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Abstract

Statistical inference about the mean is common for distributions approximately following the normal law.
Although the mean is popular, many researches in the health and social sciences involve skewed distribu-
tions and inferences about quantiles. Most existing multiple comparison procedures also require normality
assumption. Very few methods exist for comparing the medians of independent samples or quantiles of
several distributions in general. To our knowledge, there is no general-purpose method for constructing
simultaneous confidence intervals for multiple contrasts of quantiles of arbitrary distributions. In this paper,
we develop an asymptotic method for constructing such intervals. Small-sample performance of the proposed
method is assessed in terms of simultaneous coverage probability and average width of the confidence inter-
vals. Good coverage probabilities are observed even for extremely skewed distributions like the exponential.
The proposed method is applied to biomedical data following a log-normal distribution and time-to-event
data in survival analysis
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1. Introduction

Skewed data are very common in practice. For example household income and remission duration data
from clinical trial for acute leukemia are positively skewed and they approximately follows log-normal or
exponential distributions. For log-normal distributions, several methods have been proposed for constructing
confidence intervals for single mean (Zhou & Gao, 1997; Olsson, 2005), for the ratio (or the difference) of
two means (Krishnamoorthy & Mathew, 2003; Chen & Zhou, 2006) and multiple comparison of means
(Schaarschmidt, 2012; Sadooghi-Alvandi & Malekzadeh, 2013). However, the arithmetic mean is sensitive to
outlying observations and skewness. Other measures of location like median is preferred in this situation.

Many papers on using medians to compare distributions have focused on hypothesis testing. Examples
are rank-based methods (Fung, 1980; Hettmansperger & McKean, 1998), the permutation test (Richter &
McCann, 2013) and boostrap methods (Wilcox, 2006) for comparing medians of independent groups. Li
et. al. (1996) proposed a control percentile test, chi-square test and bootstrap Kolmogorov-type test for
comparing a single quantile, a finite set of quantiles, and the entire quantile functions of two distributions
using a vertical quantile comparison function. Wilcox et. al. (2014) discussed a bootstrap method for com-
paring two independent groups using the lower and upper quantiles. Wu (2011) discusses seven methods for
contructing confidence intervals for difference of median of time-to-event data. The problem of construct-
ing simultaneous confidence intervals (SCIs) for several quantiles of a single distribution has been studied
extensively; see for example Satten (1995), Liu et al. (2013) and Hayter (2014). Wilcox (1995) proposed a
method for constructing SCIs for difference of several quantiles of two independent groups using bootstrap.
However, a general method for constructing SCIs for multiple contrasts of quantiles is not available.

In this paper, we propose an asymptotic method for constructing SCIs for differences and ratios of
quantiles. The method works for two or more independent samples from arbitrary distributions. Small
sample properties of the proposed method are evaluated using samples from a variety of distributions such
as exponential, cauchy, laplace, generalized extreme value, and mixture of normal. The coverage probabilities
are observed to be close to the nominal level for most distributions of practical interest.

In Section 2.1, asymptotic SCIs for difference of quantiles is described and illustrations given for the case
of three treatment groups. Section 2.2 describes asymptotic SCIs for ratios of quantiles. Section 2.3 includes
development of the method for time-to-event data set. Section 3 describes the simulation study and shows
the results. Seciton 3.1 includes the discussion of the results. Applications to real data sets are illustrated
in Section 4. Concluding remarks are given in Section 5.

2. Multiple contrasts of quantiles

2.1. Difference of quantiles
Let ξp,i be the pth quantile of a probability function fi(·) for group i, i = 1, 2, ..., k, and let C be

an m × k matrix containing m contrasts. We are interested in constructing a 100(1 − α)% simultaneous
confidence intervals for the components of Cξp, where ξp = (ξp,1, ξp,2, ..., ξp,k)

T . For example, in multiple
comparisons to a control, m = k− 1, and m = k(k− 1)/2 for all pairwise comparisons of quantiles. Consider
independent samples of size ni from the probability density function fi(·). It is well known that the pth
sample quantile denoted by ξ̂p,i ≡ x([nip]) follows a normal distribution asymptotically,

√
ni

(
ξ̂p,i − ξp,i

)
d−→ N

(
0,

p(1− p)
(fi (ξp,i))

2

)
, 0 < p < 1, i = 1, 2, ..., k,

where fi(ξp,i) is the density value at the pth quantile. In other words,

ξ̂p,i
d−→ N

(
ξp,i,

p(1− p)
ni(fi(ξp,i))2

)
.

