponds to the auto-correlation function of a Hanning, or Gaussian window.

rxn[n] =
rx[n]
rw[n]

(3.2)

The fundamental period T 0 corresponds to the distance between two consecutive peaks
in the rxn[n] function. Finally F0 is calculated as F0 = 1/T 0. This method is implemented in
Praat software [87], which has become in a standard package to analyze speech signals and
is widely used for the research community [31, 88, 89].

3.2 Acoustic Analysis

The acoustic analysis includes the conventional features used in speech processing tasks. The
acoustic features can be divided into prosody analysis, which is related to measures derived
from the contour of the fundamental frequency, energy, and duration; perturbation measures
such as jitter and shimmer, spectral features such as the energy content in different frequency
bands, cepstral features such as MFCC, and voice quality features such as noise measures.

3.2.1 Prosody Analysis

Features related to prosody are derived from measures calculated from the contour of the
F0, the energy content, and different duration patterns, and are one of the most used for
recognition of emotions from speech [31, 32, 34].

The measures related to the contour of the F0 include statistics functions such as the
mean, maximum, minimum, range, standard deviation, skewness, kurtosis, median, among
others. Those measures are calculated in order to evaluate intonation changes in the emotional
speech. The same statistics also can be calculated in the derivatives of the F0 contour to
measure the dynamics of the intonation along the time. The measures of the contour of the
energy are the same to the calculated for the F0 contour to evaluate changes in the intensity
pattern due to the emotional state of the speaker. Finally, the duration analysis is described
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according to the the relation between the duration of voiced, unvoiced, and silence segments,
according to the following Equations.

dur1 =
duration silence

duration voiced + duration unvoiced
(3.3)

dur2 =
duration voiced

duration unvoiced
(3.4)

dur3 =
duration unvoiced

duration voiced + duration unvoiced
(3.5)

dur4 =
duration voiced

duration voiced + duration unvoiced
(3.6)

dur5 =
duration voiced
duration silence

(3.7)

dur6 =
duration unvoiced
duration silence

(3.8)

3.2.2 Perturbation Measures

These features provide a measure about the temporal variation of frequency and amplitude in
the phonation process. In this work are considered jitter and shimmer. These features have
been identified as indicators about stress, and emotions in speech [90].

Jitter

Jitter provides information about the temporal variation of F0 in the voiced segments. This
feature is calculated using Equation 3.9. F0[ j] is the fundamental frequency in the frame
j, and F0 corresponds to the average value of the fundamental frequency measured in the
previous three frames.

Jitter[ j](%) = 100 · |F0[ j]−F0[ j−1]|
F0

(3.9)

Shimmer

Shimmer provides information about the amplitude changes in speech signal along the
utterance. This feature is calculated using Equation 3.10. A[ j] is the maximum amplitude of
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the frame j, and A corresponds to the average value of the maximum amplitude measured in
the previous three frames.

Shimmer[ j](%) = 100 · |A[ j]−A[ j−1]|
A

(3.10)

3.2.3 Spectral and Cepstral Analysis

Features from this group provide information about the short time frequency content of the
speech signal. In this study are considered the Mel frequency cepstral coefficients (MFCC),
and the energy distributed in frequency bands according to the Bark scale.

Mel Frequency Cepstral Coefficients

The MFCC are one of the most used features in speech processing tasks. They are based on
the perception of human auditory system according to the Mel scale, proposed by Stevens in
[91] to reflect the non-linear relationship between the frequency of a tone and the perceived
pitch. This relationship is given by Equation 3.11.

fMel = 1127.01048 · loge

(
1+

fHz

700

)
(3.11)

The procedure to calculate the MFCC is as follows. First the speech signal is enframed
using a Hamming window. Then the fast Fourier transform (FFT) is calculated to obtain the
power spectrum of the signal. Subsequently, a filter bank in Mel scale is created to obtain
a higher resolution at lower frequencies. Figure 3.2 shows the structure of such filterbank.
Finally the log-energy of the output signals from each filter is calculated, and the discrete
cosine transform (DCT) is applied.
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Fig. 3.2 Mel filterbank consisting of 20 triangular filters
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In order to compensate the effects of speaker and channel, the speech based cepstral
mean subtraction (CMS) is considered [92]. In this case, the cepstrum of the speech signal is
normalized using Equation 3.12. yt is the cepstrum of the original signal, zt is the cepstrum
of the normalized signal, and mspe is calculated according to Equation 3.13. Where wt

corresponds to the probability p(speech|yt), or the output of a VAD [92].

zt = yt −mspe (3.12)

mspe =
∑t wtyt

∑t wt
(3.13)

Energy Content in Bark Scale

The Bark scale is a psycho-acoustic scale proposed by Zwicker in [93]. The scale ranges
from 1 to 25. The division is performed according to the concept of the critical bands in the
human auditory system. The conversion between frequency measured in Hertz and Bark
scale is given by Equation 3.14. The Bark scale frequency bands are almost linear below
1 kHz, while from frequencies superior to 1 kHz the scale grows exponentially, which yields
a perceptual filter-bank.

fBark = 13 ·arctan(0.00076 fHz)+3.5arctan

((
fHz

7500

)2
)

(3.14)

In this work the log-energy of the speech signal distributed in the 25 critical bands is
calculated. The process to compute these energies consists in calculate the short time Fourier
transform (STFT) of the speech signal, separate the corresponding spectrum in 25 frequency
bands according to the Bark scale, and calculate the log-energy of each band [94].

3.2.4 Noise Measures

The noise measures have been used commonly to quantify the turbulent noise in the vocal
tract. This kind of measures have been classically used for the assessment of voice quality
[52], which is affected due to the emotional state of the speaker [95]. In this study have been
implemented classical noise measures such as the harmonic to noise ratio (HNR) and the
normalized noise energy (NNE), which allow to evaluate the loss of harmonic structure in
speech when the speaker is over threat conditions. The glottal noise excitation ratio (GNE) is
also considered to measure the influence of the emotions in the vocal folds vibration pattern.
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Harmonic to Noise Ratio

The HNR is the relationship between the energy of the harmonic content of the speech signal
with the additive noise produced in the vocal tract. This feature can be considered a measure
for the degree of periodicity of a voiced signal. The method for the estimation is based on
the proposed by Yumoto in [96].

Normalized Noise Energy

The NNE is the relationship between the energy of noise with the total energy of the speech
signal, both measured in dB, and can be used to measure the degree of hoarseness in the
speech signal. The process for the estimation was proposed by Kasuya in [97].

Glottal to Noise Excitation Ratio

The GNE quantifies the relationship between the vocal excitation due to the vocal folds
vibration with the excitation produced by the noise turbulent in vocal tract. This feature was
proposed by Michaelis in [98]. The GNE is more robust than the other noise measures due to
its estimation does not require the calculation of the fundamental period.

3.3 Non-Linear Dynamics Analysis

The speech production model involves some non-linear process such as the non-linear
pressure flow in glottis and the non-linearity that occurs in the vocal fold collision [52].
These processes can not be characterized using classical measures. In order to resolve this
problem, the non-linear dynamics (NLD) analysis has been established as a mathematical
alternative for the analysis of this kind of process. The NLD analysis describes the temporal
evolution of a system through a multiple dimension space on which the speech signal is
reconstructed.

The use of NLD or complexity measures in speech processing tasks has been increased
in the last years and have proved to be useful in the analysis of voice quality and the voice
pathology detection [52–54], also have been used in speech emotion recognition [55–57].
Particularly, fear and anger have shown more complexity than neutral speech recordings.
The reason could be refereed to that in such emotions, people tend to use more fricative
sounds than in neutral state. Those fricative sounds are more noisy and complex than the
voiced sounds [55]. Features related to the NLD include the correlation dimension (CD),
the largest Lyapunov exponent (LLE), the Hurst exponent, the Lempel-Ziv complexity, and
several entropy measures.
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3.3.1 Embedding Process and Phase Space

The NLD analysis begins with the reconstruction of the state space of the speech signal. In
this way, topological features of the phenomenon can be analyzed. The state space is known
as phase space or attractor. The most common technique for reconstruction of the attractor
is the method proposed by Takens in [99]. A time series x[n] can be represented in a new
space defined by Equation 3.15. τ is the time delay and m is the embedding dimension. τ

can be determined by calculating the first minimum of the mutual information and the false
neighbors method can be used to estimate m [100].

X[k] = {x[k],x[k+ τ],x[k+2τ], · · · ,x[k+(m−1)τ]} (3.15)

As illustration, Figure 3.3 shows a sinusoidal signal and to its reconstructed attractor, and
Figure 3.4 shows the attractor generated by a speech signal of vowel /a/.
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3.3.2 Correlation Dimension

This feature allows the estimation of the exact space that is occupied by the reconstructed
vector in the phase space. The CD is an indicator about the complexity and dimensionality
of speech signal and can be related to the perturbation measures [55]. To estimate the CD,
the correlation sum (CS) is defined using the Equation 3.16. Where Θ is the Heaviside step
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function and ε is related to the radius of a hyper-sphere in which the points xi and x j may be
inside.

CS(ε) = lim
N→∞

1
N(N −1)

N

∑
i=1

N

∑
j=i+1

Θ(ε −
∣∣xi −x j

∣∣) (3.16)

In [101] is considered that for small values of ε , CS(ε) can be calculated according to
Equation 3.17, and the CD can be estimated using Equation 3.18. In order to estimate CD, it
is necessary to plot log(CS(ε)) versus log(ε). The slope of the resulting line, when a linear
regression is performed, corresponds to the CD [55].

CS(ε) = lim
ε→0

ε
CD (3.17)

CD = lim
ε→0

log(CS(ε))
log(ε)

(3.18)

3.3.3 Largest Lyapunov Exponent

This measure quantifies the exponential divergence of neighbor trajectories in a phase space.
In other words, this feature is an indicator about the aperiodicity of a speech signal [55].
After the phase space reconstruction, the nearest neighbor of every point in the trajectory is
located. The nearest neighbor x ĵ minimizes the euclidean distance d j(0) to the point x j. In
the time series the data must be separated a distance larger than the signal average period
in order to guarantee that the neighbors data are in different trajectories in the phase space.
The LLE is estimated as the mean separation rate between the nearest neighbors according to
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Equation 3.19. λ1 corresponds to LLE, d(t) is the mean divergence in the time instant t, and
C is a constant used for normalization.

d(t) =Ceλ1t (3.19)

3.3.4 Hurst Exponent

This feature expresses the long term dependence of a time series. The HE is defined according
to the asymptotic behaviour of the rescaled range of a time series as a function of a time
interval. This feature was introduced by Hurst in [102]. The method for estimation consist of
dividing the time series into intervals of size L and calculating the average ratio between the
range R with the standard deviation S of the time series. HE can be estimated as the slope of
the curve, as can be observed in Equation 3.20.

E
[

R(L)
S(L)

]
=CLHE (3.20)

HE can be used to represent the emotional state of speech according to the arousal level
of the signal as follows [56]:

• 0 < HE < 0.5 represents high arousal emotions such as anger or happiness.

• HE ≈ 0.5 represents neutral speech.

• 0.5 < HE < 1 represents low arousal emotions such as sadness or boredom.

3.3.5 Lempel Ziv Complexity

This feature establishes a measure about the degree of disorder of spatio-temporal patterns
in a time series [103]. The signal is transformed into binary sequences according to the
difference between consecutive samples, and the LZC reflects the rate of new patterns in
the sequence, and ranges from 0 (deterministic sequence) to 1 (random sequence). LZC
distribution shows values nearer to 1 for fear and anger speech, than in case of neutral speech
[55].

3.3.6 Entropy Measures

Entropy describes the complexity of a system. Two different entropy measures are used in
this work: the non-normalized Shannon entropy calculated using Equation 3.21, and the
log-energy entropy calculated using Equation 3.22. b is the number of bins used to estimate
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the probability density function of the signal, and p( j) is the probability of the j-th bin in the
histogram created.

SE =−
b

∑
j=1

[
p( j)2 · log

∣∣p( j)2∣∣] (3.21)

LEE =−
b

∑
j=1

log
∣∣p( j)2∣∣ (3.22)

3.4 Parametric Non-stationary Analysis

The speech production process involves several physiological aspects such as turbulent noise
caused by an air escape through the glottis and the laryngeal tensions involved in breathy
and whisper phonation, which may carry important paralinguistic information related to the
emotion of the speaker [104]. These processes produce a non-stationary behavior in speech
signal that cannot be characterized properly using the conventional acoustic features due to
the assumption of local stationarity [105]. In order to model these phenomena, non-stationary
modeling should be considered. The non-stationary analysis allows both to evaluate the
time-dependence and to represent the spectral evolution of the signal [106]. Non-stationary
models can be classified as parametric and non-parametric [106].

Parametric methods are based on parametrized representations of the time dependent auto-
regressive moving average (TARMA) models which are able to represent abrupt changes
in the spectral evolution of the signals [106]. Such methods can be classified into three
approaches according to the “structure" of their parameters: (1) the unstructured parameter
evolution methods which are characterized by low parsimony and slow tracking on the
dynamics, (2) the stochastic parameter evolution methods characterized by slow and medium
tracking of dynamics, and (3) the deterministic parameter evolution characterized by high
parsimony and fast or slow tracking depending on the estimated parameters [106]. Figure 3.5
summarizes the classification of parametric and non-parametric methods for non-stationary
signal modeling.