Let ξ̂p = (ξ̂p,1, ξ̂p,2, ..., ξ̂p,k)
T be a vector of sample quantiles from k independent samples. Then we have

Cξ̂p
d−→ Nm(Cξp,CΣCT ),
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where the covariance matrix Σ is a diagonal matrix with elements σ2
i = p(1 − p)/

(
ni (fi (ξp,i))

2
)
, i =

1, 2, ..., k. Note that the matrix Σ involves the density fi of the underlying probability distribution and
that these densities are not necessarily from the same family. We use kernel density estimation (Rosenblatt,
1956; Parzen, 1962) to estimate f and hence Σ. The estimate of Σ is Σ̂ with diagonal elements σ̂i2 =

p (1− p) /
(
ni(f̂i(ξ̂p,i))

2
)
, where f̂i is the kernel density estimate of f with a Gaussian kernel K(·),

f̂i(t) =
1

nih

ni∑
j=1

K
( t− xij

h

)
,

and h is a bandwidth. We use Silverman’s rule of thumb (Silverman, 1986) for the calculation of the
bandwidth. The effect of using the true density at the true pth quantile, fi (ξp,i) as well as the kernel density
estimate at the sample pth quantile, f̂i(ξ̂p,i), will be assessed using simulation later in Section 3.

Let q1−α be the αth equicoordinate quantile of a multivariate normal distribution with mean 0 and
covariance CΣ̂CT , calculated using the Genz and Bretz algorithm (Genz, 1992, 1993; Genz & Bretz, 2002).
The correlation matrix R̂ associated with the covariance matrix, CΣ̂CT is given by D−1

σ̂ CΣ̂CTD−1
σ̂

where D−1
σ̂ is the inverse of Dσ̂ = [diag(CΣ̂CT )]1/2. Then the asymptotic 100(1−α)% SCIs for cjξp, j =

1, ...,m, are given by

cj ξ̂p ± q1−α
√

cTj Σ̂cj , j = 1, ...,m,

where cj is a vector from the j th row of contrast matrix C.
As an illustration, consider three independent samples, k = 3, where p = 0.5. The interest is to construct

a 100(1− α)% SCIs for difference of medians, Cξ0.5.

For multiple comparison to control, m = 2, contrast matrix C =

(
1 0 −1
0 1 −1

)
and vector of esti-

mated median, ξ̂0.5 = (ξ̂0.5,1, ξ̂0.5,2, ξ̂0.5,3)
T , where ξ̂0.5,1, ξ̂0.5,2 and ξ̂0.5,3 are the median of the treatment 1,

treatment 2 and the control group respectively. Then the joint distribution of Cξ̂0.5 is given by

Cξ̂0.5
d−→ N2

(
Cξ0.5,CΣCT

)
,

where
Cξ0.5 =

(
ξ0.5,1 − ξ0.5,3
ξ0.5,2 − ξ0.5,3

)
, CΣCT =

(
σ1

2 + σ3
2 σ3

2

σ3
2 σ2

2 + σ3
2

)
and

σi
2 =

1

4ni(fi(ξi))2
, i = 1, 2, 3. (1)

Then a 100(1− α)% SCIs for cjξ0.5, j = 1, 2 are given by

cj ξ̂0.5 ± q1−α
√

cTj Σ̂cj , j = 1, 2.

For pairwise comparisons, m = 3. The contrast matrix C =

 1 −1 0
1 0 −1
0 1 −1

. The joint distribution of

Cξ̂0.5 is given by

Cξ̂0.5
d−→ N3

(
Cξ0.5,CΣCT

)
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where

Cξ0.5 =

 ξ0.5,1 − ξ0.5,2
ξ0.5,1 − ξ0.5,3
ξ0.5,2 − ξ0.5,3

 , CΣCT =

 σ1
2 + σ2

2 σ1
2 σ2

2

σ1
2 σ1

2 + σ3
2 σ3

2

σ2
2 σ3

2 σ2
2 + σ3

2


Then a 100(1− α)% SCIs for cjξ0.5, j = 1, 2, 3 are given by

cj ξ̂0.5 ± q1−α
√

cTj Σ̂cj , j = 1, 2, 3.

2.2. Ratio of Quantiles
Suppose that we have k treatments. Given the vector of quantiles ξp = (ξp,1, ξp,2, ..., ξp,k)

T , we are
interested in the vector of parameters ρ = (ρ1, ..., ρr), where

ρl =
aTl ξp
bTl ξp

l = 1, ..., r

and r is the number of ratios. The vectors al = (a1l, ..., akl) and bl = (b1l, ..., bkl) have known elements
with zeros everywhere and one at the position of treatment to be used. The interest is to construct SCIs for
the ratio of quantiles, ρ. One way of the derivation of confidence intervals for ratios is expressing the ratio
problem in a linear form Ll = (ρlbl − al)T ξ̂p, l = 1, ..., r (Fieller, 1954; Zerbe et al., 1982). Ll approaches
normal N(0, σ2

Ll
), where

σ2
Ll

= Var(Ll) = (ρlbl − al)TΣ(ρlbl − al), (2)

and Var(ξ̂p) = Σ, a diagonal matrix with elements σ2
i , i = 1, 2, ..., k. The estimate σ̂i2 is used when the

true density is unknown. The associated correlation matrix R follows from standardizing (2). Note that the
variance in (2) and R are functions of the unknown ratios ρl. Dilba et al. (2006) discuss the plug-in method
for approximating R. For r = 1, we have a single ratio. A 100(1− α)% SCI for ρ using Fieller’s theorem is
the solution in ρ of the inequality

L2
l

Var(Ll)
6 (q1−α)

2 (3)

The inequality in (3) can be expressed as a quadratic inequality in ρ

Aρ2 +Bρ+ C 6 0 (4)

where A = (bT ξ̂p)
2 − q2bTΣb, B = −2[(aT ξ̂p)(bT ξ̂p)− q2aTΣb], C = (aT ξ̂p)

2 − q2aTΣa and q = q1−a
There are three possible solutions to the inequality in (4) depending the value of leading coefficient, A, and
the discriminant, B2− 4AC. If A > 0, B2− 4AC > 0, the solution is a finite interval defined by two distinct
roots. This is associated with situation when bTl ξp is significantly different from 0. The other two cases
result in either a region excluding the finite interval defined by the two distinct roots or the does not exclude
any value at all on the ρ-axis. These conditions are discussed in Zerbe et al. (1982).

For more than one ratio, the SCIs are determined by solving inequalities of the type in (4) for each ratio
separately.

2.3. Time-to-event data
We finally consider differences and ratios of survival times. In survival analysis, we are interest the

distribution of survival times. The survival function S(t) is defined as the probability that a subject survives
longer than time t. Let t(p) be the pth quantile of the distribution and Ŝ

(
t(p)) be the Kaplan Meier estimate

(Kaplan & Meier, 1958) of the survival function at t(p). Also, t̂(p) is the estimated pth quantile and its
standard error is given by

se
(
t̂(p)

)
=

1

f̂
(
t̂(p)

) se(Ŝ (t̂(p))) ,
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where f̂ is an estimate of the probability density function. The standard error of Ŝ
(
t̂(p)

)
is found by

Greenwood’s formula (Greenwood, 1926) while it is not easy to find f̂ . We use presmoothed kernel density
estimation (Lopez-de-Ullibarri & Jacome, 2013) in survival analysis. For one survival function, an approxi-
mate 100(1− α)% confidence interval for t(p) (Collett, 2015) is given by

t̂(p)± z(1−α/2)se
(
t̂(p)

)
where z(1−α/2) is the αth quantile of the standard normal distribution.