TARMA models have been applied on the modeling and simulation of earthquake
ground motion [107], modeling and detection of damage in mechanical structures with time-
dependent dynamics [106, 108], and modeling of speech and other bio-signals [105, 106, 109].
These previous attempts have demonstrated the usefulness of TARMA models as repre-
sentations of non-stationary processes and makes them very appealing for the automatic
classification of emotions from speech. In this work we have focus on the smoothness priors
TARMA (SP-TARMA) to perform the parametric non-stationary analysis.
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Fig. 3.5 Classification of methods for non-stationary signal modeling. ST-TARMA: short time
TARMA; SP-TARMA: smoothness prior TARMA; FS-TARMA: functional series TARMA.

3.4.1 SP-TARMA Models

A TARMA(na,nc) model is defined by Equation 3.23, which includes the auto-regressive
(AR) and the moving average (MA) components. na and nc are the orders of the AR and
MA models. e[n] is an unobservable “innovations" sequence with zero mean, and time-
dependence variance σ2

e [n], and ai[n], ci[n] are the parameters of AR, and MA models
[106].

x[n]+
na

∑
i=1

ai[n] ·x[n− i]︸ ︷︷ ︸
AR part

= e[n]+
nc

∑
i=1

ci[n] · e[n− i]︸ ︷︷ ︸
MA part

(3.23)

Stochastic parameter evolution TARMA imposes an stochastic structure in the time-
dependence of the parameters. In this case the evolution of the parameters ai, ci is subjected
to stochastic smoothness constraints. The constraints are referred to smoothness priors
TARMA (SP-TARMA). In this case the model is referred to SP-TARMA (na, nc, k). Where k
denotes the order of the difference equations that describe the evolution of the parameters as
is shown by Equations 3.24 and 3.25. wai[n] and wci[n] are Gaussian sequences with possibly
time-dependent variances. B is the back-shift operator, which operates at Bka[n] = a[n− k].

∆
ka[n] = (1−B)ka[n] = wai[n] (3.24)

∆
kc[n] = (1−B)kc[n] = wci[n] (3.25)
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Thus the smoothness constraints for k = 1 and k = 2 take the form

k = 1 : (1−B)1a[n] = a[n]−a[n−1]

k = 2 : (1−B)2a[n] = (1−2B+B2)a[n] = a[n]−2a[n−1]+a[n−2]

The orders of a SP-TARMA model are determined by two possible criteria, the Akaike
information criterion or the Bayesian information criterion. Both are based on the super-
position of the negative log-likelihood function of the model and penalize the complexity
of the model in order to discourage the over-fitting of the model [106]. The orders of the
model are such that minimize the criteria. In this work, the Bayesian information criterion
is used to select na and nc, and the minimum residual sum squares (RSS) is used to select
the parameter k. As illustration, Figure 3.6 shows the TARMA models extracted both for a
voiced and an unvoiced segment. Note that for the case of the voiced segment there is no
a time-dependence of the parameters of the model, which indicate the stationarity od the
segment, contrary to the unvoiced segment, where a time-dependence of the parameters a[n]
and c[n] is observed.

Fig. 3.6 Unvoiced segment with its TARMA model (left) and Voiced segment with its
TARMA model (right)
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3.5 Wavelet Analysis

The STFT is a time-frequency representation based on the analysis of short-time fixed length
frames. Such fixed length does not allow analyze the details and fast changes in non-stationary
signals. In this way, the wavelet transform (WT) is introduced as an alternative to allow the
representation, decomposition, and reconstruction of signals that present abrupt changes in
their spectral evolution. The WT allows a time-frequency multi-resolution analysis (MRA)
based on the decomposition of the signal into time-variable length frames according to
the frequency changes in the signal. Figure 3.7 shows the mean difference between the
time-frequency representation of a signal using the STFT, and the discrete version of the WT
(DWT).

Fig. 3.7 Time-frequency representation of STFT (left) and DWT (right)

Unlike the Fourier analysis, where the base functions for the decomposition are sinusoid
signals, in the WT the base functions ψs,u(t) are small waves of limited duration known
as Wavelets, whose energy is located around a fixed point. These waves are scaled and
translated in order to create a complete base of the decomposition space. Formally, the WT
of a signal x(t) is given by Equation 3.26. Where s defines the scale, and u the translation.

WT (u,s) =
∫

∞

−∞

x(t)
1√
s
ψ

∗
(

t −u
s

)
exp
[
− jω0

(
t −u

s

)]
dt (3.26)

3.5.1 Discrete Wavelet Transform

In this case, the scale and translation parameters s and u are discrete, and the WT correspond
to a series of wavelet coefficient called the discrete wavelet transform (DWT). The discretiza-
tion of s is given by a exponential sampling as s = s j

0. The discretization of u depends of the
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value of scale as u = ku0s j
0. Based on this discretization, the wavelets functions translated,

and scaled are given by Equation 3.27.

ψ j,k(t) = s− j/2
0 ψ(S− j

0 t − ku0) (3.27)

If the scale and translation parameters are sampled in power of 2 (s0 = 2), is obtained a
better representation, and the functions are called dyadic wavelets. In this case the signal x(t)
is represented as a series of approximation coefficients a j[n] related to the lower frequen-
cies, and detail d j[n] related to the higher frequencies in multiple resolutions. The details
coefficients represent the information from a high resolution to the lower resolution, and the
approximation corresponds to the lowest resolution in frequency. The DWT is represented
by the set of detail coefficients in all resolutions and the approximation coefficients in the
lowest resolution. The method to calculate these coefficients was developed by Mallat in
[110]. The method consist in the application of a series of discrete filters h[n] and g[n] called
conjugate mirror filters, which must satisfy the condition g[n] = (−1)1−nh[1−n]. Figure 3.8
illustrates the decomposition of DWT.

Fig. 3.8 Discrete wavelet transform decomposition

3.5.2 Wavelet Packet Transform

In the DWT decomposition the signal is decomposed in two frequency bands represented by
the approximation and detail coefficients, respectively. Only the approximation is used for
further decomposition. Hence, the DWT provides a left recursive binary tree structure, as
can be observed in Figure 3.8. In the wavelet packet tree (WPT), both the approximation
and detail coefficients are decomposed in two sub-bands, which provide a balanced binary
tree structure, as can be observed in Figure 3.9. In this case the wavelet coefficients are
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represented by Wj,k, where j corresponds to the decomposition level, and k is the number of
the node in each decomposition level.

Fig. 3.9 Wavelet packet transform decomposition

3.5.3 Wavelet Perceptual Packet

The WPT can be adjusted to approximate the human auditory system [111] using the concept
of critical bands of the Bark scale, forming a perceptual filter-bank called wavelet perceptual
packet (WPP). The Bark scale can be used to obtain a wavelet representation formed by 17
critical bands. The structure of the tree of WPP consider 17 decomposition in 5 levels, as can
be observed in Figure 3.10.

3.5.4 Bionic Wavelet Transform

The bionic wavelet transform (BWT) was developed based on a model of the active auditory
system [112], which made it appropriate for different speech processing tasks. This transform
has been widely used for the design of cochlear implants, and SE algorithms [113].
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Fig. 3.10 Wavelet perceptual packet decomposition

Formally, the BWT is a time adaptive wavelet transform based on the Morlet wavelet
designed specially to model speech signals. The BWT is defined according to Equation 3.28
[112].

BWT (u,s) =
∫

∞

−∞

x(t)
1

λ (u+∆u)
√

s
ψ

∗
(

t −u
sλ (u+∆u)

)
exp
[
− jω0

(
t −u

s

)]
dt (3.28)

The main difference between the BWT from Equation 3.28 and the WT from Equation
3.26 is the introduction of the time-adaptive parameter λ (u+∆u). The envelope of the BWT
mother function can be adjusted by this parameter.

The function λ (u+∆u) is derived from the active auditory model, and it is expressed
according to Equation 3.29. Where α is a saturation constant, and β and γ are the gains
of the model. In this study, it is considered α = 0.8, β = 0.87, and γ = 0.45, as in related
works [112, 113].

λ (u+∆u) =
1

1−α
β

β+|BWT (u,s)|

· 1

1+ γ

∣∣∣ ∂

∂ t BWT (u,s)
∣∣∣ (3.29)
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3.5.5 Synchro-squeezing Wavelet Transform

The synchro-squeezing wavelet transform (SSWT) was defined to incorporate the wavelet
transform and auditory nerve-models into a tool that could be used for speech processing
tasks [114].

The main objective of Synchro-squeezzing is to “sharpen" a time-frequency represen-
tation T F(t, f ) by “re-allocating" the value of the representation in the point (t, f ) into a
different point (t ′, f ′) according to the local behaviour of T F(t, f ) [115]. For the case of
the conventional WT (u,s), the transform will be spread over a region around the harmonic
components in the time-scale plane [115]. In the SSWT, the aim is to re-allocate the WT (u,s)
to get a concentrated time-frequency representation of the signal, from which instantaneous
frequency lines can be extracted. The SSWT (u, f ) is estimated based on the representation
of the WT (u,s) using Equation 3.30 [114]. The MATLAB implementation of the algorithm
for Shynchro-squeezzing is freely available in [116].

SSWT (u, fi) = (∆ f )−1
∑

sk:| f (sk,u)− fi|≤∆ f/2
WT (u,sk)s

−3/2
k (∆s)k (3.30)

As illustration, Figure 3.11 shows the difference between the conventional WT and SSWT
using a Morlet wavelet mother for the signal:

x(t) = cos[2π(0.1t2.6 +3sin(2t)+10t)]+ e−0.2tcos[2π(40+ t1.3)t]

Figure 3.12 shows the same difference for a voiced segment from a speech signal. Note in both
figures that the instantaneous frequencies are better determined in the SSWT representation.
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Fig. 3.11 Wavelet transform and Synchro-squeezzing wavelet transform for synthetic signal
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.

Besides the re-allocation of SSWT, other advantage of this transform is its robustness
to white noise and other perturbations [116], which made it able to analyze speech signal
recorded in non-controlled conditions.

3.5.6 Features estimated from Wavelet Transform

Different set of features are estimated using each transformation described in the previous
subsections. For the case of decompositions such as DWT, WPT, and WPP, different features
are estimated in each one of the decomposition signals, including:

• MFCC

• log-Energy

• LPC

• NLD measures

• Statistical functions such as mean, standard deviation, skewness, and kurtosis.

The estimation of features for CWT, BWT, and SSWT consists in divide the time-
frequency representation in 22 frequency regions separated according to the Bark scale.
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Each region corresponds to sub-band frequencies from 0 to 8 kHz. For each sub-band the
energy content is calculated using Equation 3.31. Where uk is the sample index and fi is the
frequency index of the time frequency representation. fi is calculated with the Bark scale
using Equation 3.14.

E[i] = log

∣∣∣∣∣ 1
N ∑

fi

N

∑
uk

|SSWT (uk, fi)|2
∣∣∣∣∣ (3.31)

For the feature estimation, the speech segments are re-sampled to 16 kHz in order to avoid
results dependent from the sampling frequency from the databases. Then, the representations
are calculated for frames of 40 ms of length with time shift of 20 ms, and the energy content
is estimated. Figure 3.13 summarizes the process.
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Fig. 3.13 Feature estimation process for CWT, BWT, and SSWT

3.6 Summary

This chapter described the main concepts and features proposed and used in this study for
the recognition of emotions from speech. The features are divided into four categories:
(1) Acoustic features, which include features derived from prosody, perturbation, spectral,
cepstral, and noise measures. (2) Non-linear dynamics features which involves measures as
the correlation dimension, the largest Lyapunov exponent, the Hurst exponent, the Lempel Ziv
complexity, and entropy measures. (3) Features derived from the parametric non-stationary
analysis using the time dependent ARMA models. Finally (4), features computed from the
Wavelet transform including decompositions from the wavelet packet transform, wavelet
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perceptual packet, time-frequency representations such as the continuous wavelet transform,
the bionic wavelet transform, and the synchro-squeezing wavelet transform.

The next chapter will describe the concepts related to the noisy and telephony conditions
that can corrupt the quality of the speech signals and the performance of any computational
system for the speech analysis.





Chapter 4

Non-Controlled Noise Conditions

For real world applications, the effect produced by the telephone channels when the speech
signal is transmitted and the background noise must be considered. These effects decrease the
quality of the speech signal and the recognition capability of the models. There exist several
studies that consider these scenarios by adding noise to the recordings or by simulating
telephone conditions [69].

In this work, different noisy environments are considered for the analysis such as the
street noise and the cafeteria babble. The evaluated conditions do not consider the noise
influences on the speaking style such as Lombard effect, but it already forms a reasonable
basis for the analysis of speech signal in non-controlled noise conditions and covers scenarios
as microphone mismatch, cellular/phone channels and voice coding effects.

4.1 Noise Addition

It is important to consider the effect of background noise for recognition of emotions from
speech to develop suitable solutions for real world applications. For example, for the case of
monitoring threatening calls when the caller is in a public phone on the street.

The noisy environments considered in this work include the addition of street noise and
cafeteria babble to the original noise-free speech recordings. The noisy signals are real
and were captured with an omnidirectional microphone and a professional audio card. The
change of the power spectral density (PSD) with frequency for each kind of noise along with
additive white Gaussian noise (AWGN) is shown in Figure 4.1. Note that AWGN does not
change with the frequency, while cafeteria and street decrease after 1 kHz. Note also that
the street noise exhibits more power in the low frequency zone (under 200 Hz) while the
cafeteria noise exhibits higher power values between 400 Hz and 1 kHz.
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4.1.1 Cafeteria Babble

This kind of noise is featured by the presence of external voices produced by other speakers,
which produce interference with the speech signal to evaluate. The noise contains also
frequency components widely distributed in all the spectrum and exhibits a highly time-
variability. The Cafeteria babble may contain also several impulsive noises produced among
others by clink of dishes, cough, or laugh.