2.3.1. Difference of quantiles
For multiple survival functions, let t̂(p) =

(
t̂1(p), t̂2(p), ..., t̂k(p)

)T
be a vector of the estimate pth quan-

tiles. We propose an asymptotic simultaneous 100(1− α)% confidence interval for the jth contrast to be

cj t̂(p)± q1−α
√

cTj Σ̂cj , j = 1, ...,m,

where Σ̂ is a diagonal covariance matrix whose elements are
(
se
(
t̂i(p)

))2
i = 1, 2, ..., k.

2.3.2. Ratio of quantiles
In clinical trials, ratios of median survival times for control and intervention groups are also of inter-

est. These ratios have a convenient percent change interpretation. Assuming survival curves are approxi-
mately exponential, there is a simple method to obtain an approximate 95% confidence interval for the ratio
ti(0.5)/tj(0.5) (Friedman et al., 2010),(

t̂i(0.5)

t̂j(0.5)
e−1.96S ,

t̂i(0.5)

t̂j(0.5)
e+1.96S

)

where S =
√
1/Oi + 1/Oi and Oi is the total number of events for group i. However, the exponential

distribution is not commonly used for the distribution of survival times. If the assumption is relaxed, it
is not simple to find the confidence interval because of the standard error. Confidence interval for the
ratio of the pth quantiles of survival times can be computed by modifying the difference of quantiles. Let
ρp,ij = ti(p)/tj(p). Then ti(p) − ρp,ijtj(p) = 0. Thus the asymptotic simultaneous 100(1 − α)% confidence
interval for the rth contrast is

cr t̂(p)± q1−α
√

ĉTr Σ̂ĉr, r = 1, ...,m,

where the ith and jth components of cr are 1 and −ρp,ij , respectively and ρ̂p,ij = t̂i(p)/t̂j(p) in ĉr. Therefore,
the asymptotic simultaneous 100(1− α)% confidence interval for ρp,ij is given by

ρ̂p,ij ±
q1−α

t̂i(p)

√
(se(t̂i(p)))2 + ρ̂2p,ij(se(t̂i(p)))2.

From Fieller’s theorem (Fieller, 1954), we have the 100(1− α)% confidence interval for ρp,ij ,

1

1− g

(
ρ̂p,ij ±

q1−α

t̂i(p)

√
(se(t̂i(p)))2(1− g) + ρ̂2p,ij(se(t̂i(p)))2

)
where g = q21−α(se(t̂j(p)))2/(t̂j(p))2.

3. Simulation

In the simulation study, we focused on the asymptotic SCIs based on medians. Several distributions of
theoretical interest are considered for this simulation. The distributions are normal, N(µ, σ), exponential,
E(λ), and mixture of two normal distributions, 0.5N(µ1, σ1) + 0.5N(µ2, σ2). We also consider Cauchy,
C(µ, σ), Laplace, L(µ, σ) and generalized extreme value, G(µ, σ, γ), distributions, where µ, σ, λ and γ are
parameters for a location scale, rate and shape respectively. Some of the distributions are included for
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theoretical interest. Three treatments, k = 3, are considered for each distribution. Then m = 2 for multiple
comparisons to a control with treatment 1 as the control group or m = 3 for all pairwise comparisons. The
sample sizes n = 10, 30, 100, 500 were used for each distribution. Two-sided nominal 95% SCIs are used for
calculating coverage probability (CP) from 10000 replications. CP is defined as the probability that all true
parameters are included in their respective SCIs. Average length (AL) of the SCIs corresponding to a CP
is determined by calculated length of each of m × 10000 SCIs and finding the average. Covariance matrix
using the true density at the true median, f(ξ), and the density estimate at the estimated median, f̂(ξ̂) are
calculated for each of two situations: equicoordinate quantile based on the multivariate normal distribution
(MVNq) and the multivariate t distributions (MV Tq) as shown in Tables 1, 2 and 3. Gaussian kernel
density with Silverman’s rule of thumb is used in estimating f̂ .

Table 1: Coverage probability (CP) and average length (AL) of 95% asymptotic SCIs for multiple comparisons to a control
for difference of quantiles

MVNq MV Tq Treatments

n f̂(ξ̂) f(ξ) f̂(ξ̂) f(ξ) 1 2 3

CP AL CP AL CP AL CP AL

10 0.943 2.6 0.965 2.5 0.957 2.7 0.974 2.6

30 0.958 1.5 0.954 1.4 0.966 1.5 0.961 1.5 N(0,1) N(1,1) N(2,1)

100 0.962 0.8 0.952 0.8 0.961 0.8 0.950 0.8

500 0.956 0.4 0.950 0.4 0.960 0.4 0.954 0.4

10 0.922 1.2 0.943 1.2 0.937 1.3 0.954 1.2

30 0.940 0.7 0.946 0.7 0.944 0.7 0.954 0.7 E(1) Exp(2) Exp(3)

100 0.943 0.4 0.950 0.4 0.942 0.4 0.948 0.4

500 0.945 0.2 0.950 0.2 0.940 0.2 0.952 0.2

10 0.983 4.4 0.907 3.1 0.987 4.6 0.922 3.3

30 0.988 2.4 0.934 1.8 0.990 2.5 0.943 1.8 C(0,1) C(1,1) C(2,1)

100 0.983 1.2 0.943 1.0 0.985 1.2 0.948 1.0

500 0.928 0.4 0.951 0.4 0.928 0.4 0.948 0.4

10 0.968 2.9 0.881 2.0 0.977 3.0 0.900 2.1

30 0.980 1.6 0.905 1.1 0.982 1.6 0.913 1.2 L(0,1) L(1,1) L(2,1)

100 0.986 0.8 0.922 0.6 0.987 0.8 0.926 0.6

500 0.983 0.3 0.936 0.3 0.980 0.3 0.935 0.3

10 0.954 3.0 0.963 2.9 0.962 3.2 0.970 3.0

30 0.960 1.7 0.955 1.6 0.963 1.8 0.955 1.7 G(0,1,0) G(1,1,0) G(2,1,0)

100 0.957 0.9 0.952 0.9 0.961 1.0 0.953 0.9

500 0.958 0.4 0.946 0.4 0.956 0.4 0.952 0.4

10 0.943 2.9 0.964 2.8 0.955 3.1 0.976 3.0

30 0.956 1.7 0.955 1.6 0.965 1.7 0.964 1.6 0.5N(0,1) 0.5N(1,1) 0.5N(2,1)

100 0.963 0.9 0.950 0.9 0.961 0.9 0.950 0.9 +0.5N(1,1) +0.5N(2,1) +0.5N(3,1)

500 0.958 0.4 0.950 0.4 0.958 0.4 0.950 0.4
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Table 2: Coverage probability (CP) and average length (AL) of 95% aymptotic SCIs for all pairwise comparisons for
difference of quantiles.

MVNq MV Tq Treatments

n f̂(ξ̂) f(ξ) f̂(ξ̂) f(ξ) 1 2 3

CP AL CP AL CP AL CP AL

10 0.937 2.7 0.967 2.6 0.954 2.9 0.978 2.8

30 0.956 1.6 0.958 1.5 0.961 1.6 0.962 1.5 N(0,1) N(1,1) N(2,1)

100 0.961 0.9 0.951 0.8 0.962 0.9 0.952 0.8

500 0.956 0.4 0.949 0.4 0.958 0.4 0.951 0.4

10 0.921 1.4 0.944 1.4 0.936 1.4 0.957 1.4

30 0.941 0.8 0.944 0.8 0.941 0.8 0.952 0.8 E(1) E(2) E(3)

100 0.940 0.4 0.952 0.4 0.940 0.4 0.952 0.4

500 0.941 0.2 0.947 0.2 0.938 0.2 0.954 0.2

10 0.982 5.3 0.898 3.3 0.988 5.6 0.910 3.5

30 0.990 2.6 0.928 1.9 0.993 2.6 0.939 1.9 C(0,1) C(1,1) C(2,1)

100 0.985 1.3 0.943 1.0 0.987 1.3 0.945 1.0

500 0.919 0.5 0.946 0.5 0.926 0.5 0.947 0.5

10 0.968 3.1 0.870 2.1 0.977 3.3 0.896 2.2

30 0.986 1.7 0.902 1.2 0.985 1.7 0.913 1.2 L(0,1) L(1,1) L(2,1)