4.1.2 Street Noise

This kind of noise is produced in the principal or centric avenues of a city. The noise
is produced by cars and other distant objects, which cause that the street noise contains
frequency components specially distributed in the low frequency zone, although the noise
produced by nearby cars may produce components in high frequency. The street noise may
content impulsive noise produced by the horn of the cars.

4.2 Telephony Codecs and Channels

Besides the effect of the background noise, the effect of different telephony codecs and
channels must be evaluated due to the speech recordings may be recorded by different
sources and with different conditions in terms of the sampling frequency and the number of
quantization bits. For example the recordings from an emergency call-center, from a mobile
phone, or from a video-conference using Skype or Google Hangouts.

In this study different codecs are considered including mobile codecs derived from the
adaptive multi-rate (AMR), codecs for voice over IP channels such as g.722, and codecs used
for transmission on Internet such as SILK and Opus.
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4.2.1 Adaptive Multi-Rate Narrowband (AMR-NB)

This codec is defined by the European telecommunications standards institute (ETSI) and the
3rd generation partnership project (3GPP) in [117]. This codec is widely used for the global
system for mobile communications (GSM) and for the universal mobile telecommunications
system (UMTS) phone networks. The codec uses a multi-rate algebraic code excited linear
prediction (MR-CELP) scheme with a range of bit-rates from 4.75 kbps to 12.20 kbps. The
different bit-rates are achieved by changing the number of samples encoded and the number
of bits used to encode each sample. The codec includes a voice activity detector, a comfort
noise generator, and an error concealment mechanism. The version used is the VisualOn
implementation for the encoder and the OpenCORE implementation for the decoder, both
found in the Libav open source library [118].

4.2.2 Adaptive Multi-Rate Wideband (AMR-WB)

This codec is defined also by ETSI and the 3GPP standard in [119]. The main difference
between AMR-NB and AMR-WB consists in the bit-rates used for the transmission. For this
case the bit rate ranges from 6.60 kbps to 23.85 kbps.

4.2.3 GSM Full Rate

A model of a mobile telephone based on full rate GSM 06.10 standard is considered. This
model is widely used for compression of speech signals in mobile communications. The
codec decreases the transmission bit-rate to 12.2 Kbps, in a bandwidth of 4 kHz according to
the GSM standard [120].

4.2.4 G.722

This codec is defined by the international telecommunications union (ITU) in the recom-
mendation G.722 [121]. This codec was developed with the aim of encode wide-band audio
signals within 64 kbps to improve the speech quality. The coding scheme uses a sub-band
adaptive pulse code modulation (SB-ADPCM). For this case the wide-band signal is split by
filters in a lower sub-band (from 0 to 4 kHz) and a higher sub-band (from 4 kHz to 8 kHz).
Each one is quantized independently. This codec is commonly used for VoIP applications
where high bandwidth is available such as local area networks.
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4.2.5 G.726

This codec is defined also by the (ITU) in the recommendation G.726 [122] and it is primarily
intended to be used for international trunks. The coding scheme take as input a signal with a
bit-rate of 64 kbps narrow-band and converts it to one of four different bit-rates (40, 32, 24 or
16 kbps) using the ADPCM scheme.

4.2.6 SILK

This is the codec used in the popular VoIP software Skype®. SILK can encode either narrow,
medium, wide, and super wide bands speech signals with bit-rates in a range from 6 to
40 kbps. The coding scheme includes among others voice activity detection, pitch analysis,
linear prediction analysis and noise shaping analysis blocks. The codec implements packet
loss concealment and discontinuous transmission mechanisms. The code released to the
public in [123] was compiled and used in this work.

4.2.7 Opus

This codec is defined by the Internet engineering task force (IETF) in [124]. Opus is based
on the SILK codec and also supports variable bit-rates in a range from 8 kbps to 40 Kbps, but
can extend beyond to improve the quality. This codec supports variable sampling rates. This
work considers an average bit-rate of 64 Kbps and the default settings of the codec. Such
bit-rate may be used in applications with high-speed Internet connection. Opus codec has
been implemented in the WebRTC framework which is becoming a standard for Internet
based multimedia communications [125].

4.3 Summary

Different kinds of background noise and telephony codecs were described in this chapter.
The main aim of consider the background noise and codecs is to decrease the quality of the
speech utterances and evaluate the recognition capability of the different algorithms under
these non-controlled noise conditions in order to develop real world applications. Street and
Cafeteria noises were considered, and different codecs used for mobile, VoIP, and Internet
communications were evaluated.

The next chapter describes the methodology followed in this study to evaluate the
proposed approaches. It include the description of the experiments, the feature sets used, and
the classification and cross-validation schemes.
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Methodology

5.1 Experiments

Four different experiments were performed using the recordings from each database. The
experiment number one considers the discrimination between high and low arousal emotions.
The experiment number two is the detection of positive and negative valence emotions. The
experiment three is the recognition of the fear-type emotions in Berlin, enterface05, and
SAVEE databases. The fear-type emotions consider anger, anxiety, and disgust. In Berlin and
SAVEE are also included the neutral state. Finally, the experiment number four is the multi-
class recognition considering all emotions from the databases: seven emotions in Berlin,
six emotions in enterface05, five emotions in FAU-Aibo, four emotions in IEMOCAP, and
seven emotions in SAVEE. Table 5.1 lists the emotions considered in the four experiments
addressed in this study.

5.2 Feature Sets

This section describes the feature sets computed using the features derived from acoustics,
non-linear and wavelet based measures.

5.2.1 Acoustic Feature Sets

Three feature sets are derived from the acoustic analysis. (1) The features calculated using
the OpenEAR toolkit, (2) the set formed by prosody measures derived from duration of
voiced and unvoiced frames, the F0, and the energy content, and (3) the feature set formed
by spectral and noise measures.
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Table 5.1 Four experiments

Database 2-class 2-class multi-class multi-class
Arousal Valence Fear-type All emotions

Berlin

High: Fear, Disgust, Positive: Neutral Anger, Disgust Fear, Disgust
Happiness, Anger. Happiness. Fear, Neutral Happiness, Neutral
Low: Boredom, Neutral, Negative: Boredom, Anger Boredom, Sadness
Sadness. Sadness, Fear, Disgust. Anger

Enterface05

High: Fear, Disgust, Positive: Surprise Anger, Disgust Fear, Disgust
Happiness, Anger. Happiness. Fear Happiness, Anger
Surprise Negative: Anger Surprise, Sadness
Low: Sadness. Sadness, Fear, Disgust.

FAU-Aibo

Negative vs Anger, Emphatic
Idle Neutral, Positive

Rest.

IEMOCAP

High: Fear, Disgust, Positive: Surprise, Neutral Anger, Sadness
Happiness, Anger. Happiness, Excitation Happiness, Anger
Surprise, Excitation, Negative: Anger, Frustration,
Frustration Sadness, Fear, Disgust.
Low: Sadness, Neutral.

SAVEE

High: Fear, Disgust, Positive: Neutral Anger, Disgust Fear, Disgust
Happiness, Anger, Happiness, Surprise. Fear, Neutral Happiness, Neutral
Surprise. Negative: Anger, Sadness Surprise, Sadness
Low: Neutral, Sadness. Fear, Disgust. Anger

OpenEAR

The feature set is formed by the 384 measures used as baseline in the "2009 INTERSPEECH
emotional challenge" [34]. The feature set is formed by 16 descriptors and their derivatives.
12 statistical functions are calculated for each descriptor. The descriptors include the zero
crossing rate (ZCR), the root mean square (RMS) energy, the F0, the HNR, and 12 MFCC.

The 12 statistics functions include the mean, standard deviation, kurtosis, skewness, min-
imum value, maximum value, relative position of minimum, relative position of maximum,
range, the slope of a linear regression, the offset of a linear regression, and the mean square
error (MSE) of the regression. Finally the feature set is formed by 16×2×12 = 384 features
per utterance. Table 5.2 summarizes the features calculated.

Prosody

The feature set is formed by 38 measures related to duration, F0, and energy. The duration
features include 6 relationship measures between the duration of voiced, unvoiced, and
silence segments. For the contours of the F0, the energy and their derivatives, 8 functions are
calculated: the mean, maximum value, minimum value, range, standard deviation, skewness,
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Descriptors (16×2) statistic functions (12)
ZCR mean

RMS Energy standard deviation
F0 kurtosis, skewness

HNR max value, min value, relative position, range
MFCC 1-12 slope, offset, MSE linear regression

∆s
Table 5.2 OpenEAR features

kurtosis, and median. Thus the feature vector is formed by 6+ 8× 4 = 38 measures per
utterance. Table 5.3 summarizes the computed features.

Descriptors statistic functions
Duration sil/(v+u), v/u, u/(v+u), v/(v+u), v/sil, u/sil
F0, ∆F0 mean, max value, min value, range, std, skewness, kurtosis, median

Energy, ∆Energy mean, max value, min value, range, std, skewness, kurtosis, median
Table 5.3 Prosody features

Spectral and Noise

Different feature sets are formed for voiced and unvoiced segments. For the case of voiced
segments 12 MFCC, HNR, GNE, and NNE are calculated for windows of 40 ms forming a
15-dimensional feature vector per window. For the case of unvoiced segments, the feature set
is formed by 12 MFCC and the energy content in 25 frequency bands separated according to
Bark scale, forming a 37-dimensional feature vector per window.

5.2.2 Non-Linear Dynamics

The NLD features are calculated only for voiced segments. The feature set is formed by a
4-dimensional feature vector that includes the CD, LLE, HE, and LZC. Additionally, another
feature vector is formed by the merge of the NLD measures with the spectral and noise
measures.

5.2.3 TARMA Models

Two different set of features are estimated from SP-TARMA models to characterize the
non-stationary behavior of unvoiced segments. The first one considers statistic functions
calculated on the model coefficients a[n], and c[n]. The orders of a[n], and c[n] must be
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estimated to construct the model. In this work, the Bayesian information criterion is used to
select na and mathb f nc, and the minimum residual sum squares (RSS) is used to select the
parameter mathb f k. Figure 5.1 shows the order estimation. The chosen values are na = 5,
nc = 3, and k = 1. After estimate the order of the model, the feature set is formed by 7
functions calculated on the coefficients: mean, standard deviation, kurtosis, skewness, max
value, min value, and log-energy, forming a 56-feature vector per each unvoiced segment
(7×na +7×3 = 56).
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Fig. 5.1 Estimation of the order of SP-TARMA models

The second set of features is formed by 12 MFCCs calculated from the signals that are
predicted by the SP-TARMA model. The MFCCs estimated from the model predictions may
have reduced noise content, compared to the estimates obtained from the raw signal.

5.2.4 Wavelet Packet Transform and Multi-Resolution Analysis

Four different approaches were performed using WPT to find a suitable feature extraction
scheme. The aproach number one considers the wavelet decomposition in different resolution
levels from the first to the seventh, and their combinations. Superior levels were not consid-
ered due to the high number of features that would be introduced to the feature set and to the
results obtained until such level. For each level, three frequency bands were considered: the
low frequency decomposition signals formed by the first half of the nodes, the high frequency
decomposition signals, and the combination of all nodes of the level. Figure 5.2 illustrates the
division of the nodes for this experiment. The log-energy of each decomposition is computed
and the Daubechies3 wavelet function is used.

The approach number two considers different wavelet decomposition using the Daubechies3
wavelet function to characterize both voiced and unvoiced segments. The decompositions
were selected according to a forward selection criterion, where a different node was se-
quentially added and evaluated in a classification stage, starting from the lower frequency
node in level one (W1,0), to the last node of the level seven (W7,127). Figure 5.3 shows the
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Fig. 5.2 WPT in different decomposition levels

decomposition considered both for voiced (up) and unvoiced segments (bottom), respectively.
The chosen packets are focused on the low frequency components of the spectrum of the
speech, which contain suitable information about the emotional content [80, 126].
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Fig. 5.3 WPT used for voiced segments (up) and unvoiced segments (bottom). Wx,y indicates
the wavelet decomposition in level x, in node y

The approach number three considers the multi-resolution decomposition according to
the wavelet perceptual packets (WPP) which map the Bark scale to the wavelet domain. The
decomposition is formed by 17 nodes from levels 3, 4, and 5.
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Finally, the approach number four considers different measures calculated on the wavelet
decompositions from Figure 5.3. The measures include the log-energy, MFCC, statistic
functions, and NLD measures.

5.2.5 Wavelet Based Time-Frequency Representations

For the case of the time-frequency representations derived from the wavelet transform that
includes the CWT, the BWT, and the SSWT, the feature vector is formed by 22 measures
related to the energy content in 22 sub-bands separated according to the Bark scale in a range
from 0 to 16 kHz.

5.3 Classification and Validation Methods

All the feature sets extracted from the speech signals are modeled by GMM supervectors,
which are derived from a GMM adapted from a universal background model (UBM). The
strategy is based on the combination of SVMs and GMMs. The theoretical background is
explained in Appendix B.

The methodology is formed by a two-stage strategy. (1) The features estimated from
voiced and unvoiced frames are transformed into a GMM supervector representation. The
supervectors derived from voiced segments are classified separately of those estimated from
unvoiced segments using a SVM with a radial base function (Gaussian) kernel. (2) A fusion
scheme based on the scores obtained from the first classification scheme are used as new
features to train a second classification stage using another SVM with a Gaussian kernel.
Figure 5.4 illustrates the proposed classification scheme.

The metric used for the evaluation of the methodology is the unweighted average recall
(UAR) instead of the weighted average recall (WAR). WAR is related to the global accuracy
and it is preferred for the cases when the distribution of the classes in the databases is
balanced. For the cases when the distribution of classes are high unbalanced the UAR
measure is used, which can be defined as the average of the ratio of the true positives per
class.