100 0.986 0.9 0.919 0.7 0.986 0.9 0.925 0.7

500 0.983 0.4 0.933 0.3 0.984 0.4 0.937 0.3

10 0.946 3.2 0.956 3.0 0.955 3.4 0.972 3.2

30 0.956 1.8 0.954 1.7 0.962 1.9 0.956 1.8 G(0,1,0) G(1,1,0) G(2,1,0)

100 0.960 1.0 0.950 1.0 0.962 1.0 0.954 1.0

500 0.960 0.4 0.948 0.4 0.958 0.4 0.950 0.4

10 0.942 3.1 0.968 3.0 0.952 3.2 0.978 3.1

30 0.958 1.8 0.957 1.7 0.959 1.8 0.962 1.7 0.5N(0,1) 0.5N(1,1) 0.5N(2,1)

100 0.960 1.0 0.953 0.9 0.962 1.0 0.953 0.9 +0.5N(1,1) +0.5N(2,1) +0.5N(3,1)

500 0.955 0.4 0.948 0.4 0.958 0.4 0.953 0.4
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Table 3: Coverage probability (CP) and average length (AL) of 95% asymptotic SCIs for multiple comparisons to a control
for ratio of quantiles.

MVNq MV Tq Treatments

n f̂(ξ̂) f(ξ) f̂(ξ̂) f(ξ) 1 2 3

CP AL CP AL CP AL CP AL

10 0.935 1.1 0.976 1.0 0.949 1.2 0.985 1.1

30 0.958 0.6 0.964 0.6 0.962 0.6 0.965 0.6 N(0,1) N(1,1) N(2,1)

100 0.958 0.3 0.956 0.3 0.961 0.3 0.950 0.3

500 0.954 0.1 0.950 0.1 0.959 0.1 0.949 0.1

10 0.873 8.2 0.935 10.0 0.885 8.9 0.944 10.5

30 0.910 3.9 0.943 4.2 0.912 4.0 0.941 4.3 E(1) E(2) E(3)

100 0.933 2.0 0.950 2.1 0.932 2.0 0.949 2.1

500 0.939 0.9 0.949 0.9 0.939 0.9 0.951 0.9

10 0.981 3.3 0.930 1.9 0.984 3.4 0.942 1.9

30 0.988 1.0 0.942 0.7 0.990 1.0 0.948 0.7 C(0,1) C(1,1) C(2,1)

100 0.983 0.5 0.945 0.4 0.983 0.5 0.952 0.4

500 0.899 0.2 0.951 0.2 0.898 0.2 0.950 0.2

10 0.964 1.6 0.898 0.8 0.971 1.8 0.913 0.9

30 0.978 0.6 0.912 0.4 0.982 0.6 0.914 0.4 L(0,1) L(1,1) L(2,1)

100 0.985 0.3 0.922 0.2 0.984 0.3 0.922 0.2

500 0.982 0.1 0.935 0.1 0.981 0.1 0.933 0.1

10 0.934 1.1 0.978 1.0 0.944 1.2 0.984 1.1

30 0.948 0.6 0.964 0.5 0.952 0.6 0.965 0.6 G(0,1,0) G(1,1,0) G(2,1,0)

100 0.953 0.3 0.954 0.3 0.955 0.3 0.959 0.3

500 0.957 0.1 0.947 0.1 0.956 0.1 0.952 0.1

10 0.935 1.0 0.974 1.0 0.945 1.1 0.981 1.0

30 0.953 0.5 0.960 0.5 0.959 0.6 0.965 0.5 0.5N(0,1) 0.5N(1,1) 0.5N(2,1)

100 0.961 0.3 0.952 0.3 0.961 0.3 0.955 0.3 +0.5N(1,1) +0.5N(2,1) +0.5N(3,1)

500 0.956 0.1 0.950 0.1 0.955 0.1 0.953 0.1
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3.1. Discussion
Tables 1 and 2 show the simulation results for difference of quantiles (medians) for multiple comparison to

control and all pairwise comparisons respectively. Table 3 shows the simulation results for ratio of quantiles
(medians) for multiple comparison to control. In Tables 1, coverage probabilities are observed to be close to
the nominal 95%. AL reduces as the sample size increase. AL for MV Tq is on the average wider than that
of the MVNq irrespective of whether the CP is based on f(ξ) or f̂(ξ̂). These observations are very similar
to results in Table 2 and Table 3.

Figure 1: In the first row, true density of Cauchy(0,1) (continuous curve) and estimated densities (dashed curve) based on
sample sizes n are superimposed on the true density. In the second row, from 10000 replications, histograms of f̂(ξ̂) from
Cauchy(0,1) varying by n are shown and the vertical dashed line representing f(ξ) is superimposed on each histogram.

Figure 1 and 2 show how well f̂(ξ̂) is used to estimate f(ξ) for Cauchy and Laplace distributions respec-
tively. From first row of Figure 1, the true density (continuous curve) of the cauchy distribution with mean
0 and variance 1 is under estimated by the estimated kernel density (dashed curve) at the apex. This gap is
more pronounced for small n with a gradual decrease as n increases. The magnitude of this gap has a direct
effect on the variance in (1) and Σ in the calculation of the SCIs. Large gap between f(ξ) and f̂(ξ̂), where
f(ξ) > f̂(ξ̂), result in a rather inflated variance and hence gives a more conservative coverage probability
and vice versa. This is observed in Tables 1, 2, and 3 for the cauchy row under the columns f̂(ξ̂) for MVNq

and MV Tq. This fact result from variance in (1) since f̂(ξ̂) is in the denominator.
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Figure 2: In the first row, true density of Laplace(0,1) (continuous curve) and estimated densities (dashed curve) based on
sample sizes (n) are superimposed on the true density. In the second row, from 10000 replications, histograms of f̂(ξ̂) from
Laplace(0,1) varying by sample sizes are shown and the vertical dashed line representing f(ξ) is superimposed on each histogram.

The second row in Figure 1, gives an additional closer picture of how well f(ξ) is estimated by f̂(ξ̂).
The peak of the histograms from 10000 replications of f̂(ξ̂) is found to be lower than f(ξ) (dashed vertical
line). There is a direct relationship between CP under f̂(ξ̂) for Cauchy distribution in Table 1 and Figure 1.
Conservative CP for n = 10, 30, 100 correspond with larger proportion of the histogram being lower than
f(ξ) (dashed vertical line). However, for n = 500, CP reduces because a smaller proportion of f̂(ξ̂) from
10000 overestimates f(ξ) as seen in the last figure in the second row of Figure 1.

In Figure 2, the true density (continuous curve) of the Laplace distribution with mean 0 and variance 1
is under estimated by the estimated kernel density (dashed curve) at the peak. Observations discussed for
Cauchy distribution in Figure 1 is similar to that of Laplace in Figure 2.

From the observations, asymptotic SCIs are conservative when f(ξ) > f̂(ξ̂) and vice versa. In other words,
kernel density estimation has an influence on the coverage probability like Cauchy and Laplace distributions.
Common nonparametric estimators of a probability density function show bad performance for heavy-tailed
distributions (Maiborada & Markovich, 2004; Charpentier & Flachaire, 2015). Kernel density estimation
is highly dependent on the bandwidth. Silverman’s rule of thumb works well when data are normally
distributed. The method developed by Sheather & Jones (1991) is recommended as being most reliable in
terms of overall performance (Jones et al., 1996).

4. Application to real data

4.1. Example 1
We consider an example of data originally given by Hand et. al (1994). The data consist of 57 observations

of nitrogen bound bovine serum albumin in k = 3 groups of mice:normal mice (group 1), alloxan-induced
diabetic mice (group 2), and alloxan-induced diabetic mice treated with insulin (group 3). This is a skewed
data and it has been analyzed by Schaarschmidt (2012) under the assumption of lognormal distribution.