In all databases, a speaker independent cross-validation strategy based on LOSO is
followed: in Berlin and IEMOCAP databases the data is divided into ten groups according
to the ten speakers in each database. The utterances of a single speaker are used for test set
and the utterances of the other nine speakers are used to train the classifier. The procedure
is repeated for all the speakers from the database. In SAVEE it is performed the same
cross-validation strategy with the four speakers from the database. In enterface05 the 44
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Fig. 5.4 Classification scheme
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speakers are separated into 11 groups formed by 4 different speakers, and the validation
is performed with those 11 groups. Finally, in FAU-Aibo the same strategy followed in
the "2009 INTERSPEECH emotional challenge" is followed, where the recordings of the
children from one of the participating schools are used for train, and the recordings from the
other school are used for test.

5.4 Non-Controlled Noise Conditions

5.4.1 Additive Noise

This scenario is tested with two kinds of additive environmental noise: street noise and
cafeteria babble. The evaluation of the noise includes SNR levels of 0, 3, and 6 dB, as it
was published in [80]. The effect of two different speech enhancement techniques is also
evaluated. The first one is the method proposed in [127]. This method will be refereed to
logMMSE. The second one method is based on the subspace approach proposed in [128]
based on the Karnuhen-Loeve Transform (KLT) decomposition. This method will be refereed
to as KLT. For a detailed explanation of the speech enhancement techniques follow the
appendix A.

5.4.2 Natural Environment Noise

With the aim of characterize the emotions for utterances corrupted by noise added in a non-
artificial way, the recordings of the databases were re-captured in presence of two different
noisy environments: street and office. For the re-capturing process we consider a high quality
studio monitor B2030A from Behringer to reproduce the recordings and a professional
microphone shure SM63 with a professional audio card M-Audio fast track C400. The
specifications of the devices are shown in Table 5.4 and the scheme of the experiment is
illustrated in Figure 5.5.

Device Reference
Studio monitor B2030A [129]

Microphone Shure SM63 [130]
Audio card Fast track C400 [131]

Table 5.4 Devices for re-capturing the databases in noisy environments
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Fig. 5.5 Scheme for re-capture the databases in noisy conditions

5.4.3 Audio Codecs

The codecs used in this study compress the speech signals to reduce the bit-rate and thus
to make a more efficient use of the network resources such as the bandwidth. A total of
seven audio codecs were considered: the GSM, AMR-NB, and AMR-WB used for mobile
networks. The G.722 and G.726 used for VoIP networks. The SILK codec used by Skype,
and the Opus codec used in the WebRTC framework. The description of such codecs was
explained with details in Section 4.2.

The speech signals from the databases were encoded and decoded using each codec.
The encoder and decoder for AMR-NB, GSM, AMR-WB, G.722 and G.726 codecs were
implemented with the Libav library. For the SILK codec, the code released to the public in
[132] was compiled for the implementation, and for the case of the Opus encoder the version
implemented in the package opus-tools found in the Debian repositories was used.

The settings of the encoders were left with their default values, except for the case of the
bit-rate for the AMR-NB, and AMR-WB codecs, which was set to different fixed bit-rates.
Both Opus and SILK codecs use Variable Bit-Rates (VBR).

5.5 Summary

The methodology followed in this study was described in this chapter. The four experiments
developed in this work were explained: (1) the high-low arousal detection, (2) the positive-
negative valence detection, (3) the classification of the fear-type emotions, and (4) the
classification of the multiple emotions from the data-sets. The feature sets proposed in
this study based on acoustics, non-linear dynamics, and wavelet based measures are also
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explained, followed by the classification and cross-validation strategies. Finally the non-
controlled noise conditions considering the background noise and the audio codecs are
explained. The next chapter shows and discuss the main results obtained in this work
considering each features set and the non-controlled noise conditions.
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Results and Discussion

6.1 Classification of Noise-Free Speech Signals

The next subsections include the main results obtained for each experiment described in
Section 5.1: the high vs low arousal detection, the positive vs negative valence, the fear-type
emotions, and all emotions.

6.1.1 Results Experiment 1: High vs Low Arousal Emotions

Table 6.1 shows the results obtained with all the feature sets related to the acoustics, NLD,
and wavelet based measures both for voiced, unvoiced, and the fusion of the scores for
the detection of high-low arousal emotions in Berlin, enterface05, IEMOCAP and SAVEE
databases.

In Berlin database the highest result is obtained with the 384 features from OpenEAR
followed by the obtained with the spectral+noise+NLD. For the case of SAVEE database
the highest result is obtained with the feature sets derived from the WPT analysis for voiced
segments, followed by the prosody measures. In enterface05 the highest result correspond
to the time frequency representations based on the wavelet transform e.g., CWT, BWT, and
SSWT followed by openEAR. Finally in IEMOCAP the highest result is obtained also with
the features based on the wavelet based time frequency representations.

In general, higher results are obtained with features extracted from voiced segments rather
than unvoiced, but there are some cases where the features extracted from unvoiced segments
exceed those obtained with voiced as for the case of spectral+noise features in SAVEE and
IEMOCAP. The fusion scheme is useful to improve the results in features extracted from the
wavelet measures specially in SAVEE and IEMOCAP.
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Table 6.1 Results for classification of high vs low arousal emotions

Feature set Segments # Feat. Berlin SAVEE enterface-05 IEMOCAP
OpenEAR all signal 384 97.3±3.0 83.3±8.8 81.0±2.0 75.5±3.8
Prosody all signal 38 91.8±4.3 86.5±5.1 76.3±5.3 72.0±4.2

Spectral+noise
Voiced 15 per window 94.9±7.1 74.8±8.7 80.2±1.9 72.2±4.9

Unvoiced 37 per window 82.2±7.5 80.8±7.4 78.4±1.1 75.1±3.2
Fusion 91.5±9.8 81.3±4.2 80.1±3.4 71.3±5.1

NLD Voiced 4 per window 94.5±6.0 78.9±3.2 77.4±1.1 71.0±6.2

Spectral+noise+NLD
Voiced 19 per window 96.9±4.4 77.7±10.1 80.2±1.6 72.3±6.4

Unvoiced 37 per window 82.2±7.5 80.6±7.3 77.9±1.5 75.1±3.2
Fusion 92.7±6.0 82.9±6.3 79.7±1.9 72.0±4.1

SP-TARMA stat. Unvoiced 56 per segment 85.5±6.4 70.5±3.2 78.9±0.8 64.0±3.1
SP-TARMA MFCC Unvoiced 12 per window 90.5±7.6 82.3±4.1 78.5±1.3 70.8±4.7

WPP energy
Voiced 17 per window 93.1±5.1 81.0±10.7 80.9±2.5 69.5±5.5

Unvoiced 17 per window 82.1±5.5 74.0±7.9 80.7±1.0 73.5±3.4
Fusion 91.4±7.4 83.3±8.9 80.9±2.5 74.1±3.2

WPT energy
Voiced 8 per window 92.7±4.2 85.4±6.1 80.7±5.0 73.5±4.6

Unvoiced 13 per window 80.6±6.5 71.3±7.2 79.0±1.7 70.0±6.7
Fusion 90.9±5.5 83.3±5.9 80.1±2.1 72.3±4.1

WPT MFCC
Voiced 96 per window 94.6±5.0 88.5±6.4 79.6±1.3 70.8±4.1

Unvoiced 156 per window 79.9±5.0 79.6±9.4 78.2±1.0 71.4±5.0
Fusion 93.5±6.0 82.9±6.8 78.9±2.0 72.1±4.0

WPT stat.
Voiced 24 per window 93.2±5.2 88.9±5.7 79.8±1.0 73.6±5.4

Unvoiced 36 per window 79.7±4.3 74.0±5.0 77.6±0.6 69.4±5.8
Fusion 89.1±6.6 85.6±4.9 78.3±2.6 74.1±4.1

WPT energy+MFCC+stat
Voiced 128 per window 95.7±4.0 89.0±5.7 80.7±5.0 74.6±4.0

Unvoiced 208 per window 82.2±5.7 82.3±9.9 78.3±1.2 73.0±6.2
Fusion 93.2±5.0 87.3±3.9 78.9±2.0 75.4±3.2

WPT NLD
Voiced 32 per window 94.4±5.0 85.8±2.4 78.9±1.2 69.5±3.2

Unvoiced 26 per window 82.5±5.8 71.0±5.1 78.5±0.9 70.2±3.4
Fusion 93.0±4.6 85.6±4.5 78.6±2.2 71.3±3.2

CWT Energy
Voiced 22 per window 95.7±5.6 82.5±9.1 81.2±2.2 74.4±3.8

Unvoiced 22 per window 89.1±8.7 79.8±8.1 79.6±1.2 75.1±2.7
Fusion 93.3±8.3 87.3±7.4 80.8±2.5 76.4±3.9

BWT Energy
Voiced 22 per window 95.6±5.5 82.3±8.0 81.5±1.7 74.3±4.2

Unvoiced 22 per window 89.6±8.5 80.4±7.2 79.8±1.5 74.8±2.8
Fusion 94.0±6.6 84.6±7.1 81.9±2.2 76.1±4.0

SSWT Energy
Voiced 22 per window 95.8±5.5 84.4±8.3 81.1±1.7 75.7±4.7

Unvoiced 22 per window 89.2±8.4 79.5±6.7 80.4±1.4 75.6±2.9
Fusion 95.0±5.5 81.8±5.7 80.2±2.9 77.2±3.6

Note that the addition of NLD measures to the spectral+noise feature set improves
the results in Berlin and SAVEE, which may indicates that the NLD can be considered
complementary measures to the acoustic analysis.

6.1.2 Results Experiment 2: Positive vs Negative Valence Emotions

Table 6.2 shows the results obtained with all the feature sets for the discrimination between
positive and negative emotions in Berlin SAVEE, enterface05, FAU-Aibo and IEMOCAP
databases.
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Table 6.2 Results for classification of positive vs negative valence emotions

Feature set Segments # Feat. Berlin SAVEE enterface-05 FAU-Aibo IEMOCAP
OpenEAR all signal 384 87.2±2.4 72.5±5.7 81.4±3.6 62.0 59.0±3.2
Prosody all signal 38 81.2±6.2 67.7±6.8 66.0±5.5 62.6 57.5±2.4

Spectral+noise
Voiced 15 per window 83.5±4.3 64.8±4.9 75.1±2.5 68.6 55.9±3.0

Unvoiced 37 per window 73.7±5.3 64.2±1.6 71.4±2.1 62.9 54.3±3.0
Fusion 80.2±3.6 65.4±2.7 72.4±4.4 67.8 58.5±3.6

NLD Voiced 4 per window 79.5±4.4 61.3±2.5 70.7±1.9 66.7 53.8±4.2

Spectral+noise+NLD
Voiced 19 per window 82.9±5.8 66.7±4.0 74.9±2.4 69.6 57.0±3.1

Unvoiced 37 per window 73.7±5.3 62.9±3.5 71.4±2.1 62.9 54.3±3.0
Fusion 79.8±5.8 67.3±5.1 73.8±5.1 68.8 59.5±3.4

SP-TARMA stat. Unvoiced 56 per segment 73.5±6.4 60.1±3.2 68.7±1.4 56.4 58.5±2.7
SP-TARMA MFCC Unvoiced 12 per window 73.9±6.1 62.4±3.1 69.3±1.4 61.6 57.0±1.9

WPP energy
Voiced 17 per window 79.0±6.8 64.2±3.5 72.6±2.8 68.5 54.0±2.7

Unvoiced 17 per window 76.5±5.7 63.1±4.6 73.0±2.5 63.9 56.8±2.7
Fusion 78.7±6.4 67.5±4.4 71.5±3.6 69.0 58.1±3.2

WPT energy
Voiced 8 per window 78.7±5.8 66.0±4.0 72.0±1.1 66.9 57.9±2.2

Unvoiced 13 per window 73.0±6.4 61.5±2.4 72.5±2.8 64.7 53.5±2.9
Fusion 78.5±4.8 62.7±7.5 72.1±3.4 67.5 58.5±2.1

WPT MFCC
Voiced 96 per window 77.5±5.5 70.0±8.9 75.4±4.0 65.2 58.5±2.7

Unvoiced 156 per window 73.9±5.0 65.2±3.5 70.6±1.6 65.0 59.0±3.6
Fusion 75.6±6.0 71.0±8.5 71.8±3.1 66.5 59.1±2.0

WPT stat.
Voiced 24 per window 77.6±4.1 67.1±7.5 70.5±2.2 69.8 57.3±1.9

Unvoiced 36 per window 74.6±6.4 64.8±7.0 69.2±1.3 62.9 54.1±3.0
Fusion 77.7±6.9 67.0±5.0 68.5±1.9 67.7 56.3±2.5

WPT energy+MFCC+stat
Voiced 128 per window 81.2±3.3 70.7±9.8 75.9±3.0 68.2 57.3±2.5

Unvoiced 208 per window 75.0±5.3 64.6±4.2 72.6±1.6 65.0 56.1±5.5
Fusion 75.7±4.5 70.0±8.4 72.5±3.6 67.7 59.1±1.9

WPT NLD
Voiced 32 per window 79.6±6.2 65.3±6.2 72.7±1.9 67.5 56.1±2.1

Unvoiced 26 per window 75.4±5.9 61.5±3.4 72.6±3.0 62.2 53.1±2.2
Fusion 78.7±5.1 64.8±5.5 71.2±2.8 68.0 57.3±2.7

CWT Energy
Voiced 22 per window 80.0±3.7 64.4±5.0 74.6±1.7 66.5 54.5±3.8

Unvoiced 22 per window 76.3±5.4 63.8±3.2 73.4±2.6 56.7 57.5±2.3
Fusion 78.2±4.2 66.7±3.5 74.4±2.0 67.5 58.4±4.7

BWT Energy
Voiced 22 per window 80.0±3.7 63.8±6.3 74.2±2.0 68.4 54.6±3.6

Unvoiced 22 per window 76.4±6.7 63.8±4.5 73.6±2.7 61.8 57.6±2.1
Fusion 78.0±5.5 64.6±5.9 73.5±4.2 68.7 58.1±3.2

SSWT Energy
Voiced 22 per window 81.7±4.6 64.2±4.8 75.6±2.9 70.3 56.2±4.0

Unvoiced 22 per window 76.9±6.0 63.1±3.4 74.3±2.8 60.5 58.3±1.9
Fusion 78.5±3.8 65.4±5.3 73.8±3.6 69.3 59.5±3.3

In Berlin the highest result is obtained with the features from OpenEAR, as in the
experiment for high vs low arousal classification. In this case there is a difference around
5% between the results from openEAR and the obtained with spectral+noise+NLD. For the
case of SAVEE and enterface05 the highest result is obtained also with the features from
OpenEAR followed by the obtained using the WPT energy+MFCC+stat. In FAU-Aibo the
highest results are obtained with the features derived from the wavelet measures, the SSWT
energy, and the WPT stat. Finally in IEMOCAP there is not differences between the results
obtained with OpenEAR, spectral+noise+NLD and the wavelet based measures.
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For the WPT based measures, the highest results are obtained when the energy, statistics
functionals and MFCC are merged together and computed on the wavelet coefficients. For
the time-frequency representations based on wavelets the highest results are obtained when
the SSWT is used, but there is not a high difference relative to the other representations.

Finally, note that the results obtained for the classification of positive vs negative valence
emotions are lower than those obtained for the detection of high vs low arousal. This fact
can explained because most of the feature sets used are based on energy measures, which
are widely useful to discriminate emotions in different arousal planes such as happiness vs
sadness, but not to classify emotions in the same arousal plane and with different valence,
such as anger vs happiness.

6.1.3 Results Experiment 3: Fear-type Emotions

Table 6.3 shows the results obtained for the classification of the fear-type emotions e.g.,
anger, disgust, and fear in Berlin, enterface05, and SAVEE. In Berlin and SAVEE the neutral
state is also included.

For this experiment the highest result in Berlin is obtained with the features from Open-
EAR, as in the previous experiments, followed by the features based on the SSWT and the
spectral+noise+NLD. Note that the WPT energy+MFCC+stat provides the highest results in
SAVEE, followed by the prosody measures, which also produce the lowest result in enter-
face05, where the highest result is obtained also with the 384 features from OpenEAR. In
general the features extracted from voiced segments provides higher results than the obtained
with the features extracted from unvoiced. There are some cases where the fusion highly
improves the results relative to the separately classification of voiced and unvoiced segments,
such as the spectral+noise, SSWT, CWT feature sets in SAVEE.

6.1.4 Results Experiment 4: Multiple Emotions

This experiment consists in the classification of multiple emotions from the databases: seven
in Berlin, six in enterface05, seven in SAVEE, five in FAU-Aibo, and four in IEMOCAP.
Table 6.4 shows the results.

As in the three previous experiments, the highest result in Berlin and enterface05 is
obtained with the OpenEAR toolkit. For the case of Berlin, the highest results is followed
by the results obtained with the SSWT energy feature set, with a difference around 10%,
while for enterface05 the second highest result is obtained with the CWT. IN SAVEE the
highest result is obtained with the WPT energy+MFCC+stat. In FAU-AIbo the highest
results is 38.9% using the spectral+noise+NLD feature set. Finally in IEMOCAP the SSWT
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Table 6.3 Results for classification of fear-type emotions

Feature set Segments # Feat. Berlin SAVEE enterface-05
OpenEAR all signal 384 91.4±5.0 65.2±18.1 78.2±5.5
Prosody all signal 38 75.6±7.0 69.5±15.7 52.7±3.7

Spectral+noise
Voiced 15 per window 88.5±9.0 54.5±8.8 71.6±4.9

Unvoiced 37 per window 68.5±8.6 54.5±9.7 57.1±6.2
Fusion 85.6±6.0 68.5±10.8 67.0±7.2

NLD Voiced 4 per window 81.1±10.5 62.2±5.7 63.2±4.1

Spectral+noise+NLD
Voiced 19 per window 88.3±9.8 58.5±14.3 70.2±5.7

Unvoiced 37 per window 68.5±8.6 53.5±8.4 57.1±6.2
Fusion 83.0±9.7 64.5±13.7 66.8±5.7

SP-TARMA stat. Unvoiced 56 per segment 66.5±6.7 61.5±5.1 54.0±4.9
SP-TARMA MFCC Unvoiced 12 per window 70.3±8.3 64.3±7.8 59.7±5.0

WPP energy
Voiced 17 per window 81.7±6.2 57.8±12.7 65.0±4.7

Unvoiced 17 per window 59.5±23.0 56.5±3.8 66.4±6.5
Fusion 81.3±5.8 56.1±11.5 65.9±6.3

WPT energy
Voiced 8 per window 77.8±6.1 65.5±9.7 66.7±5.1

Unvoiced 13 per window 56.5±22.7 48.1±3.5 61.8±6.4
Fusion 74.3±9.7 64.8±13.2 66.0±5.7

WPT MFCC
Voiced 96 per window 80.8±6.0 69.5±11.3 65.9±6.1

Unvoiced 156 per window 64.9±25.1 48.2±3.5 64.9±6.6
Fusion 79.6±4.0 69.5±12.5 68.0±7.3

WPT stat.
Voiced 24 per window 82.3±7.6 65.8±16.1 65.3±4.9

Unvoiced 36 per window 54.1±21.5 51.5±5.5 61.2±4.3
Fusion 77.9±10.7 66.2±14.8 67.3±5.8

WPT energy+MFCC+stat
Voiced 128 per window 84.0±5.7 70.8±13.8 70.9±4.6

Unvoiced 208 per window 69.0±26.6 59.5±14.5 65.4±4.4
Fusion 82.8±6.7 72.2±12.3 71.0±9.0

WPT NLD
Voiced 32 per window 81.7±6.5 64.2±10.2 65.8±4.6

Unvoiced 26 per window 57.2±22.4 48.5±2.0 64.7±5.4
Fusion 84.7±8.1 64.5±12.9 67.4±6.3

CWT Energy
Voiced 22 per window 87.5±8.5 58.5±19.9 69.8±4.4

Unvoiced 22 per window 80.0±6.0 56.5±6.4 69.0±4.3
Fusion 83.9±6.5 67.9±11.4 71.7±4.6

BWT Energy
Voiced 22 per window 86.1±10.0 63.5±20.6 70.3±5.4

Unvoiced 22 per window 78.6±6.6 57.2±6.0 67.6±4.4
Fusion 86.1±5.7 68.2±10.8 70.6±7.2

SSWT Energy
Voiced 22 per window 88.3±7.0 61.5±13.4 70.1±5.8

Unvoiced 22 per window 79.7±6.3 55.8±7.2 69.3±4.4
Fusion 89.6±6.0 68.9±9.4 73.5±6.4

energy features produce the highest result followed by the spectral+noise+stat and the WPT
energy+MFCC+stat with a lower difference. Note also that the features extracted from the
voiced segments produce the highest results and the fusion scheme is useful to improve the
results in several cases, specially in IEMOCAP and database.

For the case of TARMA based features, the highest results are obtained by considering
the MFCCs calculated from the model predictions instead of the measures calculated directly
on the coefficients. These results exhibit an improvement to the study published in [133],
where only the fear-type emotions were considered. The evaluation of TARMA models
must be evaluated more deeply considering other time structures such as syllables and the
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Table 6.4 Results for classification of multiple emotions

Feature set Segments # Feat. Berlin SAVEE enterface-05 FAU-Aibo IEMOCAP
OpenEAR all signal 384 80.4±8.0 49.4±17.6 63.2±6.7 32.5 57.2±2.8
Prosody all signal 38 64.8±6.5 47.7±11.8 31.9±4.4 36.8 50.8±5.0

Spectral+noise
Voiced 15 per window 68.9±11.0 38.3±10.8 49.9±5.4 34.3 47.0±5.6

Unvoiced 37 per window 43.2±6.4 35.4±7.5 33.4±3.8 35.8 52.5±3.6
Fusion 65.9±11.0 44.2±6.8 49.0±5.3 34.8 56.4±3.3

NLD Voiced 4 per window 62.9±7.5 40.6±2.7 40.6±5.0 31.8 48.1±5.2

Spectral+noise+NLD
Voiced 19 per window 69.2±10.2 41.7±11.6 49.0±3.9 38.9 49.6±6.5

Unvoiced 37 per window 43.2±6.4 35.4±7.5 33.8±3.0 29.3 52.5±3.6
Fusion 62.6±11.1 42.7±8.5 47.8±5.3 34.3 56.4±2.9

SP-TARMA stat. Unvoiced 56 per segment 46.1±6.4 34.3±4.4 33.4±2.7 22.5 43.1±3.0
SP-TARMA MFCC Unvoiced 12 per window 47.3±8.0 36.5±5.1 38.0±4.6 27.5 46.3±5.0

WPP energy
Voiced 17 per window 62.0±7.1 40.4±8.8 43.9±4.0 30.1 50.1±3.2

Unvoiced 17 per window 44.0±17.4 34.0±6.7 41.8±2.8 29.0 48.8±4.0
Fusion 61.8±6.9 39.2±9.5 48.1±5.5 32.5 52.2±3.1

WPT energy
Voiced 8 per window 63.0±7.2 44.8±10.0 44.0±4.0 30.5 50.3±3.7

Unvoiced 13 per window 41.0±17.0 32.7±5.0 38.4±6.1 30.0 44.6±4.5
Fusion 59.2±5.9 43.1±8.5 48.1±5.3 32.3 51.2±2.4

WPT MFCC
Voiced 96 per window 63.1±6.0 48.1±11.5 44.0±3.5 36.0 54.5±2.2

Unvoiced 156 per window 46.8±18.5 42.3±14.2 38.7±4.3 34.8 53.6±5.0
Fusion 60.9±8.5 48.5±11.0 46.7±4.8 35.4 55.5±2.1

WPT stat.
Voiced 24 per window 61.5±5.1 43.8±13.7 43.0±3.3 29.0 49.1±5.4

Unvoiced 36 per window 39.9±16.2 30.6±4.6 35.7±4.4 33.0 45.4±4.4
Fusion 58.6±6.2 48.8±11.5 41.8±4.4 32.4 50.1±2.2

WPT energy+MFCC+stat
Voiced 128 per window 65.0±3.7 50.2±12.5 49.2±3.0 38.0 56.1±2.3

Unvoiced 208 per window 48.8±18.9 41.5±11.9 38.9±3.8 28.6 50.1±9.3
Fusion 66.1±4.8 51.7±14.0 48.7±6.1 38.6 57.1±4.3

WPT NLD
Voiced 32 per window 62.4±7.0 45.8±9.6 42.2±3.2 30.2 50.1±3.6

Unvoiced 26 per window 40.9±15.9 30.6±4.6 40.8±3.9 26.8 49.3±5.7
Fusion 64.0±7.4 45.6±9.3 44.3±3.9 31.5 52.5±4.5

CWT Energy
Voiced 22 per window 61.3±8.3 40.6±13.5 48.4±4.7 35.5 46.7±6.0

Unvoiced 22 per window 54.7±6.6 39.4±5.8 45.7±4.0 34.0 51.3±3.6
Fusion 66.6±6.5 43.8±9.0 51.3±5.6 34.5 55.9±5.0

BWT Energy
Voiced 22 per window 63.7±9.1 41.2±14.9 48.4±4.4 32.1 46.6±5.3

Unvoiced 22 per window 55.5±7.4 39.8±4.3 44.9±4.3 30.2 51.2±3.9
Fusion 66.5±7.7 47.3±10.3 49.7±4.3 34.1 55.2±5.7

SSWT Energy
Voiced 22 per window 64.0±8.0 42.7±11.1 48.0±3.5 32.6 48.7±5.0

Unvoiced 22 per window 55.0±8.2 39.6±6.2 45.9±3.6 21.8 52.0±2.9
Fusion 69.3±7.6 45.4±12.1 48.8±5.8 31.4 58.2±4.1

transitions between voiced and unvoiced segments. Other measures from TARMA models
must be also implemented and analyzed.

An additional experiment was performed in Berlin database for the classification of the
seven emotions using features derived from the WPT in different decomposition levels from
the first to the seventh considering three sets of decomposition packets: (1) the all packets
from each level, which are related to the complete spectrum of the signal, (2) the lowest half
packets, which represent the low frequency components of the spectrum, and (3) the highest
frequency packets. Figure 6.1 shows the results of this analysis both for voiced (up), and
unvoiced segments (bottom).