Table 4 shows a 95% asymptotic SCIs for difference of medians for the three groups of mice for multiple
comparison to control based on f̂i(ξ̂p,i), p = 0.5. It is observed that the length of the intervals for the
multivariate normal equicoordinate quantile function is smaller than the multivariate t, df = 3(ni− 1). This
is also true for the simulation results in Tables 1, 2, and 3.
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Table 4: A 95% SCIs for difference of medians (multiple comparison to control)

MVNq MV Tq
Comparison Lower Upper Lower Upper
Alloxan - Normal -91.69 121.69 -94.52 124.52
AlloxanInsulin - Normal -123.20 38.20 -125.35 40.35

Table 5: Norminal 95% SCIs for difference of medians (All pairwise comparison)

MVNq MV Tq
Comparison Lower Upper Lower Upper
Alloxan - AlloxanInsulin -39.53 154.53 -42.28 157.28
Alloxan - Normal -97.89 127.89 -101.09 131.09
AlloxanInsulin - Normal -127.90 42.90 -130.32 45.32

4.2. Example 2
A typical example of skewed data is time-to-event data in survival analysis. Consider survival data from

a study to determine the efficacy of boron neutron capture therapy (BNCT) in treating the therapeutically
refractry F98 glioma, using boronophenylalanine (BPA) as the capture agent (Klein & Moeschberger, 2005).
Three groups of rats were studied and there were 10 rats for each group. One group went untreated, another
was treated with only radiation, and the third group received radiation plus an appropriate concentration
of BPA. Suppose that those treated only with radiation is called the Treatment 1 and the last group which
received

Table 6: Estimated survival functions (Ŝ) and standard errors (in parenthesis next to Ŝ) for each group in the efficacy of boron
neutron capture therapy data. R and E represent the number of rats at risk and the number of events, respectively.

Untreated Radiated Radiated+BPA

time R E Ŝ time R E Ŝ time R E Ŝ

20 10 1 0.9(0.0949) 26 10 1 0.9(0.0949) 31 10 1 0.9(0.0949)

21 9 1 0.8(0.1265) 28 9 1 0.8(0.1265) 32 9 1 0.8(0.1265)

23 8 1 0.7(0.1449) 29 8 2 0.6(0.1549) 34 8 1 0.7(0.1449)

24 7 2 0.5(0.1581) 30 6 2 0.4(0.1549) 35 7 1 0.6(0.1549)

26 5 2 0.3(0.1449) 31 4 2 0.2(0.1265) 36 6 1 0.5(0.1581)

27 3 1 0.2(0.1265) 32 2 1 0.1(0.0949) 38 5 2 0.3(0.1449)

28 2 1 0.1(0.0949)

30 1 1 0.0

radiation plus BPA is called the Treatment 2. Here, the control is an untreated group. The estimated
median survival times are t1(0.5) = 30, t2(0.5) = 38, and tC(0.5) = 25, from the Table 6. Their corresponding
standard errors are se(t1(0.5)) = 0.7306, se(t2(0.5) = 1.5650) and setC(0.5) = 1.2890 by using Greenwood’s
formula and the presmoothed density function (Lopez-de-Ullibarri & Jacome, 2013).

Table 7 and Table 8 show 95% asymptotic SCIs for differences and ratios of median respectively for the
survival data set. Both tables show the multiple comparisons to a control and all pairwise comparisons.
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Table 7: Asymptotic simultaneous 95% confidence intervals for difference of medians

Multiple comparisons to a control All pairwise comparison

Comparison Lower Upper Lower Upper

Radiaton - Radiation+BPA - - -12.0301 -3.9699

Radiation - Untreated 0.7474 7.2530 0.5593 7.4407

Radiation+BPA - Untreated 7.5386 16.4614 7.2811 16.7189

Table 8: Asymptotic simultaneous 95% confidence intervals for ratio of medians

Multiple comparisons to a control All pairwise comparison

Comparison Lower Upper Lower Upper

Radiaton / Radiation+BPA - - 0.7079 0.8857

Radiation / Untreated 1.0257 1.3072 1.0195 1.3191

Radiation+BPA / Untreated 1.2719 1.6854 1.2597 1.7026

5. Concluding remarks

In this paper, we have proposed an asymptotic method for construction SCIs for multiple contrasts
of quantiles for arbitrary distributions. Many distributions of practical interest were considered in the
simulation study based on the median. Coverage probabilities were observed to be close to the nominal 95%
for small samples sizes and extremely skewed distribution like the exponential. Heavy tailed distribution like
the Cauchy exhibited coverage probabilities that were slightly different from the nominal 95% simultaneous
confidence level. Further studies would focus on the density estimation method that works best for the heavy
tailed distributions.
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