6.1 Classification of Noise-Free Speech Signals 71

30

40

50

60

70

80 Voiced Frames

1 2 3 4 5 6 7
1
−
2

2
−
3

3
−
4

4
−
5

5
−
6

6
−
7

1
−
2
−
3

2
−
3
−
4

3
−
4
−
5

4
−
5
−
6

5
−
6
−
7

1
−
2
−
3
−
4

2
−
3
−
4
−
5

3
−
4
−
5
−
6

4
−
5
−
6
−
7

1
−
2
−
3
−
4
−
5

2
−
3
−
4
−
5
−
6

3
−
4
−
5
−
6
−
7

1
−
2
−
3
−
4
−
5
−
6

2
−
3
−
4
−
5
−
6
−
7

1
−
2
−
3
−
4
−
5
−
6
−
7

U
A

R
 (

%
)

10

20

30

40

50

60

70
Unvoiced Frames

1 2 3 4 5 6 7
1
−
2

2
−
3

3
−
4

4
−
5

5
−
6

6
−
7

1
−
2
−
3

2
−
3
−
4

3
−
4
−
5

4
−
5
−
6

5
−
6
−
7

1
−
2
−
3
−
4

2
−
3
−
4
−
5

3
−
4
−
5
−
6

4
−
5
−
6
−
7

1
−
2
−
3
−
4
−
5

2
−
3
−
4
−
5
−
6

3
−
4
−
5
−
6
−
7

1
−
2
−
3
−
4
−
5
−
6

2
−
3
−
4
−
5
−
6
−
7

1
−
2
−
3
−
4
−
5
−
6
−
7

Levels of WPT

U
A

R
 (

%
)

 

 

All packets Low freq. packets High freq. packets

Fig. 6.1 Results for WPT in different levels. Voiced frames (up), Unvoiced frames (bottom)

The results indicate that the highest results are obtained when all frequency packets are
considered, but when only the low frequency packets are used, the results are close to those
obtained with all coefficients in several levels. The lowest results are obtained when only the
higher frequency nodes are classified. These results allow to conclude that the low frequency
packets contain the most suitable information to characterize emotions from speech, which
allow to reduce to the half the number of features without considering the high frequency
nodes. According to the decomposition levels, the highest results are obtained considering
the levels 3, 4, 5, and 6. Levels 1 and 2 produce a low resolution in frequency and a small
number of features, which causes that those nodes may not suitable to increase the results. On
the other hand the seventh level provides a high resolution in frequency and a low resolution
in time, which produces a high number of features that increase the complexity of the system.
For that case the improvement in the results is low relative to the number of added features.

6.1.5 Summary and Comparisons

Table 6.5 shows the comparison between the results obtained with the proposed features
relative to those reported in the state of the art both for arousal, valence, and classification of
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all emotions in Berlin, enterface05, IEMOCAP, and FAU-Aibo. In FAU-Aibo and IEMOCAP
the same constellations of train and test sets were also considered, which make that the
results be directly comparable. The results obtained for the discrimination between high-low
arousal emotions, and positive-negative valence emotions are similar to the reported in the
state of the art using the same databases. For the classification of all emotion the results
obtained in Berlin and enterface05 databases does not equal those reported in the related
works. However, in FAU-Aibo and IEMOCAP, we obtain results close to the reported in the
state of art.

Table 6.5 Comparison of the results obtained with the state of the art

Source # Feat. Arousal Valence All
Berlin database

[37] 384 96.0% 80.0% 80.0%
[39] 6552 97.4% 87.5% 81.9%
[49] 42 − − 77.9%
[56] 12 per frame − − 68.1%

[134] 88 97.8% 86.7% 86.0%
OpenEAR 384 97.3% 87.2% 80.4%

Acoustic+NLD 19 per frame 96.9% 82.9% 69.2%
WPT 128 per frame 95.7% 81.2% 66.1%

SSWT 22 per frame 95.8% 81.7% 69.3%
enterface05 database

[37] 384 76.0% 65.0% 68.0%
[39] 6552 80.8% 79.7% 61.1%
[40] 1582 − − 69.3%
[49] 42 − − 53.9%

OpenEAR 384 81.0% 81.4% 63.2%
Acoustic+NLD 19 per frame 80.2% 74.9% 49.0%

WPT 128 per frame 79.7% 75.9% 49.2%
SSWT 22 per frame 81.1% 75.6% 48.0%

IEMOCAP database
[38] 384 − − 56.3%
[43] 513 − − 56.7%
[41] 1584 − − 63.1%

OpenEAR 384 75.5% 59.0% 57.2%
Acoustic+NLD 37 per frame 75.1% 59.5% 56.4%

WPT 128 per frame 75.4% 59.1% 57.1%
SSWT 22 per frame 77.2% 59.5% 58.2%

FAU-Aibo database
[38] 384 − − 39.9%
[42] 384 − 64.2% −
[50] 1584 − − 44.2%

[134] 88 − 76.5% 43.1%
OpenEAR 384 − 62.0% 32.5%

Acoustic+NLD 19 per frame − 69.6% 38.9%
WPT 128 per frame − 68.2% 38.0%

SSWT 22 per frame − 70.3% 32.6%

6.2 Results in Signals Corrupted by Additive Noise

For this experiment, we consider the speech recordings from Berlin, enterface05, and FAU-
Aibo databases corrupted by two environmental additive noise conditions: Street and cafeteria
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babble. The two SE algorithms (KLT and logMMSE) are also considered. The performance
of four different feature sets are evaluated with the noisy signals: (1) the OpenEAR features,
(2) the spectral+noise+NLD features, (3) the WPT energy+MFCC+stat, and (4) the features
derived from SSWT. The next subsections include the results for the four experiments.

6.2.1 Results Experiment 1: High vs Low Arousal Emotions

Figures 6.2, 6.3, 6.4, and 6.5 show the results obtained with the four feature sets. The figures
show the results obtained in Berlin and enterface05 databases. The red line in each figure
indicates the result obtained with the original (noise-free) recordings. The horizontal axis
indicates the results at different SNR levels, and each bar shows the results of the noisy and
enhanced signals.
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Fig. 6.2 Classification of Arousal considering OpenEAR features
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Fig. 6.3 Classification of Arousal considering spectral+noise+NLD features

For this experiment note that there is not a high difference in the results between those
obtained with the noisy and enhanced signals for the four feature sets.
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Fig. 6.4 Classification of Arousal considering WPT based features
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Fig. 6.5 Classification of Arousal considering SSWT based features

6.2.2 Results Experiment 2: Positive vs Negative Valence Emotions

Figures 6.6, 6.7, 6.8, and 6.9 contain the results for the evaluation of openEAR, spec-
tral+noise+NLD, WPT based and SSWT based features in the noisy conditions for the
valence detection.

For the case of OpenEAR, there is a reduction in the results due to the noise in most of
cases in the three databases, except with the street noise in Berlin. Note that the degradation
produced by the the cafeteria noise is more critical than the produced by the street noise, in
the three databases, and that in enterface05 the logMMSE improves the results

For the case of spectral+noise+NLD features there is a high difference between the results
obtained with the noisy and the noise-free signals, specially in Berlin and FAU-Aibo. Note
also that in FAU-Aibo non of the SE algorithms improve the results relative to the noisy
signals.
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Fig. 6.6 Classification of Valence considering OpenEAR features
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Fig. 6.7 Classification of Valence considering spectral+noise+NLD features
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Fig. 6.8 Classification of Valence considering WPT based features

The logMMSE improves the results for the features based on the WPT for the signals
affected by the street noise both in the Berlin and, the enterface05.
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In general for all feature sets, in FAU-Aibo database the SE algorithms do not improve
the results relative to the obtained with the noisy signals. The hypothesis for such case
is that both SE techniques need a silence part of fixed duration for the characterization of
background noise, and in FAU-Aibo database, there is not provided such silence segment
due to the way that were segmented the recordings of the database.
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Fig. 6.9 Classification of Valence considering SSWT based features

Finally for the SSWT based measures note that the signals affected by cafeteria produce
the lowest results in all cases.

6.2.3 Results Experiment 3: Fear-Type Emotions

Figures 6.10, 6.11, 6.12, and 6.13 contain the results of the classification of the fear-type
emotions for openEAR, spectral+noise+NLD, WPT and SSWT based features, respectively.

0 3 6
0

20

40

60

80

100
Berlin DB

SNR (dB)

U
A

R
 (

%
)

 

 

Noisy Cafeteria KLT Cafeteria LogMMSE Cafeteria Noisy Street KLT Street LogMMSE Street

0 3 6
0

10

20

30

40

50

60

70

80
enterface DB

SNR (dB)

U
A

R
 (

%
)

 

 

Noisy Cafeteria KLT Cafeteria LogMMSE Cafeteria Noisy Street KLT Street LogMMSE Street

Fig. 6.10 Classification of Fear-type emotions considering OpenEAR features

Note that in enterface05 when the OpenEAR feature set is used there is a high difference
between the results of the classification of the noisy signals, and those obtained with the
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Fig. 6.11 Classification of Fear-type emotions considering spectral+noise+NLD features
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Fig. 6.12 Classification of Fear-type emotions considering WPT based features
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Fig. 6.13 Classification of Fear-type emotions considering SSWT based features

original recordings. Note also the cafeteria babble noise produces the lower results, and the
KLT algorithm reduces the performance of the classifier in all cases.
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For the case of WPT and SSWT based measures the logMMSE algorithm improves the
results in almost all cases, specially in street noise; for example in the WPT in enterface05
when SNR = 6dB, and in SSWT in Berlin in all cases and enterface05 when SNR = 0dB.

6.2.4 Results Experiment 4: Multiple Emotions

Figures 6.14, 6.15, 6.16, and 6.17 show the results of the OpenEAR, spectral+noise+NLD,
WPT, and SSWT for the classification of all emotions from the databases.
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Fig. 6.14 Classification of All emotions considering OpenEAR features

Note that with OpenEAR the logMMSE improves the results in enterface05, specially in
the signals affected by street noise. In FAU-Aibo the speech enhancement algorithms do not
improve the results due to the reasons previously described.
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Fig. 6.15 Classification of All emotions considering spectral+noise+NLD features

For the case of spectral+noise+NLD features, note that the SE techniques improve
the results relative to the obtained with the noisy signals, both in Berlin and enterface05,
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specially the logMMSE algorithm evaluated in street noise, as can be observed in Berlin
when SNR = 6dB, and in enterface05 when SNR = 0dB, and SNR = 3dB.
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Fig. 6.16 Classification of All emotions considering WPT based features

0 3 6
0

10

20

30

40

50

60

70
Berlin DB

SNR (dB)

U
A

R
 (

%
)

 

 

Noisy Cafeteria KLT Cafeteria LogMMSE Cafeteria Noisy Street KLT Street LogMMSE Street

0 3 6
0

10

20

30

40

50
enterface DB

SNR (dB)

U
A

R
 (

%
)

 

 

Noisy Cafeteria KLT Cafeteria LogMMSE Cafeteria Noisy Street KLT Street LogMMSE Street

Fig. 6.17 Classification of All emotions considering SSWT based features

Finally, for the wavelet based measures, the logMMSE also improves the results for the
case of street noise in Berlin and enterface05 databases.

6.3 Results in Signals Recorded in Noisy Environments

In this case the recordings of Berlin database were re-captured in two kinds of environmental
noise: street and office. The recordings were also processed by the KLT and logMMSE
algorithms. Table 6.6 shows the results obtained for the four experiments and considering
four feature sets: (1) OpenEAR, (2) spectral+noise+NLD measures, (3) The WPT based
features calculated on the selected decompositions, and (4) the SSWT based features.
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Table 6.6 Results for Berlin DB re-captured in noisy environments

Recordings OpenEAR Acoustic+NLD WPT MRA SSWT
High-Low arousal detection

Street Noise 95.8±6.1 95.5±6.7 96.5±3.2 95.5±6.2
Office Noise 96.4±4.0 94.9±6.2 96.3±4.5 96.7±4.0
KLT Street 95.1±5.0 95.1±6.8 96.7±3.2 96.4±5.6
KLT Office 95.6±5.1 94.4±7.0 97.1±3.4 96.7±4.5

logMMSE Street 95.7±4.0 94.7±5.8 96.4±2.9 96.2±4.6
logMMSE Office 96.1±3.7 95.2±5.2 96.0±3.9 96.0±3.3

Original 97.3±3.0 96.9±4.4 95.7±4.0 95.8±5.5
Positive-Negative valence detection

Street Noise 86.0±2.5 81.9±6.9 79.3±4.7 82.3±4.5
Office Noise 88.0±3.3 83.5±5.7 80.2±4.9 81.3±5.7
KLT Street 85.3±4.2 83.1±5.7 80.4±4.2 81.8±5.3
KLT Office 86.5±4.0 83.1±6.8 80.1±6.3 81.6±3.3

logMMSE Street 86.3±5.0 82.6±7.2 78.3±6.2 81.3±6.7
logMMSE Office 82.6±4.2 82.2±4.8 78.4±5.9 81.8±5.7

Original 87.2±2.4 82.9±5.8 81.2±3.3 81.7±4.6
Fear-Type emotion classification

Street Noise 91.6±5.3 87.3±9.8 84.8±7.1 85.6±9.1
Office Noise 91.3±3.7 86.9±9.4 87.0±6.1 87.2±9.2
KLT Street 85.4±6.4 87.0±8.0 85.5±6.8 85.5±9.1
KLT Office 89.9±5.3 87.9±9.8 85.3±5.4 85.2±7.9

logMMSE Street 86.9±5.7 85.2±7.8 81.5±5.9 82.8±10.3
logMMSE Office 87.1±7.4 85.5±8.9 81.3±4.2 84.3±6.0

Original 91.4±5.0 88.3±9.8 84.7±5.7 88.3±7.0
All emotion classification

Street Noise 78.1±4.4 67.3±9.0 64.7±5.0 63.3±4.0
Office Noise 76.5±6.3 66.8±9.3 66.6±4.4 65.4±7.5
KLT Street 75.5±7.9 68.1±10.0 65.3±4.8 63.7±6.9
KLT Office 73.7±7.0 69.0±10.2 66.5±4.9 63.5±7.7

logMMSE Street 75.8±6.0 66.2±7.0 62.0±5.7 59.9±6.2
logMMSE Office 74.9±5.7 66.0±7.6 64.3±5.9 61.9±6.4

Original 80.4±8.0 69.2±10.2 65.0±3.8 64.0±8.0

The results indicate that there is not a great effect produced by the re-capturing process.
For the classification of low-high arousal emotions, the highest difference between the results
obtained with the noisy and the noise-free signals is 2%, which is found with the spec-
tral+noise+NLD feature set in the recordings affected by office noise. For the discrimination
between positive-negative valence emotions the highest reduction is also of 2% with the WPT
based measures, in signals affected by street noise. For the classification of the fear-type
emotions, the lowest result is produced also by street noise, but using the SSWT based
features. Finally for the classification of all emotions, the highest difference between the
results of noise-free and noisy signals is of 4%, which is obtained with the features computed
with OpenEAR. Note also that the two algorithms for SE do not improve the results relative
to the obtained with the noisy recordings, contrary to the case of the additive noise, when the
logMMSE improved the results. The hypothesis to explain this behavior is that when signals
are re-captured, the loss of quality is less critical than when the recordings are affected by
additive artificial noise. This fact reflect that the SE algorithms only provide an improvement
in cases when the SNR is lower than a certain threshold. In other words when the speech
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recordings are affected by a critical background noise, instead of the normal noise captured
in an office environment.

6.4 Results in Signals Compressed by Telephony Codecs

These environments include the evaluation of seven codecs for speech compression, which
are commonly used in VoIP, and mobile telephone channels, the codecs are: AMR-NB,
AMR-WB, GSM, G.722, G.726, SILK, and Opus. The detailed description was performed
in Section 4.2. Different bit-rates of the AMR-NB, and AMR-WB were also considered.
The results are compared to those obtained with the original, and down-sampled to 8 kHz
recordings.

Tables 6.7 and 6.8 contains the results for the evaluation of telephony codecs both for the
Berlin and enterface05 databases, respectively. the four experiments, and the four feature
sets evaluated.

For the case of Berlin database for the classification of high vs low arousal emotions,
note that the results obtained with all the feature sets were not affected by the presence of
the codecs. For the discrimination between positive and negative emotions the results with
OpenEAR features are decreased in up to 7%, while the highest decreasing in the results
with the other feature sets is 5% for the spectral+noise+NLD, 7% with the WPT-AMR, and
1% with the SSWT. For the fear-type emotion classification the highest difference between
the results of compressed and original recordings is: 9% using openEAR, 6% using the
spectral+noise+NLD, 14% considering the WPT-AMR, and 6% using the SSWT based
features. Finally, for the classification of all emotions, the highest difference are is of 6%
using OpenEAR, 7% considering the spectral+noise+NLD, 11% using the WPT-AMR based
measures, and 3% with the SSWT based features.

Note that in all cases the highest reduction is produced by the AMR-NB codecs, with
different bit rates, and the codecs that less decrease the performance are AMR-WB, and
Opus. Note also that the SSWT based features are the less affected by the telephony codec
compression, while the features extracted from signals compressed by WPT-AMR are those
which exhibit the highest reduction due to the compression effect.

For the enterface05 database there is also a significant effect produced by the codecs for
the classification of fear-type and all emotions, specially in AMR-NB, and G.726 codecs.
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Table 6.7 Results in telephony codecs for Berlin database

Recording Bit-rate [Kbps] OpenEAR Acoustic+NLD WPT-MRA SSWT
High-Low arousal detection

Original 256 97.3±3.0 94.9±7.1 95.7±4.0 95.8±5.5
Down-sampled 128 95.7±3.9 94.5±6.8 94.1±5.0 94.9±4.3

AMR-NB 4.75 95.9±3.9 94.8±5.7 91.8±5.6 92.8±4.4
AMR-NB 7.95 95.3±4.0 94.3±6.7 92.3±3.3 94.5±5.1

GSM 12.2 96.6±4.2 93.6±6.2 91.5±2.9 94.3±5.2
AMR-WB 6.6 96.9±5.2 93.7±7.0 91.7±3.0 95.6±4.4
AMR-WB 23.85 96.8±6.2 93.9±7.0 92.5±3.7 95.5±5.4

G.722 64 97.2±5.6 93.4±6.7 93.6±3.7 95.5±5.8
G.726 16 96.9±2.9 93.3±5.9 91.4±3.1 94.2±4.7
SILK 64* 96.9±6.6 94.3±5.7 93.2±2.4 95.9±5.5
Opus 25* 98.7±3.3 94.2±5.8 93.6±3.8 95.7±5.3

Positive-Negative valence detection
Original 256 87.2±2.4 83.5±4.3 81.2±3.3 81.7±4.6

Down-sampled 128 83.3±4.7 81.0±5.2 77.2±5.4 82.2±5.5
AMR-NB 4.75 82.6±7.3 78.9±4.7 74.8±6.9 80.5±5.7
AMR-NB 7.95 80.8±4.8 79.4±4.4 75.1±6.9 81.5±4.6

GSM 12.2 80.6±5.0 80.9±5.7 72.8±7.0 82.4±5.8
AMR-WB 6.6 86.0±3.5 81.3±4.5 74.1±7.2 82.1±4.7
AMR-WB 23.85 87.1±5.1 81.4±4.8 73.6±5.8 81.0±4.8

G.722 64 82.4±3.7 82.2±3.3 75.3±6.3 81.9±3.8
G.726 16 81.6±4.5 81.2±4.9 73.3±6.5 81.6±4.9
SILK 64* 83.7±2.6 79.0±5.5 76.8±6.7 82.0±5.0
Opus 25* 85.2±5.3 79.5±4.1 78.4±7.9 82.7±4.5

Fear-Type emotion classification
Original 256 91.4±5.0 88.5±11.0 84.0±5.7 88.3±7.0

Down-sampled 128 82.1±6.4 85.0±9.1 81.8±5.6 84.6±5.7
AMR-NB 4.75 83.1±6.0 83.5±10.7 70.4±23.5 82.8±8.0
AMR-NB 7.95 84.9±5.9 84.6±12.4 78.9±5.4 83.6±5.8

GSM 12.2 81.9±4.5 82.0±8.8 81.3±6.5 82.0±5.5
AMR-WB 6.6 83.9±8.1 85.7±8.4 82.0±6.8 87.1±6.6
AMR-WB 23.85 86.9±7.1 84.0±9.5 81.3±10.0 85.3±8.4

G.722 64 87.7±4.2 86.1±8.0 76.1±26.1 87.0±5.5
G.726 16 82.2±4.8 80.0±7.5 77.1±15.6 83.7±5.7
SILK 64* 87.6±7.1 84.1±7.9 76.4±25.8 87.4±7.1
Opus 25* 90.2±6.1 85.0±8.3 76.5±25.8 86.5±6.4

All emotion classification
Original 256 80.4±8.0 68.9±11.0 65.0±3.7 64.0±8.0

Down-sampled 128 74.4±6.4 65.5±8.1 61.9±7.2 65.2±7.0
AMR-NB 4.75 74.7±6.2 64.7±7.8 54.9±17.3 62.5±6.0
AMR-NB 7.95 74.0±5.4 64.6±8.0 61.6±4.1 62.8±5.0

GSM 12.2 74.3±5.6 64.5±6.8 61.0±6.5 63.6±6.6
AMR-WB 6.6 78.8±6.7 65.5±10.9 63.6±4.8 61.3±6.3
AMR-WB 23.85 77.5±6.3 62.4±9.0 63.9±4.9 64.7±9.6

G.722 64 79.8±6.6 64.5±7.0 58.2±19.4 66.6±7.9
G.726 16 75.8±7.6 64.5±7.3 59.9±5.7 62.1±7.4
SILK 64* 76.8±5.8 65.4±9.0 59.3±20.3 63.3±7.0
Opus 25* 77.5±5.1 61.8±8.8 59.2±20.2 64.7±6.3

* Mean bit rate

6.5 Summary

The main results obtained with the proposed approaches were described in this section. The
different feature sets based on acoustics, NLD, and wavelet measures were tested in four
experiments: (1) detection of high vs low arousal emotions, (2) classification of positive vs
negative valence emotions, (3) recognition of fear-type emotions, and (4) the classification of
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Table 6.8 Results in telephony codecs for enterface05 database

Recording Bit-rate [Kbps] OpenEAR Acoustic+NLD WPT-MRA SSWT
High-Low arousal detection

Original 256 81.0±2.0 80.2±1.9 80.7±5.0 81.1±1.7
Down-sampled 128 80.3±4.0 79.4±0.9 77.8±1.5 79.4±1.9

AMR-NB 4.75 82.2±3.6 79.2±1.0 77.9±1.0 79.3±1.3
AMR-NB 7.95 83.1±3.7 80.0±1.4 77.7±1.1 79.6±1.8

GSM 12.2 82.3±3.6 79.0±1.3 77.2±0.7 79.6±1.5
AMR-WB 6.6 83.3±2.7 80.0±1.5 77.2±1.0 80.5±1.4
AMR-WB 23.85 82.7±3.9 79.5±1.8 77.6±0.9 80.5±1.8

G.722 64 82.5±3.9 79.5±1.3 78.4±1.4 80.5±1.2
G.726 16 82.0±3.7 79.5±1.7 76.6±0.5 79.8±1.9
SILK 64* 82.6±3.9 78.5±1.2 78.9±1.6 81.1±1.7
Opus 25* 83.5±4.1 78.8±0.9 81.3±1.9 79.8±1.9

Positive-Negative valence detection
Original 256 81.4±5.5 75.1±2.5 75.9±3.0 75.6±2.9

Down-sampled 128 78.6±3.3 74.2±2.8 69.6±1.7 75.0±2.4
AMR-NB 4.75 77.8±3.8 73.8±2.2 68.5±1.0 73.7±2.4
AMR-NB 7.95 77.0±4.6 73.6±2.3 70.4±2.0 74.8±2.3

GSM 12.2 77.6±3.3 73.9±2.5 69.6±1.4 74.7±3.3
AMR-WB 6.6 79.4±3.8 75.0±3.1 71.9±1.9 75.2±1.9
AMR-WB 23.85 77.6±4.2 74.5±1.7 71.6±2.8 75.4±1.8

G.722 64 78.7±3.9 74.3±2.4 71.8±1.6 75.9±2.9
G.726 16 78.5±3.0 73.1±2.1 68.5±1.0 74.6±3.0
SILK 64* 78.5±4.5 74.5±2.5 73.0±3.2 76.6±3.5
Opus 25* 77.9±3.9 72.2±1.4 71.4±3.0 75.5±1.3

Fear-Type emotion classification
Original 256 78.2±5.5 71.6±4.9 70.9±4.6 70.1±5.8

Down-sampled 128 76.0±4.8 70.2±4.9 59.2±4.3 69.5±5.2
AMR-NB 4.75 75.8±5.0 70.0±6.2 58.7±4.7 67.7±4.6
AMR-NB 7.95 75.8±3.8 68.1±4.9 57.0±4.6 70.0±4.7

GSM 12.2 76.7±4.4 69.0±5.5 58.0±3.0 70.3±4.2
AMR-WB 6.6 77.5±4.0 73.3±3.7 59.9±4.7 70.8±4.1
AMR-WB 23.85 79.0±3.5 70.4±5.3 63.0±6.4 72.3±6.4

G.722 64 79.0±5.1 71.7±4.5 62.9±5.4 71.0±5.6
G.726 16 76.6±4.6 69.7±4.4 58.7±5.0 67.7±5.3
SILK 64* 77.6±4.0 70.7±6.2 65.5±3.9 72.1±6.7
Opus 25* 76.6±4.7 71.9±6.0 62.5±4.1 69.9±5.9

All emotion classification
Original 256 63.2±6.7 49.9±5.4 49.2±3.0 48.0±3.5

Down-sampled 128 55.5±6.0 45.8±4.0 35.4±3.0 45.3±4.2
AMR-NB 4.75 54.6±5.7 45.5±4.9 34.8±3.7 44.7±3.6
AMR-NB 7.95 55.0±4.8 45.0±4.1 35.0±4.3 47.0±4.1

GSM 12.2 55.0±4.5 46.0±5.1 34.7±3.1 45.7±4.6
AMR-WB 6.6 56.7±5.0 48.8±4.3 37.5±4.4 47.9±3.4
AMR-WB 23.85 58.1±4.0 47.7±3.5 39.6±4.7 48.4±3.5

G.722 64 57.4±6.1 47.5±4.1 40.3±4.9 50.1±3.6
G.726 16 54.1±4.8 45.4±4.0 33.5±3.4 44.7±3.6
SILK 64* 58.2±4.3 46.9±5.2 42.5±5.1 49.6±3.8
Opus 25* 57.0±4.3 45.6±4.0 41.4±3.8 48.4±4.4

* Mean bit rate

multiple emotions. The experiments were performed in different acoustic conditions: the
noise-free speech signals, the signals corrupted by additive noise, the re-captured recordings
in noisy environments, and the signals compressed by telephony codecs. For the noisys
conditions, the performance of two SE algorithms is also tested. According to results, all
feature sets are more robust for the discrimination between high and low arousal emotions
than for the detection of positive vs negative valence. The results obtained for the 2-classes
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classification experiments are close to the reported in the state of the art. The proposed
approaches are also suitable for the recognition of fear-type emotions from speech. The next
chapter describes the main conclusions derived from this study and the future work.



Chapter 7

Conclusion and Future Work

This research work aims in the development of a methodology for the automatic recognition of
emotions from speech signals in non-controlled noise conditions. For that purpose, different
feature sets were proposed. Measures derived from acoustic, non-linear, and wavelet analysis
were computred to characterize the emotions from five different databases widely used in the
state of art: Berlin, enterface05, SAVEE, FAU-Aibo, and IEMOCAP. The non-controlled
noise conditions were tested considering four scenarios: (1) the original noise-free recordings,
(2) the signals corrupted by two additive environmental noises, which were recorded in a
street and a cafeteria, (3) the re-captured signals in two natural noisy environments as street
and office, and (4) the recordings compressed by seven codecs used for the transmission
through different telephone channels. A classification scheme based on the combination of
GMM and SVM was used for the analysis.

For the original noise-free recordings, all the feature sets selected are more suitable
for the recognition of emotions according to the arousal dimension rather than the valence
domain. As consequence, there is a strong need for the definition of features which are
useful to discriminate between different emotions which are similar according to the arousal
dimension and different in the valence such as happiness and anger.

The results obtained for the discrimination between high vs arousal emotions, and positive
vs negative valence emotions are similar to the reported in the state of the art, with the advan-
tage that some of the proposed approaches consider a less number of features than the used
in related works, using the same databases. For the fear-type emotion classification different
results are obtained according to the feature set used and the database. The highest results
are obtained in Berlin, followed by SAVEE and enterface05. Finally for the classification of
all emotion, the results obtained in Berlin, enterface05, and SAVEE databases do not equal
those reported in the state of art. However, in FAU-Aibo and IEMOCAP databases, we obtain
results close to the reported in related works for that multi-class analysis.
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According to the different feature sets used in this study, the highest results are achieved
by considering the features derived from the acoustic analysis, the wavelet multi-resolution
decomposition, and the synchro-squeezed wavelet transform. On the other hand, the NLD
measures improve the results obtained when they are combined with the spectral features,
indicating that the NLD analysis provides suitable information to characterize emotions from
speech signals, and it can be used as complement to the conventional acoustic analysis.

The use of TARMA models to characterize emotions in speech is also proposed to analyze
the non-stationary processes produced in the speech signals. The results show be promising
for such analysis. However, a deeper study related to such methods and models must be
addressed to find the most suitable features in order to improve the results.

The multi-resolution analysis using the WPT proves to be useful to characterize the
emotional content in speech. According to the results, the analysis of the low frequency
zone of the spectrum characterized considering the WPT produces the same results than the
obtained considering all spectrum, which allow to reduce the number of features in half. Also
the highest results are obtained for levels three, four, and five.

The time-frequency representations considered in this study include different versions of
the wavelet transform, as the conventional continuous representation of the wavelet transform,
the bionic wavelet transform, and the synchro-squeezed wavelet transform. The best results
are achieved using the SSWT in most of cases, indicating that the re-allocating method that
sharpens the frequency components of the spectrum to a narrower band provides to be useful
to characterize emotional speech.

Most of the characterization approaches proposed in this work are evaluated separately
for voiced and unvoiced segments. Then a fusion scheme is used to combine both feature
sets. For the most of cases, higher results are obtained with the features derived from voiced
segments instead of the calculated from unvoiced segments. The fusion scheme shows to be
useful in cases when both feature sets produce similar results in the separately classification.

For the analysis of signals in non-controlled noise conditions, the performance of two
algorithms for speech enhancement was evaluated to determine if they are suitable to improve
the classification results when the speech signals are corrupted by noise with different SNR
levels. The first algorithm is based on a statistical characterization of noise (logMMSE), and
the other is based on the subspace decomposition of the speech signals using a transformation
based on PCA (KLT).

The effect of two noise environments is evaluated in this study by adding to the original
signals the recordings of background noise from a cafeteria babble, and a street. The results
obtained for such environments indicate that the reduction in the classification rate is more
critical for the cafeteria babble than for the street noise. For the most of cases the logMMSE
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algorithm is able to improve the results respect to those achieved with the noisy signals.
The suitability of KLT algorithm to improve the classification rate is not clear due to some
contradictory results.

An additional experiment was performed to evaluate the effect of non-additive noise
conditions. For that case the recordings were re-captured under two different noisy environ-
ments using a professional audio monitor, an omnidirectional microphone, and a professional
audio card. The noisy environments consider the noise produced in a street and in an office
with an air conditioning unit. The results indicate that there is no a significant effect in the
classification rates due to the effect of these noisy conditions. The reduction is lower than
the produced in the additive noise conditions. The SNR for the re-captured signals is around
8 dB compared to the evaluated in the noisy additive environments (0 dB, 3 dB, and 6 dB).
The speech enhancement algorithms do not improve the classification rate with respect to the
corrputed signals.

For the future work, other speech enhancement approaches might be evaluated to guar-
antee a better performance in the classification of noisy speech signals. More naturalistic
non-controlled noise scenarios must be considered, which allow evaluate the noise influences
on the speaking style such as the Lombard effect, and non-additive noise.

The effect of compression of the speech signal with state-of-the-art codecs is also eval-
uated in this study. The evaluation of such effects is performed independently of other
distortion of the signal when transmitting through a communications channel. The codecs
were selected based on their relevance in modern communications systems such as VoIP
and mobile phone networks. The results indicate that the compression does not produce a
considerable degradation of the results. However, the bit-rate of the codecs used also plays a
relevant role on the classification results. Lower bit-rates tend to decrease the results. Future
work should address other distortions generated on the speech signal by the communications
channel and how they affect the performance of automatic recognition of emotions systems,
i.e., loss of packages and delays in VoIP channels.





Appendix A

Speech Enhancement

A.1 Statistical model based (logMMSE)

These methods were proposed in [127]. The algorithm is based on finding an estimator of
the noise-free speech signal x(t) that minimizes the mean square error calculated between
the log-spectrum of the noise-free speech signal and the estimator. With such a purpose,
the authors find an estimator obtained directly from the amplitude spectrum of the noisy
observable signal y(t), multiplied by a non-linear gain function which depends only of the a
priori SNR estimated with the first 120 ms of the noisy speech signal and updated in each
silence part.

Let Xk = Ake jαk, Nk, and Yk = Rke jβk denote the k−th component of the spectrum of the
clean, the noise, and the observable signals. The main objective is to find the estimator Âk

that minimizes the distortion measure expressed in Equation A.1. The estimator Âk can be
calculated according to the Equation A.2

E
{[

log(Ak)− log(Âk)
]2
}

(A.1)

Âk = exp{E [log(Ak) |Yk]} (A.2)

The desired estimator Âk can be calculated according to Equation A.3. The procedure to
derive such Equation is explained with detail in [127]. The term ξk is referred to the a priori
SNR of the noisy signal, and νk is defined according to Equation A.4.

Âk =
ξk

1+ξk
exp
{

1
2

∫
∞

νk

e−t

t
dt
}

Rk (A.3)
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νk
∆

=
ξk

1+ξk
λk (A.4)

Where the term λk satisfy the relationship 1
λk

= 1
λx
+ 1

λn
. λx, and λn are the variance of the

signal and the noise, respectively. Figure A.1 shows an example of the performance of this
method. Figure includes the spectrogram of a signal corrupted by two different kinds of noise
(cafeteria and street) with SNR = 0dB before (left) and after (right) the speech enhancement.
Note the improvement in the quality, specially for the case of the noisy street.

Fig. A.1 Performace of logMMSE technique for Speech enhancement

A.2 Subspace decomposition based (KLT)

This is a non-parametric technique based on the decomposition of the vector space of a noisy
signal into two subspaces: one for the noise-free speech signal and other for the background
noise. The decomposition can be performed by applying the Karnuhen-Loève Transformation
(KLT) to the noisy signal [135]. Such transformation is related to the principal component
analysis (PCA). For the analysis it is assumed that the noise is additive and uncorrelated
with the noise-free signal. The methods based on subspace decomposition can minimize the
speech distortion while keeping the residual noise below a present threshold [128, 135].
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A generalized sub-space approach was proposed in [128] with the purpose of remove
colored noise. The clean signal is estimated by nulling the signal components of the noise
subspace and retaining the components related to the clean signal subspace.

The method focuses on finding a linear minimum mean-square error estimator of the
clean signal: x̂ = Hy. The authors propose an optimum H obtained from a matrix that can
simultaneously diagonalize the covariance matrices of both the clean signal and the noise. H
is computed according to Equation A.5. Where V is the matrix of eigenvector of the joint
covariance matrix Σ of the noise and speech signals, which is estimated from the noisy signal;
and Q is a diagonal matrix whose elements are computed from the positive eigenvalues of Σ.

H = RnV QV T (A.5)

The algorithm is as follows:

1. Compute the covariance matrix Ry of the noisy signal, and estimate the matrix Σ =

R−1
n Ry − I. The noise covariance matrix Rn must be calculated considering noise

samples collected during speech absent frames.

2. Perform the eigenvalue decomposition of Σ as ΣV =V Λx.

3. Estimate the dimension M of the clean speech signal subspace as the number of
eigenvalues of Σ which are higher than zero.

4. Estimate the value of µ to control the trade-off between the speech distortion and the
residual of noise according to Equation A.6.

µ = 4.2−SNRdB/6.25 (A.6)

5. Compute the gain matrix G, and the transformation matrix H using Equations A.7, A.8
and A.9.

gkk =

 λ
(k)
x

λ
(k)
x +µk

, k ≤ M

0, k > M
(A.7)

G = diag(g11,g22, ...gMM) (A.8)

H = RnV

[
G 0
0 0

]
V T (A.9)
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6. Estimate the enhanced speech signal as x̂ = Hy

As in previous method, Figure A.2 shows an example of the performance of this method
both for cafeteria and street noise.

Fig. A.2 Performace of KLT technique for Speech enhancement
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Classification

B.1 Gaussian Mixtures Models

A GMM can be defined as a probabilistic model represented by the linear combination
of several multivariate Gaussian components. The model is expressed according to its
probability density function using Equation B.1. Where M is the number of Gaussian
components, Pj corresponds to the prior probability of the j−th component, and N is a
multivariate Gaussian density function with mean vector µ j, and covariance matrix Σ j.

p(x|Θ) =
M

∑
j=1

PjN (x|µ j,Σ j) (B.1)

Training GMM consist of estimating the parameters Θ = {P,µ,Σ} from a training set.
The most common method for the estimation is the expectation maximization (EM) algorithm
[136]. The UBM is trained using the Expectation Maximization (EM) algorithm [136] using
recordings from all classes, i.e. emotions from the trainig set. Then the specific GMM for
each class is adapted using the maximum a posteriori (MAP) rule. Finally, given a sample
X = [x1;x2; · · · ;xT ], where xi is the feature vector extracted from the frame i, the decision
of which class belongs each speech sample is taken evaluating the maximum log-likelihood
(LL) of the model of each emotion. The log-likelihood is calculated according to Equation
B.2

LL(X|Θ) =
1
T

T

∑
i=1

log(p(x|Θ)) (B.2)
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B.2 GMM Supervector

In this case, first a GMM-UBM is created, considering all classes, and all speakers. Then, the
mean vectors µ j of the UBM are adapted and merged toguether for each speaker utterance
using the MAP rule in order to create the GMM supervector for each utterance [137]. A
GMM supervector is a vectorial representation of the parameters of each one of these
models. Figure B.1 shows the process of the creation of the GMM supervectors. Finally
the supervectors are used as new features to train a discriminative classifier as a SVM. This
method leads to a "hybrid" classification strategy, where the generative GMM-UBM model
is used to create new feature vectors for the discriminative SVM.

Fig. B.1 GMM Supervector construction
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Bonilla, and E. Nöth. Non-linear dynamics characterization from wavelet packet
transform for automatic recognition of emotional speech. Smart Innovation, Systems
and Technologies, 48 pp. 199–207, 2016.

2. J. C. Vásquez-Correa, J. R. Orozco-Arroyave, J. D. Arias-Londoño, J. F. Vargas-
Bonilla, L. D. Avendaño, and E. Nöth. Time dependent ARMA for automatic recogni-
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110–118, 2015.
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International Carnahan Conference on Security Technology (ICCST), Taipei, 2015.
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Non-Linear Features. Proceedings of the 20th Symposium of Image, Signal Processing,
and Artificial Vision (STSIVA), Bogotá, 2015.
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Nomenclature

Roman Symbols

a Approximation coefficients in discrete wavelet transform

B Back-shift operator

C Constant for normalization

d Detail coefficients in discrete wavelet transform

E Expectation operator

F0 Fundamental frequency of speech

L Time interval for Hurst exponent

m Embedding dimension of attractor

s Scale parameter in wavelet transform

u Translation parameter in wavelet transform

Greek Symbols

α,β ,γ Parameters for bionic wavelet transform

λ1 Largest Lyapunov Exponent

ψ Mother Wavelet function

τ Time delay for reconstruction of attractor

Θ Heaviside step function

Acronyms / Abbreviations
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AR Auto-regressive

ARMA Auto Regressive Moving Average

BWT Bionic Wavelet Transform

CD Correlation Dimension

CS Correlation Sum

dB Decibel

DWT Discrete Wavelet Transform

FFT Fast Fourier Transform

GMM Gaussian mixture model

GNE Glottal to Noise Excitation ratio

HE Hurst exponent

HNR Harmonic to Noise Ratio

LEE Log-energy entropy

LLE largest Lyapunov exponent

LOGSO Leave one group speaker out

LOSO Leave one speaker out

LZC Lempel-Ziv complexity

MA Moving Average

MFCC Mel frequency cepstral coefficients

NLD Non-Linear Dynamics

NNE Normalized Noise Energy

SE Speech Enhancement

SSWT Synchro-squeezing Wavelet Transform

ST FT Short time Fourier Transform
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SV M Support vector machine

TARMA Time dependent Auto Regressive Moving Average

UAR Unweighted average recall

VAD Voice Activity Detection

WPT Wavelet Packet Transform

WT Wavelet Transform
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